首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Profound lymphopenia has been observed during many acute viral infections, and our laboratory has previously documented a type I IFN-dependent loss of CD8 T cells immediately preceding the development of the antiviral T cell response. Most memory (CD44(high)) and some naive (CD44(low)) CD8 T cells are susceptible to IFN-induced attrition, and we show in this study that the IFN-induced attrition of CD8(+)CD44(high) T cells is associated with elevated activation of caspase-3 and caspase-8. We questioned whether TCR engagement by Ag would render CD8 T cells resistant to attrition. We tested whether a high concentration of Ag (GP33 peptide) would protect lymphocytic choriomeningitis (LCMV)-specific naive CD8 T cells (TCR transgenic P14 cells specific for the GP33 epitope of LCMV) and memory CD8 T cells (GP33-specific LCMV-immune cells) from depletion. Both naive P14 and memory GP33-specific donor CD8 T cells decreased substantially 16 h after inoculation with the Toll receptor agonist and IFN inducer, poly(I:C), regardless of whether a high concentration of GP33 peptide was administered to host mice beforehand. Moreover, donor naive P14 and LCMV-specific memory cells were depleted from day 2 LCMV-infected hosts by 16 h posttransfer. These results indicate that Ag engagement does not protect CD8 T cells from the IFN-induced T cell attrition associated with viral infections. In addition, computer models indicated that early depletion of memory T cells may allow for the generation for a more diverse T cell response to infection by reducing the immunodomination caused by cross-reactive T cells.  相似文献   

2.
We previously demonstrated that protection induced by radiation-attenuated (gamma) Plasmodium berghei sporozoites is linked to MHC class I-restricted CD8(+) T cells specific for exoerythrocytic-stage Ags, and that activated intrahepatic memory CD8(+) T cells are associated with protracted protection. In this study, we further investigated intrahepatic memory CD8(+) T cells to elucidate mechanisms required for their maintenance. Using phenotypic markers indicative of activation (CD44, CD45RB), migration (CD62L), and IFN-gamma production, we identified two subsets of intrahepatic memory CD8(+) T cells: the CD44(high)CD45RB(low)CD62L(low)CD122(low) phenotype, representing the dominant effector memory set, and the CD44(high)CD45RB(high)CD62L(low/high)CD122(high) phenotype, representing the central memory set. Only the effector memory CD8(+) T cells responded swiftly to sporozoite challenge by producing sustained IFN-gamma; the central memory T cells responded with delay, and the IFN-gamma reactivity was short-lived. In addition, the subsets of liver memory CD8(+) T cells segregated according to the expression of CD122 (IL-15R) in that only the central memory CD8(+) T cells were CD122(high), whereas the effector memory CD8(+) T cells were CD122(low). Moreover, the effector memory CD8(+) T cells declined as protection waned in mice treated with primaquine, a drug that interferes with the formation of liver-stage Ags. We propose that protracted protection induced by P. berghei radiation-attenuated sporozoites depends in part on a network of interactive liver memory CD8(+) T cell subsets, each representing a different phase of activation or differentiation, and the balance of which is profoundly affected by the repository of liver-stage Ag and IL-15.  相似文献   

3.
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.  相似文献   

4.
5.
Graft-vs-host disease (GVHD) is caused by a donor T cell anti-host reaction that evolves over several weeks to months, suggesting a requirement for persistent alloreactive T cells. Using the C3H.SW anti-C57BL/6 (B6) mouse model of human GVHD directed against minor histocompatibility Ags, we found that donor CD8(+) T cells secreting high levels of IFN-gamma in GVHD B6 mice receiving C3H.SW naive CD8(+) T cells peaked by day 14, declined by day 28 after transplantation, and persisted thereafter, corresponding to the kinetics of a memory T cell response. Donor CD8(+) T cells recovered on day 42 after allogeneic bone marrow transplantation expressed the phenotype of CD44(high)CD122(high)CD25(low), were able to homeostatically survive in response to IL-2, IL-7, and IL-15 and rapidly proliferated upon restimulation with host dendritic cells. Both allogeneic effector memory (CD44(high)CD62L(low)) and central memory (CD44(high)CD62L(high)) CD8(+) T cells were identified in B6 mice with ongoing GVHD, with effector memory CD8(+) T cells as the dominant (>80%) population. Administration of these allogeneic memory CD8(+) T cells into secondary B6 recipients caused virulent GVHD. A similar allogeneic memory CD4(+) T cell population with the ability to mediate persistent GVHD was also identified in BALB/b mice receiving minor histocompatibility Ag-mismatched B6 T cell-replete bone marrow transplantation. These results indicate that allogeneic memory T cells are generated in vivo during GVH reactions and are able to cause GVHD, resulting in persistent host tissue injury. Thus, in vivo blockade of both alloreactive effector and memory T cell-mediated host tissue injury may prove to be valuable for GVHD prevention and treatment.  相似文献   

