首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear matrices were prepared by DNase and high salt extraction of SV40-infected epithelial monkey cells. The matrices retain the majority of SV40 virions. This conclusion is based on electron microscopic observations of the occurrence of encapsidated viral DNA that is resistant to DNase digestion and on the analysis of viral proteins by gel electrophoresis. Pulse labeled SV40 RNA is also associated with the nuclear matrix (less than 15% of the viral RNA is removed by DNase and high salt). Pulse-chase experiments revealed that processing of SV40 RNA takes place on the nuclear matrix and the processed molecules are directly transported to the cytoplasm where they are associated with the cytoskeleton. These results suggest a central role for the nuclear and cytoplasmic substructures in virus assembly and in the biogenesis of viral RNA.  相似文献   

2.
Thermosensitive Block of the Sabin Strain of Poliovirus Type I   总被引:11,自引:7,他引:4  
The thermosensitive defect of the Sabin LSc2ab strain of poliovirus type I was studied. Transfer of infected KB cells from 36 to 38.5 C resulted in 30% inhibition of viral RNA replication but in 90% inhibition of formation of virions. Neither 74S procapsids nor 14S particles were detected in the cells transferred to the non-permissive temperature. However, procapsids, once accumulated at 36 C, were normally stable at 38.5 C and could transform into virions at that temperature. Viral proteins synthesized at the nonpermissive temperature were not different from those synthesized at permissive temperature, as judged from their pattern in polyacrylamide gel electrophoresis and from the fact that they normally matured into virions when the infected cells were brought back to permissive temperature, even under conditions of inhibition of protein synthesis. This leads to the conclusion that the defect in the Sabin strain studied lies in the assembly of its viral capsid proteins into capsomeres.  相似文献   

3.
Defective interfering (DI) RNA genomes of poliovirus which contain in-frame deletions in the P1 capsid protein-encoding region have been described. DI genomes are capable of replication and can be encapsidated by capsid proteins provided in trans from wild-type poliovirus. In this report, we demonstrate that a previously described poliovirus DI genome (K. Hagino-Yamagishi and A. Nomoto, J. Virol. 63:5386-5392, 1989) can be complemented by a recombinant vaccinia virus, VVP1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991), which expresses the poliovirus capsid precursor polyprotein, P1. Stocks of defective polioviruses were generated by transfecting in vitro-transcribed defective genome RNA derived from plasmid pSM1(T7)1 into HeLa cells infected with VVP1 and were maintained by serial passage in the presence of VVP1. Encapsidation of the defective poliovirus genome was demonstrated by characterizing poliovirus-specific protein expression in cells infected with preparations of defective poliovirus and by Northern (RNA) blot analysis of poliovirus-specific RNA incorporated into defective poliovirus particles. Cells infected with preparations of defective poliovirus expressed poliovirus protein 3CD but did not express capsid proteins derived from a full-length P1 precursor. Poliovirus-specific RNA encapsidated in viral particles generated in cells coinfected with VVP1 and defective poliovirus migrated slightly faster on formaldehyde-agarose gels than wild-type poliovirus RNA, demonstrating maintenance of the genomic deletion. By metabolic radiolabeling with [35S]methionine-cysteine, the defective poliovirus particles were shown to contain appropriate mature-virion proteins. This is the first report of the generation of a pure population of defective polioviruses free of contaminating wild-type poliovirus. We demonstrate the use of this recombinant vaccinia virus-defective poliovirus genome complementation system for studying the effects of a defined mutation in the P1 capsid precursor on virus assembly. Following removal of residual VVP1 from defective poliovirus preparations, processing and assembly of poliovirus capsid proteins derived from a nonmyristylated P1 precursor expressed by a recombinant vaccinia virus, VVP1 myr- (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 66:4556-4563, 1992), in cells coinfected with defective poliovirus were analyzed. Capsid proteins generated from nonmyristylated P1 did not assemble detectable levels of mature virions but did assemble, at low levels, into empty capsids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The morphogenesis of hepatitis A virus (HAV) in BS-C-1 cells was examined by immunoblotting with antisera to capsid proteins and labeling of virus-specific proteins with L-[35S]methionine. Antiserum to VP2 detected two virus-specific proteins with apparent molecular masses of 30.6 and 30 kDa, representing VP0 and VP2, while antiserum to VP1 detected proteins with molecular masses of 33 and 40 kDa, representing VP1 and a virus-specific protein which we designated PX, respectively. Sedimentation of cell lysates revealed the presence of virions, procapsids, and pentamers, but particles analogous to the protomers of other picornaviruses were not detected. Although provirions and virions were not found as discrete species in our gradient system, it was evident that the rate of sedimentation was proportional to the relative amounts of VP0 and VP2 in particles, with slower-sedimenting particles (provirions) containing predominantly VP0 rather than VP2. Procapsids contained VP0 in addition to VP1 and VP3. Pentamers also contained VP0, but PX was present rather than VP1. These results suggest that PX is a precursor to VP1 and is most likely 1D2A. Primary cleavage of the viral polyprotein also occurs at the 2A-2B junction in cardioviruses and aphthoviruses, but assembly of pentamers containing 1D2A has not been reported for those viruses. The absence of detectable levels of protomers suggests a high efficiency of pentamer formation, which may be related to the high efficiency of viral RNA encapsidation for HAV (D.A. Anderson, B.C. Ross, and S.A. Locarnini, J. Virol. 62:4201-4206, 1988). The results of this study reveal further unusual aspects of the HAV replicative cycle which distinguish it from other picornaviruses and may contribute to its restricted replication in cell culture.  相似文献   

