首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Overall cellular arrangement of cortical microtubules (MTs) is studied by reconstruction of MT images on serial thin sections. The mature root cortex ofHyacinthus orientalis L. cv. Delft blue is composed of elongate, highly vacuolate nondividing parenchyma cells. In longitudinal sections in these cells, MTs generally form parallel arrays at oblique angles to longitudinal cell axes. These MTs extend towards the transverse face of the cell where they appear in localized parallel arrays as well as in crisscross patterns. Repeated observations of oblique parallel arrays of MTs along the length of the cell and the continuity of MT bundles in serial sections suggest that MTs form a single helix in the cell. MTs in neighboring cells appear in sections either as parallel or as herringbone patterns, suggesting that the MT helices in these cells may spiral in the same or the opposite directions.Abbreviations MT Microtubule - MF microfibil - EM electron microscopy  相似文献   

2.
3.
Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type–specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life.  相似文献   

4.
5.
This investigation presents new insights into the structure of human secondary lamellae. Lamellar specimens that appear dark and bright on alternate osteon transverse sections under circularly polarizing light were isolated using a new technique, and examined by polarizing light microscopy, synchrotron X-ray diffraction, and confocal microscopy. A distribution of unidirectional collagen bundles and of two overlapping oblique bundles appears on circularly polarizing light microscopy images in relation to the angle between the specimen and the crossed Nicols' planes. The unidirectional collagen bundles observed at 45 degrees run parallel to the osteon axis in the dark lamellar specimens and perpendicular to it in the bright ones. Small and wide-angle micro-focus X-ray diffraction indicates that the dark lamellae are structurally quite homogeneous, with collagen fibers and apatite crystals preferentially oriented parallel to the osteon axis. Bright lamellar specimens exhibit different orientation patterns with the dominant ones bidirectional at +/-45 degrees with respect to the osteon axis. Accordingly, confocal microscopy evidences the presence of longitudinal bundles in dark lamellar specimens and oblique bundles in the bright ones. Radial bundles are evidenced in both lamellar types. The alternate osteon structure is described by a rather continuous multidirectional pattern, in which dark and bright lamellae display different mechanical and possibly biological functions.  相似文献   

6.
Understanding the evolution of phenotypic plasticities and the connections among the environment, genotype, and phenotype requires detailed understanding of the proximate mechanisms regulating morphological differences between phenotypes. Spea multiplicata tadpoles can develop into two different phenotypes, i.e. carnivores and omnivores, which differ in many morphological and behavioral traits. One of the major differences is enlargement of the jaw and tail musculature in carnivores relative to those of omnivores. We investigated pattern of muscle enlargement by measuring differences in myofiber number and cross‐sectional area between the phenotypes during early and mid‐development. The data show that both hyperplasia and hypertrophy underlie the carnivores' enlargement of both the orbitohyoideus jaw muscle (OH) and the tail muscle (TL). Carnivores had more OH and TL myofibers than did omnivores at all ages, but the rate of myofiber addition differed, by ~9 and 17 myofibers per day respectively. Carnivores also had larger OH and TL myofibers than did omnivores, at many of the ages studied, and the rate of myofiber cross‐sectional area increase (log‐transformed myofiber cross‐sectional area plotted against age in days) was significantly greater for carnivores than for omnivores in the internal, but not the peripheral, regions for both the OH and TL muscle. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat gracilis muscle was determined by indirect immunoferritin labeling of ultrathin frozen sections. Simultaneous visualization of ferritin particles and of adsorption- stained cellular membranes showed that the Ca2+ + Mg2+-ATPase was concentrated in the longitudinal sarcoplasmic reticulum and in the nonjunctional regions of the terminal cisternae membrane but was virtually absent from mitochondria, plasma membranes, transverse tubules, and junctional sarcoplasmic reticulum. Ferritin particles were found preponderantly on the cytoplasmic surface of the membrane, in agreement with published data showing an asymmetry of the Ca2+ + Mg2+- ATPase within the sarcoplasmic reticulum membrane. Comparison of the density of ferritin particles in fast and slow myofibers suggested that the density of the Ca2+ + Mg2+-ATPase in the sarcoplasmic reticulum membrane in a fast myofiber is approximately two times higher than in a slow myofiber.  相似文献   