6.
CD8(+) T cells depend on the alphabeta TCR for Ag recognition and function. However, Ag-activated CD8(+) T cells can also express receptors of the innate immune system. In this study, we examined the expression of NK receptors on a population of CD8(+) T cells expressing high levels of CD44 (CD8(+)CD44(high) cells) from normal mice. These cells are distinct from conventional memory CD8(+) T cells and they proliferate and become activated in response to IL 2 via a CD48/CD2-dependent mechanism. Before activation, they express low or undetectable levels of NK receptors but upon activation with IL-2 they expressed significant levels of activating NK receptors including 2B4 and NKG2D. Interestingly, the IL-2-activated cells demonstrate a preference in the killing of syngeneic tumor cells. This killing of syngeneic tumor cells was greatly enhanced by the expression of the NKG2D ligand Rae-1 on the target cell. In contrast to conventional CD8(+) T cells, IL-2-activated CD8(+)CD44(high) cells express DAP12, an adaptor molecule that is normally expressed in activated NK cells. These observations indicate that activated CD8(+)CD44(high) cells express receptors of both the adaptive and innate immune system and may play a unique role in the surveillance of host cells that have been altered by infection or transformation.  相似文献   

7.
IL-15 promotes the survival of naive and memory phenotype CD8+ T cells   总被引:18,自引:0,他引:18  
IL-15 stimulates the proliferation of memory phenotype CD44(high)CD8(+) T cells and is thought to play a key role in regulating the turnover of these cells in vivo. We have investigated whether IL-15 also has the capacity to affect the life span of naive phenotype (CD44(low)) CD8(+) T cells. We report that IL-15 promotes the survival of both CD44(low) and CD44(high) CD8(+) T cells, doing so at much lower concentrations than required to induce proliferation of CD44(high) cells. Rescue from apoptosis was associated with the up-regulation of Bcl-2 in both cell types, whereas elevated expression of Bcl-x(L) was observed among CD44(high) but not CD44(low) CD8(+) cells. An investigation into the role of IL-15R subunits in mediating the effects of IL-15 revealed distinct contributions of the alpha- and beta- and gamma-chains. Most strikingly, IL-15R alpha was not essential for either induction of proliferation or promotion of survival by IL-15, but did greatly enhance the sensitivity of cells to low concentrations of IL-15. By contrast, the beta- and gamma-chains of the IL-15R were absolutely required for the proliferative and pro-survival effects of IL-15, although it was not necessary for CD44(high)CD8(+) cells to express higher levels of IL-15R beta than CD44(low) cells to proliferate in response to IL-15. These results show that IL-15 has multiple effects on CD8 T cells and possesses the potential to regulate the life span of naive as well as memory CD8(+) T cells.  相似文献   

8.
Ag presentation to CD8(+) T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (approximately 7 days), resistant mice (129 x 1SvJ) harbor a chronic infection lasting approximately 60-90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8(+) T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62L(high)IL-7Ralpha(high)CD44(high)) CD8(+) T cells. However, by day 14-21, majority of the primed CD8(+) T cells display an effector phenotype (CD62L(low)IL-7Ralpha(low)CD44(high)). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62L(low)IL-7Ralpha(high)CD44(high)) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8(+) T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8(+) T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8(+) T cell recognition, conferring a survival advantage to the pathogen.  相似文献   

9.
Recent studies using MHC class I tetramers have shown that CD8(+) T cell responses against different persistent viruses vary considerably in magnitude and phenotype. At one extreme, hepatitis C virus (HCV)-specific CD8(+) T cell responses in blood are generally weak and have a phenotype that is perforin low and CCR7 high (early memory). At the other, specific responses to CMV are strong, perforin high, and CCR7 low (mature or effector memory). To examine the potential mechanisms behind this diversity, we compared CMV-specific responses in HCV-infected and healthy individuals. We find a striking difference in the phenotype of CMV-specific CD8(+) T cells between these groups. In the HCV-infected cohort, CMV-specific CD8(+) T cells lost markers associated with maturity; they had increased expression of CCR7 and reduced expression of Fas and perforin. They nevertheless responded to Ag in vitro in a manner similar to controls, with strong proliferation and appropriate acquisition of effector memory markers. The reduction in mature CD8 T cells in HCV-infected individuals may arise through either impairment or regulation of T cell stimulation, or through the early loss of mature T cells. Whatever the mechanism, HCV has a pervasive influence on the circulating CD8(+) T cell population, a novel feature that may be a hallmark of this infection.  相似文献   