5.
The current model of poliovirus morphogenesis postulates a fundamental role for procapsid, 80S shells that, upon interaction with viral RNA and subsequent proteolytic cleavage, give rise to complete virus particles. Although 80S sedimenting particles can, indeed, be isolated from cytoplasmic extracts of infected cells, their physical properties differ from those reported for procapsids. Far from being stable structures, they can be dissociated by pH 8.5 and 0.1% sodium dodecyl sulfate into slower-sedimenting subunits. The reasons for this discrepancy were investigated, and two main modalities leading to the appearance of procapsids in vitro were identified. The first involves a temperature-mediated conversion of dissociable 80S particles into stable 80S procapsids, and the second involves the self-assembly of endogenous 14S subunits, also primed by an increase in the temperature of cytoplasmic extracts.  相似文献   

6.
Defective interfering particles of poliovirus. II. Nature of the defect   总被引:29,自引:0,他引:29  
Poliovirus defective, interfering particles in which about 15% of the standard viral RNA is deleted have been described (Cole et al., 1971). Stocks of DI3 particles more than 99% free of standard poliovirus were prepared by centrifugation of mixed preparations in CsCl gradients. Using purified DI particles, it was found that DI particles can carry out most of the standard poliovirus functions including inhibition of cellular macromolecular synthesis, production of viral RNA and production of virus-specific protein. Neither the kinetics nor extent of viral RNA or protein synthesis differed between DI particle-infected cells and standard virus-infected cells.Newly made virions, capsid proteins, and the capsid protein precursor (NCVP 1) were totally absent in DI particle-infected cells. All of the other viral proteins were present. DI-infected cells briefly labeled with amino acids also contained a new polypeptide, DI-P, which was apparently the residual fragment of NCVP 1 encoded by the DI genome. It was very unstable, being rapidly degraded to acid-soluble fragments. When the cleavage of viral proteins was inhibited with amino acid analogs, precursors of the viral proteins were generated. Those precursors which should have contained NCVP 1 had molecular weights 30,000 to 40,000 daltons lower in DI-infected cells than in standard virus-infected cells. This is the amount of protein encoded by 15% of the standard poliovirus genome which is the per cent of the standard RNA sequence not represented in DI RNA.Poliovirus DI particles therefore appear to be deletion mutants lacking RNA encoding about one-third of the capsid protein precursor. Whether the deletion is internal or terminal remains to be determined.  相似文献   