8.
9.
The different hypotheses about buttress function and formation mainly involve mechanical theory. Forces were applied to two trees of Sloanea spp., a tropical genus that develops typical thin buttresses, and the three-dimensional strains were measured at different parts of the trunk base. Risks of failure were greater on the buttress sides, where shear and tangential stresses are greater, not on the ridges, in spite of high longitudinal (parallel to the grain) stresses. A simple beam model, computed from the second moment of area of digitized cross sections, is consistent with longitudinal strain variations but cannot predict accurately variations with height. Patterns of longitudinal strain variation along ridges are very different in the two individuals, owing to a pronounced lateral curvature in one specimen. The constant stress hypothesis is discussed based on these results. Without chronological data during the development of the tree, it cannot be proved that buttress formation is activated by stress or strain.  相似文献   

10.
Two distinct populations of myoblasts, distinguishable by alpha7 integrin expression have been hypothesized to give rise to two phases of myofiber formation in embryonic limb development. We show here that alpha7 integrin is detectable far earlier than previously reported on both "primary" and "secondary" lineage myoblasts and myofibers. An antibody (1211) that recognizes an intracellular epitope allowed detection of alpha7 integrin previously missed using an antibody (H36) that recognizes an extracellular epitope. We found that when myoblasts were isolated and cultured from different developmental stages, H36 only detected alpha7 integrin that was in direct contact with its ligand, laminin. Moreover, alpha7 integrin detection by H36 was reversible and highly localized to subcellular points of contact between myoblasts and laminin-coated 2.8-microm microspheres. Prior to secondary myofiber formation in limb embryogenesis, laminin was present but not in close proximity to clusters of primary myofibers that expressed alpha7 integrin detected by antibody 1211 using deconvolution microscopy. These results suggest that the timing of the interaction of preexisting alpha7 integrin with its ligand, laminin, is a major determinant of allosteric changes that result in an activated form of alpha7 integrin capable of transducing signals from the extracellular matrix commensurate with secondary myofiber formation.  相似文献   

11.
The effects of long-term hindlimb unweighting by tail suspension on postnatal growth of 20-day rat extensor digitorum longus (EDL) and soleus muscles were studied. Morphological assay indicated that radial growth of soleus myofibers was completely inhibited between 3 and 10 days of suspension and reduced thereafter, leading to a severe attenuation (-76% from control) over the total experimental period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In addition, myofibers were arranged parallel to the long axis of the muscle, an orientation associated with chronologically younger muscles, suggesting morphological maturation of the soleus muscle had been delayed by suspension. In contrast, radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions and remained within approximately 5% of control at all times. Suspension also influenced the normal changes that occur in satellite cell and myonuclear populations during postnatal growth. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers after only 3 days in both soleus and EDL muscles. The reduced number of satellite cells within 3 days of initiating hindlimb suspension appeared to be the result of their incorporation into myofibers while the long-lasting reduction appeared to be the added effects of decreased proliferative activity. In the soleus, this reduction in number and proliferation of satellite cells persisted throughout the experimental period and resulted in an overall 43% fewer myonuclei and 45% fewer satellite cells than control at 50 days of age. In contrast, both the total number and mitotic activity of satellite cells in the EDL rapidly returned to weight-bearing control levels by day 10 of suspension, resulting in no overall reduction in myonuclear accretion.  相似文献   

12.
Early relaxation in the cardiac cycle is characterized by rapid torsional recoil of the left ventricular (LV) wall. To elucidate the contribution of the transmural arrangement of the myofiber to relaxation, we determined the time course of three-dimensional fiber-sheet strains in the anterior wall of five adult mongrel dogs in vivo during early relaxation with biplane cineangiography (125 Hz) of implanted transmural markers. Fiber-sheet strains were found from transmural fiber and sheet orientations directly measured in the heart tissue. The strain time course was determined during early relaxation in the epicardial, midwall, and endocardial layers referenced to the end-diastolic configuration. During early relaxation, significant circumferential stretch, wall thinning, and in-plane and transverse shear were observed (P < 0.05). We also observed significant stretch along myofibers in the epicardial layers and sheet shortening and shear in the endocardial layers (P < 0.01). Importantly, predominant epicardial stretch along the fiber direction and endocardial sheet shortening occurred during isovolumic relaxation (P < 0.05). We conclude that the LV mechanics during early relaxation involves substantial deformation of fiber and sheet structures with significant transmural heterogeneity. Predominant epicardial stretch along myofibers during isovolumic relaxation appears to drive global torsional recoil to aid early diastolic filling.  相似文献   