10.
Memory CD8+ T cells provide an early source of IFN-gamma   总被引:7,自引:0,他引:7  
During the non-Ag-specific early phase of infection, IFN-gamma is believed to be primarily provided by NK and NKT cells in response to pathogen-derived inflammatory mediators. To test whether other cell types were involved in early IFN-gamma release, IFN-gamma-producing cells were visualized in spleens and lymph nodes of LPS-injected mice. In addition to NK and NKT cells, IFN-gamma was also detected in a significant fraction of CD8(+) T cells. CD8(+) T cells represented the second major population of IFN-gamma-producing cells in the spleen ( approximately 30%) and the majority of IFN-gamma(+) cells in the lymph nodes ( approximately 70%). LPS-induced IFN-gamma production by CD8(+) T cells was MHC class I independent and was restricted to CD44(high) (memory phenotype) cells. Experiments performed with C3H/HeJ (LPS-nonresponder) mice suggested that CD8(+) T cells responded to LPS indirectly through macrophage/dendritic cell-derived IFN-alpha/beta, IL-12, and IL-18. IFN-gamma was also detected in memory CD8(+) T cells from mice injected with type I IFN or with poly(I:C), a synthetic dsRNA that mimics early activation by RNA viruses. Taken together, these results suggest that in response to bacterial and viral products, memory T cells may contribute to innate immunity by providing an early non-Ag-specific source of IFN-gamma.  相似文献   

11.
The existence of distinct subsets of memory CD8 T cells with different characteristics is now well established. In this work, we describe two subsets of mouse CD8 T cells with memory characteristics that coexist in primed thymectomized TCR-transgenic F5 mice and that share some properties with the human central and effector memory cells. The first subset corresponds to CD8 T cells generated following nucleoprotein 68 peptide priming which are CD44(int)CD122(-)nucleoprotein 68/H-2D(b) tetramer(+) and express high levels of CCR7 mRNA. In contrast, CD8 T cells in the second subset are CD44(high)CD122(+), are heterogeneous in terms of Ag specificity, and express low levels of CCR7 mRNA. We have studied the functional characteristics and the persistence of these two subsets in thymectomized mice. CD44(int) CD8 T cells persist like naive cells; i.e., they are slowly lost with time. However, surviving cells maintain their phenotype and memory characteristics for the entire life span of the animal. In contrast, CD44(high) CD8 T cells are persistent and accumulate in thymectomized but not euthymic mice. This is correlated with an increased in vivo proliferative and survival potential of these cells. These results show that acquisition of enhanced functional characteristics and long-term persistence by memory T cells are independent. This may have important consequences for the design of specific vaccine.  相似文献   

12.
Memory T cells can be divided into effector memory (T(EM)) and central memory (T(CM)) subsets based on their effector function and homing characteristics. Although previous studies have demonstrated that TCR and cytokine signals mediate the generation of the two memory subsets of CD8(+) T cells, the mechanisms for generation of the CD4(+) T(EM) and T(CM) cell subsets are unknown. We found that OX40-deficient mice showed a marked reduction in the number of CD4(+) T(EM) cells, whereas the number of CD4(+) T(CM) cells was normal. Adoptive transfer experiments using Ag-specific CD4(+) T cells revealed that OX40 signals during the priming phase were indispensable for the optimal generation of the CD4(+) T(EM), but not the CD4(+) T(CM) population. In a different transfer experiment with in vitro established CD4(+)CD44(high)CD62L(low) (T(EM) precursor) and CD4(+)CD44(high)CD62L(high) (T(CM) precursor) subpopulations, OX40-KO T(EM) precursor cells could not survive in the recipient mice, whereas wild-type T(EM) precursor cells differentiated into both T(EM) and T(CM) cells. In contrast, T(CM) precursor cells mainly produced T(CM) cells regardless of OX40 signals, implying the dispensability of OX40 for generation of T(CM) cells. Nevertheless, survival of OX40-KO T(EM) cells was partially rescued in lymphopenic mice. During in vitro recall responses, the OX40-KO T(EM) cells that were generated in lymphopenic recipient mice showed impaired cytokine production, suggesting an essential role for OX40 not only on generation but also on effector function of CD4(+) T(EM) cells. Collectively, the present results indicate differential requirements for OX40 signals on generation of CD4(+) T(EM) and T(CM) cells.  相似文献   