7.
To determine the mechanism for the delayed and inefficient replication of the picornavirus hepatitis A virus in cell culture, we studied the kinetics of synthesis and assembly of virus-specific proteins by metabolic labeling of infected BS-C-1 cells with L-[35S]methionine and L-[35S]cysteine. Sedimentation, electrophoresis, and autoradiography revealed the presence of virions, provirions, procapsids, and 14S (pentameric) subunits. Virions and provirions contained VP1, VP0, VP2, and VP3; procapsids contained VP1, VP0, and VP3; and pentamers contained PX, VP0, and VP3, as previously shown by immunoblotting (D.A. Anderson and B.C. Ross, J. Virol. 64:5284-5289, 1990). Under single-cycle growth conditions label was found in 14S subunits immediately after labeling from 15 to 18 h postinfection (p.i.); however, a proportion of labeled polyprotein was not cleaved and assembled into pentamers for a further 18 h. When analyzed at 72 h p.i., incorporation of label which flowed into virions was detected from 3 h p.i., with maximal uptake levels being observed from 12 to 15 h p.i. Viral antigen, infectious virus, and viral RNA were determined in parallel, with coincident peaks in these variables being observed 12 h after the period of maximum label uptake. It was also found that the lag between the synthesis of the viral polyprotein and assembly of viral particles was the same after labeling from either 12 to 15 or 27 to 30 h p.i. despite increased levels of viral RNA during this period, suggesting that factors additional to the level of RNA are involved in the restriction of viral replication. Sedimentation and immunoblot analysis revealed an additional protein of approximately 100 kDa containing both VP1- and VP2-reactive sequences and sedimenting slightly more slowly than 14S pentamers, which may represent intact P12A assembled into pentamers as has been reported for the P1 of some other picornaviruses (S. McGregor and R. R. Rueckert, J. Virol. 21:548-553, 1977). The results of this study suggest that cleavage of the hepatitis A virus polyprotein to produce pentamers is protracted (though not rate limiting) early in infection, while the assembly of pentamers into higher structures is a rapid process once sufficient viral RNA is produced for encapsidation.  相似文献   

8.
Subversion of cellular autophagosomal machinery by RNA viruses   总被引:10,自引:0,他引:10       下载免费PDF全文
Infection of human cells with poliovirus induces the proliferation of double-membraned cytoplasmic vesicles whose surfaces are used as the sites of viral RNA replication and whose origin is unknown. Here, we show that several hallmarks of cellular autophagosomes can be identified in poliovirus-induced vesicles, including colocalization of LAMP1 and LC3, the human homolog of Saccharomyces cerevisiae Atg8p, and staining with the fluorophore monodansylcadaverine followed by fixation. Colocalization of LC3 and LAMP1 was observed early in the poliovirus replicative cycle, in cells infected with rhinoviruses 2 and 14, and in cells that express poliovirus proteins 2BC and 3A, known to be sufficient to induce double-membraned vesicles. Stimulation of autophagy increased poliovirus yield, and inhibition of the autophagosomal pathway by 3-methyladenine or by RNA interference against mRNAs that encode two different proteins known to be required for autophagy decreased poliovirus yield. We propose that, for poliovirus and rhinovirus, components of the cellular machinery of autophagosome formation are subverted to promote viral replication. Although autophagy can serve in the innate immune response to microorganisms, our findings are inconsistent with a role for the induced autophagosome-like structures in clearance of poliovirus. Instead, we argue that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.  相似文献   

9.
10.
Chlorine dioxide and iodine inactivated poliovirus more efficiently at pH 10.0 than at pH 6.0. Sedimentation analyses of viruses inactivated by chlorine dioxide and iodine at pH 10.9 showed that viral RNA separated from the capsids, resulting in the conversion of virions from 156S structures to 80S particles. The RNAs release from both chlorine dioxide- and iodine-inactivated viruses cosedimented with intact 35S viral RNA. Both chlorine dioxide and iodine reacted with the capsid proteins of poliovirus and changed the pI from pH 7.0 to pH 5.8. However, the mechanisms of inactivation of poliovirus by chlorine dioxide and iodine were found to differ. Iodine inactivated viruses by impairing their ability to adsorb to HeLa cells, whereas chlorine dioxide-inactivated viruses showed a reduced incorporation of [14C]uridine into new viral RNA. We concluded, then, that chlorine dioxide inactivated poliovirus by reacting with the viral RNA and impairing the ability of the viral genome to act as a template for RNA synthesis.  相似文献   