13.
Extraocular muscle (EOM) myofibers do not fit the traditional fiber typing classifications normally used in noncranial skeletal muscle, in part, due to the complexity of their individual myofibers. With single skinned myofibers isolated from rectus muscles of normal adult rabbits, force and shortening velocity were determined for 220 fibers. Each fiber was examined for myosin heavy chain (MyHC) isoform composition by densitometric analysis of electrophoresis gels. Rectus muscle serial sections were examined for coexpression of eight MyHC isoforms. A continuum was seen in single myofiber shortening velocities as well as force generation, both in absolute force (g) and specific tension (kN/m(2)). Shortening velocity correlated with MyHCIIB, IIA, and I content, the more abundant MyHC isoforms expressed within individual myofibers. Importantly, single fibers with similar or identical shortening velocities expressed significantly different ratios of MyHC isoforms. The vast majority of myofibers in both the orbital and global layers expressed more than one MyHC isoform, with up to six isoforms in single fiber segments. MyHC expression varied significantly and unpredictably along the length of single myofibers. Thus EOM myofibers represent a continuum in their histological and physiological characteristics. This continuum would facilitate fine motor control of eye position, speed, and direction of movement in all positions of gaze and with all types of eye movements-from slow vergence movements to fast saccades. To fully understand how the brain controls eye position and movements, it is critical that this significant EOM myofiber heterogeneity be integrated into hypotheses of oculomotor control.  相似文献   

14.
Skeletal muscles are proficient at healing from a variety of injuries. Healing occurs in two phases, early and late phase. Early phase involves healing the injured sarcolemma and restricting the spread of damage to the injured myofiber. Late phase of healing occurs a few days postinjury and involves interaction of injured myofibers with regenerative and inflammatory cells. Of the two phases, cellular and molecular processes involved in the early phase of healing are poorly understood. We have implemented an improved sarcolemmal proteomics approach together with in vivo labeling of proteins with modified amino acids in mice to study acute changes in the sarcolemmal proteome in early phase of myofiber injury. We find that a notable early phase response to muscle injury is an increased association of mitochondria with the injured sarcolemma. Real-time imaging of live myofibers during injury demonstrated that the increased association of mitochondria with the injured sarcolemma involves translocation of mitochondria to the site of injury, a response that is lacking in cultured myoblasts. Inhibiting mitochondrial function at the time of injury inhibited healing of the injured myofibers. This identifies a novel role of mitochondria in the early phase of healing injured myofibers.  相似文献   

15.
Age-related sarcopenia results in frailty and decreased mobility, which are associated with increased falls and long-term disability in the elderly. Given the global increase in lifespan, sarcopenia is a growing, unmet medical need. This report aims to systematically characterize muscle aging in preclinical models, which may facilitate the development of sarcopenia therapies. Na?ve rats and mice were subjected to noninvasive micro X-ray computed tomography (micro-CT) imaging, terminal in situ muscle function characterizations, and ATPase-based myofiber analysis. We developed a Definiens (Parsippany, NJ)-based algorithm to automate micro-CT image analysis, which facilitates longitudinal in vivo muscle mass analysis. We report development and characterization of translational in situ skeletal muscle performance assay systems in rat and mouse. The systems incorporate a custom-designed animal assay stage, resulting in enhanced force measurement precision, and LabVIEW (National Instruments, Austin, TX)-based algorithms to support automated data acquisition and data analysis. We used ATPase-staining techniques for myofibers to characterize fiber subtypes and distribution. Major parameters contributing to muscle performance were identified using data mining and integration, enabled by Labmatrix (BioFortis, Columbia, MD). These technologies enabled the systemic and accurate monitoring of muscle aging from a large number of animals. The data indicated that longitudinal muscle cross-sectional area measurement effectively monitors change of muscle mass and function during aging. Furthermore, the data showed that muscle performance during aging is also modulated by myofiber remodeling factors, such as changes in myofiber distribution patterns and changes in fiber shape, which affect myofiber interaction. This in vivo muscle assay platform has been applied to support identification and validation of novel targets for the treatment of sarcopenia.  相似文献   