13.
CD4(+)CD25(high) regulatory T cells (Treg) protect the host from autoimmune diseases but are also obstacles against cancer therapies. An ideal cancer vaccine would stimulate specific cytotoxic responses and reduce/suppress Treg function. In this study, we showed that Escherichia coli expressing listeriolysin O and OVA (E. coli LLO/OVA) demonstrated remarkable levels of protection against OVA-expressing tumor cells. By contrast, E. coli expressing OVA only (E. coli OVA) showed poor protection. High-avidity OVA-specific CTL were induced in E. coli LLO/OVA-vaccinated mice, and CD8(+) depletion--but not NK cell depletion, abolished the antitumor activity of the E. coli LLO/OVA vaccine. Phenotypic analysis of T cells following vaccination with either vaccine revealed preferential generation of CD44(high)CD62L(low) CD8(+) effector memory T cells over CD44(high)CD62L(high) central memory T cells. Unexpectedly, CD4(+) depletion turned E. coli OVA into a vaccine as effective as E. coli LLO/OVA suggesting that a subset of CD4(+) cells suppressed the CD8(+) T cell-mediated antitumor response. Further depletion experiments demonstrated that these suppressive cells consisted of CD4(+)CD25(high) regulatory T cells. We therefore assessed these vaccines for Treg function and found that although CD4(+)CD25(high) expansion and Foxp3 expression within this population was similar in all groups of mice, Treg cells from E. coli LLO/OVA-vaccinated animals were unable to suppress conventional T cells proliferation. These findings provide the first evidence that LLO expression affects Treg cell function and may have important implications for enhancing antitumor vaccination strategies in humans.  相似文献   

14.
As acute infections resolve, most effector CD8(+) T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8(+) T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8(+) T cells reported to have a longer lifespan (i.e., KLRG1(low)CD127(high)) have increased levels of Bcl-2 compared with their shorter-lived KLRG1(high)CD127(low) counterparts. Surprisingly, we found that these effector KLRG1(low)CD127(high) CD8(+) T cells also had increased levels of Bim compared with KLRG1(high)CD127(low) cells. Similar effects were observed in memory cells, in which CD8(+) central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8(+) effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8(+) T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8(+) T cells. Finally, we found that Bim levels were significantly increased in effector CD8(+) T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate.  相似文献   

15.
CD8(+) tumor infiltrating T cells (TIL) lack effector-phase functions due to defective proximal TCR-mediated signaling previously shown to result from inactivation of p56(lck) kinase. We identify a novel interacting partner for p56(lck) in nonlytic TIL, Protocadherin-18 ('pcdh18'), and show that pcdh18 is transcribed upon in vitro or in vivo activation of all CD8(+) central memory T cells (CD44(+)CD62L(hi)CD127(+)) coincident with conversion into effector memory cells (CD44(+)CD62L(lo)CD127(+)). Expression of pcdh18 in primary CD8(+) effector cells induces the phenotype of nonlytic TIL: defective proximal TCR signaling, cytokine secretion, and cytolysis, and enhanced AICD. pcdh18 contains a motif (centered at Y842) shared with src kinases (QGQYQP) that is required for the inhibitory phenotype. Thus, pcdh18 is a novel activation marker of CD8(+) memory T cells that can function as an inhibitory signaling receptor and restrict the effector phase.  相似文献   

16.
Cutting edge: naive T cells masquerading as memory cells   总被引:28,自引:0,他引:28  
This study shows that naive CD8 T cells can acquire characteristics of memory T cells in the absence of stimulation with specific Ag simply by the process of homeostatic proliferation under lymphopenic conditions. This Ag-independent T cell differentiation pathway did not result in up-regulation of early activation markers (CD69, CD25, CD71), but expression of several memory markers (CD44, CD122, Ly6C) increased progressively with successive divisions. These markers were then stably expressed, and these cells also became more responsive functionally to specific Ag. Thus, all "memory" phenotype T cells in an individual may not be true Ag-experienced cells and may include naive cells masquerading as memory cells. These findings are specially relevant in cases of disease or treatment-induced lymphopenia such as in HIV-infected individuals or transplant recipients. In addition, this study may have implications for autoimmunity because homeostatic proliferation of naive T cells requires interaction with self peptide plus MHC molecules.  相似文献   