11.
Robert Lenk  Sheldon Penman 《Cell》1979,16(2):289-301
The cytoskeletal framework prepared by detergent lysis of suspension-grown HeLa cells is compared to the structure obtained from poliovirus-infected cells. This framework, which retains major features of cell morphology and carries the cellular polyribosomes as well as the major structural filaments, is profoundly reorganized following virus infection. This reorganization underlies, at least in part, the morphological changes termed the “cytopathic effect.” These cytoskeletal changes appear related to the involvement of the framework with viral-specific metabolism.Extensive cytoskeleton alterations occur even when guanidine inhibits viral replication, and thus result from small amounts of early viral products. The normally spheroidal nucleus deforms, allowing a modified region of the cytoplasm to occupy a central position in the cell, and many membrane-enclosed vesicles peculiar to the infected cell are elaborated here. The skeleton preparation reveals that this region contains intermediate filaments arranged in a pattern unique to infected cells. Further changes occur when viral replication is permitted. The central region filaments become coated with darkly staining material which may be viral RNA. Numerous small particles appear on the filaments which resemble partially assembled virions. Mature virions, however, have no affinity for the cytoskeleton and appear to be free in the cytoplasm.Host cell messenger RNA, normally attached to the skeletal framework, is released in infected cells and is replaced by the viral-specific polyribosomes. The trabecular network which carries polyribosomes appears to be rearranged; the viral polyribosomes are located principally at the cell periphery and are excluded from the central region. The viral replication complex with its double-stranded RNA is also attached to the skeletal framework and may comprise the dark staining material coating the filaments of the central cell region.  相似文献   

12.
Moloney murine leukemia virus (MLV) particles contain both viral genomic RNA and an assortment of host cell RNAs. Packaging of virus-encoded RNA is selective, with virions virtually devoid of spliced env mRNA and highly enriched for unspliced genome. Except for primer tRNA, it is unclear whether packaged host RNAs are randomly sampled from the cell or specifically encapsidated. To address possible biases in host RNA sampling, the relative abundances of several host RNAs in MLV particles and in producer cells were compared. Using 7SL RNA as a standard, some cellular RNAs, such as those of the Ro RNP, were found to be enriched in MLV particles in that their ratios relative to 7SL differed little, if at all, from their ratios in cells. Some RNAs were underrepresented, with ratios relative to 7SL several orders of magnitude lower in virions than in cells, while others displayed intermediate values. At least some enriched RNAs were encapsidated by genome-defective nucleocapsid mutants. Virion RNAs were not a random sample of the cytosol as a whole, since some cytoplasmic RNAs like tRNA(Met) were vastly underrepresented, while U6 spliceosomal RNA, which functions in the nucleus, was enriched. Real-time PCR demonstrated that env mRNA, although several orders of magnitude less abundant than unspliced viral RNA, was slightly enriched relative to actin mRNA in virions. These data demonstrate that certain host RNAs are nearly as enriched in virions as genomic RNA and suggest that Psi- mRNAs and some other host RNAs may be specifically excluded from assembly sites.  相似文献   

13.
The polyadenylate [poly(A)] content of the genome RNA of human rhinovirus type 14 (HRV-14) is nearly twice as large as that of the genome RNA of poliovirus type 2. The poly(A) content of viral RNA was determined to be the RNase-resistant fraction of 32P-labeled viral RNA extracted from purified virions. Polyacrylamide gel electrophoresis indicated that the poly(A) sequences of HRV-14 are more heterogenous and on an average larger than those of poliovirus RNA. On the basis of susceptibility to micrococcal polynucleotide phosphorylase the rhinovirus genome terminates in poly(A). Replication of both viruses is almost totally inhibited by cordycepin at 50 mug/ml. At lower concentrations, rhinovirus replication is more sensitive to cordycepin than poliovirus replication. Addition of cordycepin (75 mug/ml) to infected culture prior to or during viral RNA replication results in more or less complete inhibition of virus-specific RNA synthesis. The results do not indicate that cordycepin sensitivity of either virus is due to preferential inhibition of viral poly(A) synthesis by this antibiotic.  相似文献   