16.
《The Journal of cell biology》1984,98(4):1453-1473
If skeletal muscles are damaged in ways that spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fiber plasma membrane is characterized by infoldings and a high concentration of acetylcholine receptors (AChRs). The aim of this study was to determine whether or not the synaptic portion of the myofiber basal lamina sheath plays a direct role in the formation of the subsynaptic apparatus on regenerating myofibers, a question raised by the results of earlier experiments. The junctional region of the frog cutaneous pectoris muscle was crushed or frozen, which resulted in disintegration and phagocytosis of all cells at the synapse but left intact much of the myofiber basal lamina. Reinnervation was prevented. When new myofibers developed within the basal lamina sheaths, patches of AChRs and infoldings formed preferentially at sites where the myofiber membrane was apposed to the synaptic region of the sheaths. Processes from unidentified cells gradually came to lie on the presynaptic side of the basal lamina at a small fraction of the synaptic sites, but there was no discernible correlation between their presence and the effectiveness of synaptic sites in accumulating AChRs. We therefore conclude that molecules stably attached to the myofiber basal lamina at synaptic sites direct the formation of subsynaptic apparatus in regenerating myofibers. An analysis of the distribution of AChR clusters at synaptic sites indicated that they formed as a result of myofiber-basal lamina interactions that occurred at numerous places along the synaptic basal lamina, that their presence was not dependent on the formation of plasma membrane infoldings, and that the concentration of receptors within clusters could be as great as the AChR concentration at normal neuromuscular junctions.  相似文献   

17.
Satellite cells are the myogenic precursors in postnatal muscle and are situated beneath the myofiber basement membrane. We previously showed that fibroblast growth factor 2 (FGF2, basic FGF) stimulates a greater number of satellite cells to enter the cell cycle but does not modify the overall schedule of a short proliferative phase and a rapid transition to the differentiated state as the satellite cells undergo myogenesis in isolated myofibers. In this study we investigated whether other members of the FGF family can maintain the proliferative state of the satellite cells in rat myofiber cultures. We show that FGF1, FGF4, and FGF6 (as well as hepatocyte growth factor, HGF) enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective. None of the growth factors prolongs the proliferative phase or delays the transition of the satellite cells to the differentiating, myogenin(+) state. However, FGF6 retards the rapid exit of the cells from the myogenin(+) state that routinely occurs in myofiber cultures. To determine which of the above growth factors might be involved in regulating satellite cells in vivo, we examined their mRNA expression patterns in cultured rat myofibers using RT-PCR. The expression of all growth factors, excluding FGF4, was confirmed. Only FGF6 was expressed at a higher level in the isolated myofibers and not in the connective tissue cells surrounding the myofibers or in satellite cells dissociated away from the muscle. By Western blot analysis, we also demonstrated the presence of FGF6 protein in the skeletal musle tissue. Our studies therefore suggest that the myofibers serve as the main source for the muscle FGF6 in vivo. We also used RT-PCR to analyze the expression patterns of the four tyrosine kinase FGF receptors (FGFR1-FGFR4) and of the HGF receptor (c-met) in the myofiber cultures. Depending on the time in culture, expression of all receptors was detected, with FGFR2 and FGFR3 expressed only at a low level. Only FGFR4 was expressed at a higher level in the myofibers but not the connective tissue cell cultures. FGFR4 was also expressed at a higher level in satellite cells compared to the nonmyogenic cells when the two cell populations were released from the muscle tissue and fractionated by Percoll density centrifugation. The unique localization patterns of FGF6 and FGFR4 may reflect specific roles for these members of the FGF signaling complex during myogenesis in adult skeletal muscle.  相似文献   