17.
During infection with lymphocytic choriomeningitis virus, CD8(+) T cells differentiate rapidly into effectors (CD62L(low)CD44(high)) that differentiate further into the central memory phenotype (CD62L(high)CD44(high)) gradually. To evaluate whether this CD8(+) T cell differentiation program operates in all infection models, we evaluated CD8(+) T cell differentiation during infection of mice with recombinant intracellular bacteria, Listeria monocytogenes (LM) and Mycobacterium bovis (BCG), expressing OVA. We report that CD8(+) T cells primed during infection with the attenuated pathogen BCG-OVA differentiated primarily into the central subset that correlated to reduced attrition of the primed cells subsequently. CD8(+) T cells induced by LM-OVA also differentiated into central phenotype cells first, but the cells rapidly converted into effectors in contrast to BCG-OVA. Memory CD8(+) T cells induced by both LM-OVA as well as BCG-OVA were functional in that they produced cytokines and proliferated extensively in response to antigenic stimulation after adoptive transfer. During LM-OVA infection, if CD8(+) T cells were guided to compete for access to APCs, then they received reduced stimulation that was associated with increased differentiation into the central subset and reduced attrition subsequently. Similar effect was observed when CD8(+) T cells encountered APCs selectively during the waning phase of LM-OVA infection. Taken together, our results indicate that the potency of the pathogen can influence the differentiation and fate of CD8(+) T cells enormously, and the extent of attrition of primed CD8(+) T cells correlates inversely to the early differentiation of CD8(+) T cells primarily into the central CD8(+) T cell subset.  相似文献   

18.
In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.  相似文献   

19.
Ataxia-telangiectasia (A-T) is a rare neurodegenerative immunodeficiency disorder caused by mutations in the ataxia telangiectasia mutated gene. Patients commonly have lymphopenia and Ig-production abnormalities. We used multicolor flow cytometry and IL-7 ELISA to investigate the effect of A-T and age on the proportions of major lymphocyte subsets and their pattern of CD95 expression in relation to IL-7 levels in 15 classical A-T patients. We also analyzed the sensitivity of T cells from four classical A-T patients to CD95-mediated apoptosis using TUNEL and caspase-activation assays. Our results confirmed lymphopenia and a deficiency in naive T and B cells in A-T patients. In contrast to controls, the proportions of naive and memory T and B cell subsets in A-T patients did not vary in relation to age. There was no evidence of a deficiency in plasma IL-7 or IL-7R expression, and IL-7 concentration correlated positively with CD95 expression on CD4(+) T cells. CD95 expression on unstimulated A-T lymphocytes was high, and the apoptotic sensitivity of activated naive and central memory T cells was increased. These findings show that the immunodeficiency in A-T patients may be described as congenitally aged and is not progressive. The naive cell deficiency is not related to a deficiency in IL-7 or its receptor. However, IL-7 may upregulate CD95 on A-T lymphocytes. High CD95 expression and increased apoptotic sensitivity of activated naive and central memory T cells may result in an increased level of CD95-mediated apoptosis, which could contribute to the congenital lymphopenia in A-T.  相似文献   

20.
The use of cytokines during vaccination, particularly IL-15, is being considered due to the unique ability of IL-15 to enhance the proliferation of memory CD8(+) T cells. However, as homeostatic mechanisms limit excessive lymphocyte expansion, we addressed the consequences of this enhancement of T cell memory by IL-15. Infection of mice with either recombinant Mycobacterium bovis (BCG) expressing IL-15 (BCG-IL-15) or BCG and purified IL-15 resulted in an increased CD44, IL-2Rbeta expression and increased frequency of IFN-gamma-secreting CD8(+) T cells. Surprisingly, the enhancement of memory to concurrent infection by IL-15 exacerbated the attrition of pre-existing memory. Infection of mice with Listeria monocytogenes expressing OVA resulted in potent OVA(257-264)-specific CD8(+) T cell memory, and a challenge of these mice with either BCG-IL-15 or BCG and purified IL-15 resulted in an increased erosion of OVA(257-264)-specific CD8(+) T cell memory, relative to BCG. Enhancement in the erosion of OVA-specific CD8(+) T cell memory by BCG-IL-15 resulted in a consequently greater impairment in protection against a challenge with OVA-expressing tumor cells. We thus raise important questions regarding vaccinations that are aimed at maximizing T cell memory without considering the impact on pre-existing T cell memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号