14.
The effect of interferon on the biochemical properties and the maturation process of intracellular viral particles isolated from the cytoplasmic fraction of NIH/3T3 cells chronically infected with Moloney murine leukemia virus was investigated. By labeling these virions with either [35S]methionine or [3H]glucosamine, we demonstrated that they contain the same viral proteins and glycoproteins found in extracellular virions. Interferon treatment was found to reduce the rate of intracellular virus assembly. This effect was not a consequence of an interferon inhibition of viral RNA synthesis or its translation or a consequence of an interference with the posttranslational cleavage processing of viral precursor proteins, since all of these steps were not affected by interferon. However, the reduced rate of virus assembly could be attributed to the inhibition of viral protein glycosylation observed in interferon-treated cells. Nevertheless, despite this reduced rate, virus particles accumulated in interferon-treated cells. This accumulation was probably due to the strong inhibition of their final release from such cells.  相似文献   

15.
The assembly of infectious poliovirus virions requires a proteolytic cleavage between an asparagine-serine amino acid pair (the maturation cleavage site) in VP0 after encapsidation of the genomic RNA. In this study, we have investigated the effects that mutations in the maturation cleavage site have on P1 polyprotein processing, assembly of subviral intermediates, and encapsidation of the viral genomic RNA. We have made mutations in the maturation cleavage site which change the asparagine-serine amino acid pair to either glutamine-glycine or threonine-serine. The mutations were created by site-directed mutagenesis of P1 cDNAs which were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses. The P1 polyproteins expressed from the recombinant vaccinia viruses were analyzed for proteolytic processing and assembly defects in cells coinfected with a recombinant vaccinia virus (VV-P3) that expresses the poliovirus 3CD protease. A trans complementation system using a defective poliovirus genome was utilized to assess the capacity of the mutant P1 proteins to encapsidate genomic RNA (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The mutant P1 proteins containing the glutamine-glycine amino acid pair (VP4-QG) and the threonine-serine pair (VP4-TS) were processed by 3CD provided in trans from VV-P3. The processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor VP4-QG were unstable and failed to assemble into subviral structures in cells coinfected with VV-P3. However, the capsid proteins derived from VP4-QG did assemble into empty-capsid-like structures in the presence of the defective poliovirus genome. In contrast, the capsid proteins derived from processing of the VP4-TS mutant assembled into subviral intermediates both in the presence and in the absence of the defective genome RNA. By a sedimentation analysis, we determined that the capsid proteins derived from the VP4-TS precursor encapsidated the defective genome RNA. However, the cleavage of VP0 to VP4 and VP2 was delayed, resulting in the accumulation of provirions. The maturation cleavage of the VP0 protein containing the VP4-TS mutation was accelerated by incubation of the provirions at 37 degrees C. The results of these studies demonstrate that mutations in the maturation cleavage site have profound effects on the subsequent capability of the capsid proteins to assemble and provide evidence for the existence of the provirion as an assembly intermediate.  相似文献   