18.
Dynamics of myofiber differentiation/maturation in porcine skeletal muscle is associated with domestication, breeding and rearing conditions. This study was aimed to comparatively elucidate the age-dependent myosin heavy chain (MyHC) isoform expression and transition pattern in domestic and wild pig (WP) skeletal muscle from birth until adulthood. Domestic pigs (DPs) of Large White breed raised in conventional production system were compared with WPs reared in a large hunting enclosure. Muscle samples for immuno/enzyme histochemistry were taken from the longissimus dorsi muscle within 24 h postmortem at 24 to 48 h, 21 to 23 days, 7 months and ~2 years postpartum. Based on the antibody reactivity to MyHCs (NCL-MHCs, A4.74, BF-F3) and succinate dehydrogenase activity, myofibers were classified into I, I/IIa, IIa, IIx and IIb types. In addition, foetal MyHC expression was determined with the use of F158.4C10 antibody. Maturation of the longissimus dorsi muscle in the WP was characterized by an accelerated transformation of the fast to slow MyHC during the first hours postpartum, followed by differentiation towards oxidative myofibers in which type I, IIa and IIx MyHCs predominated. In the DP, the transformation shifted towards glycolytic myofibers that expressed MyHC-IIb. The expression of foetal MyHC was higher in the DP than in the WP at 1 day of age, and the decline in the foetal MyHC during the first 3 weeks was more rapid in the WP than in the DP denoting an accelerated early postnatal muscle maturation in WP than DP piglets. All foetal MyHC-positive myofibers co-expressed IIa isoform, but not vice versa. The intense myofiber hypertrophy was evident from 3 weeks until 7 months of age. In this period, the myofiber cross-sectional area increased up to 10- and 20-fold in the WP and the DP, respectively. In the DP, the hypertrophy of all myofiber types was more pronounced than in the WP, particularly the hypertrophy of IIx and IIb myofibers. To summarize, the comparison between growing DP with wild ancestors showed that genetic selection and rearing conditions lead to substantial changes in the direction and intensity of postnatal MyHC transformation as evidenced by different proportion of individual myofiber types and differences in their hypertrophic potential.  相似文献   