16.
Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated replicon RNA from virus stocks after 21 serial passages of the replicon genomes with VV-P1 indicated that the replicon which contained the VP4 coding region was present at a higher level than the replicon which contained a complete substitution of the P1 capsid sequences. These differences in encapsidation, though, were not detected after only two serial passages of the replicons with VV-P1 or upon coinfection and serial passage with type 1 Sabin poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The use of recombinant viruses for the expression of a wide array of foreign proteins has become commonplace during the last few years. Recently, we have described the construction and characterization of chimeric human immunodeficiency virus type 1 (HIV-1)-poliovirus genomes in which the gag and pol genes of HIV-1 have been substituted for the VP2 and VP3 capsid genes of the P1 capsid precursor region of poliovirus. Transfection of these RNAs into tissue culture cells results in replication of the RNA genome and expression of HIV-1-P1 fusion proteins (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Here we report on the encapsidation and amplification of the minireplicons to obtain sufficient quantities for biological characterization. To do this, HIV-1-poliovirus minireplicon genomes containing the gag or pol gene were transfected into cells previously infected with a recombinant vaccinia virus (VV-P1) which expresses the poliovirus capsid precursor protein, P1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991). The chimeric minireplicons replicated and expressed the appropriate HIV-1-P1 fusion proteins as determined by immunoprecipitation with HIV-1-specific antibodies. The encapsidated genomes were isolated by ultracentrifugation. Reinfection of cells with the encapsidated chimeric RNA genomes resulted in expression of the HIV-1-Gag-P1 or HIV-1-Pol-P1 fusion protein. Serial passaging of the encapsidated chimeric HIV-1-poliovirus genomes was accomplished by coinfecting cells with the encapsidated minireplicons and VV-P1, resulting in stocks of the encapsidated minireplicons. Northern (RNA) blot analysis of passaged material revealed that no detectable deletions of the chimeric genomes occurred during 14 serial passages. Infection of cells by the encapsidated minireplicons was blocked by antipoliovirus antibodies. Coinfection of cells with encapsidated minireplicons and type 1 Sabin poliovirus resulted in encapsidation of the chimeric genomes by wild-type poliovirus as measured by immunoprecipitation of the HIV-1-P1 fusion proteins with HIV-1-specific antibodies. The results of this study demonstrate the encapsidation of poliovirus minireplicons which express foreign proteins and point to the future use of this system as a potential vaccine vector.  相似文献   

18.
The role of procapsids during foot-and-mouth disease virus multiplication was studied on infected BHK-21 cells. Purified virus and procapsids were obtained by treating the infected cytoplasmic extracts with RNase and EDTA. The synthesis of virus, procapsids, and total particles was determined in pulse-chase experiments. A precursor-product relationship between procapsids and virions was obtained. The results show that the rate of synthesis of total particles (virus + procapsids) was linear from the addition of the label and was identical to that corresponding to virions. Therefore, the speed of the morphogenetic process as well as the existence of a precursor pool of structural proteins was established. Furthermore, the rate of virus synthesis from procapsids was identical to the rate of synthesis of procapsids from their structural precursors. A quantitative recovery of label from procapsids into virions was obtained by the use of cycloheximide or tosyl-lysine chloromethyl ketone. Under these conditions, virus synthesis proceeds, indicating that these drugs do not affect the morphogenetic step studied in this paper.  相似文献   

19.
20.
Molecular hybridization techniques were used to examine the stability of viral message and virion precursor RNA in murine leukemia virus-infected cells treated with actinomycin D. Under the conditions used, viral RNA synthesis was inhibited, but viral protein synthesis continued, and the cells produced noninfectious particles (actinomycin D virions) lacking genomic RNA (J. G. Levin and M. J. Rosenak, Proc. Natl. Acad. Sci. U.S.A. 73:1154-1158, 1976). Analysis of total RNA in virions revealed that the amount of hybridizable viral RNA decreased steadily after the addition of actinomycin D and by 8 h was 10% of the control value. Studies on fractionated viral RNA showed that this low level of hybridization is due to residual 70S RNA in the virion population. The results indicated that viral RNA which is destined to be encapsidated into virions has a half-life of approximately 3 to 4 h. In contrast, other intracellular virus-specific RNA molecules appeared to be quite stable and persisted for a long period of time, with a half-life of at least 12 h. These observations support the idea that two independent functional pools of 35S viral RNA exist within the infected cell: one serving as message and the other as precursor to virion RNA. The existence of two viral RNA pools was further documented by the finding that 12 h after the addition of actinomycin D, when virion precursor RNA was depleted, 35S and 21S viral nRNA species could be identified in polyribosomal RNA as well as in total polyadenylated cell RNA. Surprisingly, 35S and mRNA declined more rapidly than did 21S mRNA, which appeared to be increased in amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号