19.
Myofibers with an abnormal branching cytoarchitecture are commonly found in various neuromuscular diseases as well as after severe muscle injury. These aberrant myofibers are fragile and muscles containing a high percentage of these myofibers are weaker and more prone to injury. To date the mechanisms and molecules regulating myofiber branching have been obscure. Recent work analyzing the role of mouse odorant receptor 23 (MOR23) in muscle regeneration revealed that MOR23 is necessary for proper skeletal muscle regeneration in mice as loss of MOR23 leads to increased myofiber branching. Further studies demonstrated that MOR23 expression is induced when muscle cells were extensively fusing and plays an important role in controlling cell migration and adhesion. These data demonstrate a novel role for an odorant receptor in tissue repair and identify the first molecule with a functional role in myofiber branching.Key words: muscle regeneration, odorant receptor, olfactory receptor, MOR23, myofiber splitting, myofiber branching, myoblast, fusion, myotube, olfr16Skeletal muscle is characterized by an extensive ability to regenerate after injury due to trauma or disease. Muscle regeneration results from a finely orchestrated series of steps that are spatially and temporally regulated, many of which are not understood. Elucidation of the mechanisms that regulate muscle regeneration may be beneficial for enhancing the rate or extent of muscle regeneration in injury, disease or age.Skeletal muscle is composed of myofibers, which are long cylindrical cells containing hundreds of myonuclei in a common cytoplasm (Fig. 1). Each myofiber is surrounded by a basal lamina sheath; between the myofiber and the basal lamina lie myogenic stem cells called satellite cells. When muscle is injured, myofibers degenerate and satellite cells proliferate to give rise to progeny myoblasts. Myoblasts differentiate and undergo migration, adhesion and fusion to form regenerated myofibers and normal tissue architecture is restored. In many neuromuscular diseases muscle regeneration is aberrant and various abnormalities, such as variation in myofiber size, decreased myofiber number, fibrosis and branched myofibers, are observed. In the clinical literature, branched myofibers are more commonly referred to as “split myofibers.”Open in a separate windowFigure 1Myofiber growth during normal muscle regeneration. (A) Myofibers contain many myonuclei within a common cytoplasm and are surrounded by a basal lamina sheath. Underneath the basal lamina lie satellite cells, myogenic stem cells responsible for muscle regeneration. (B) Myofiber degeneration leads to activation of quiescent satellite cells and their reentry into the cell cycle. Their progeny myoblasts proliferate to yield a pool of progenitor cells. (C) Myoblasts differentiate and undergo migration, adhesion and fusion to form nascent myofibers within the original basal lamina sheath. Additional myoblasts fuse with these newly formed myofibers and the myofiber will continue to grow in size. (D) At later time points regenerated myofibers are similar in size to undamaged myofibers but contain centrally located myonuclei, a hallmark of a regenerated myofiber.Branched myofibers are malformed cells which, instead of having a normal cylindrical shape, contain one or more offshoots of small daughter myotubes contiguous with the parent myofiber (Fig. 2). Branched myofibers can be simple with only one branch (Fig. 2A) or complex with many anastomosing branches resembling a gnarled tree root (Fig. 2B).1 In myofibers with complex cytoarchitecture, individual branches can persist up to hundreds of microns and then eventually recombine with the parent myofiber. Each daughter branch is enclosed in its own basal lamina, which is contiguous with the basal lamina of the parent myofiber.2 The frequency of branched myofibers in rodent muscle under normal conditions is low, on the order of 0.003%.3 However, the frequency in both rodent and human muscle is increased in response to hypertrophy4,5 as well as regeneration due to induced injury,68 muscle transplantation,9,10 or muscular dystrophy.1,1116 In mdx mice, a model of Duchenne Muscular Dystrophy, up to 65–90% of myofibers by 7 months and older display this abnormal branched morphology compared to 6–17% of myofibers at 1–3 months of age.1214 Branched myofibers display functional abnormalities such as alterations in myofiber calcium signaling.13 Additionally, isolated branched myofibers are more prone to rupture at branches during stimulation17 and mdx muscles containing a high percentage of branched myofibers are more vulnerable to contraction-induced injury.12,14 Thus, decreasing the number of branched myofibers would likely be beneficial to muscle function.Open in a separate windowFigure 2Myofiber branching during aberrant muscle regeneration. (A) Phase contrast microscopy of a normal (left) and a branched (right) myofiber. The branched myofiber contains one branch at the end of the myofiber. (B) Schematic diagrams of myofibers with more complex patterns of branching than depicted in (A).Although branched myofibers have been reported in literature for over 100 years, the mechanism by which they arise is unknown and no causative molecules have been identified. The aberrant cytoarchitecture of branched myofibers likely arises from incomplete fusion of small myotubes during muscle regeneration8 though direct proof is lacking. Evidence in favor of these malformed myofibers arising from abortive regenerative processes includes the expression of neonatal myosin, a marker of early muscle regeneration, in the small branches.13 That these branches are newly formed is further suggested by the presence of centrally located nuclei,13,18 a hallmark of regenerated myofibers. The observation that during muscle regeneration multiple small myotubes can form within the old basal lamina sheath8,16,19 leads credence to the idea that aberrant fusion of such small myotubes underlies generation of branched myofibers. Indeed, electron microscopic studies support the ability of myotubes to fuse with one another in vivo;20 myotubes readily fuse with one another in vitro.21 Recent studies of odorant receptor function during muscle regeneration in mice18 have identified the first molecule with a functional role in controlling myofiber branching and suggest that defects in muscle cell migration and/or adhesion may underlie the genesis of these branches.  相似文献   

20.
Three-dimensional ultrastructure of human tendons.   总被引:1,自引:0,他引:1  
The three-dimensional ultrastructure of human tendons has been studied. Epitenon and peritenon consist of a dense network of longitudinal, oblique and transversal collagen fibrils crossing the tendon fibres. The internal structure of tendon fibres is also complex. The collagen fibrils are oriented not only longitudinally but also transversely and horizontally. The longitudinal fibrils do not run only parallel but also cross each other forming spirals (plaits). These fibril bundles are bound together by a three-dimensional collagen fibril network of endotenon. In the myotendinous junction the surface of the muscle cells form processes. A network of tendineal collagen fibrils fills the recesses between the muscle cell processes penetrating the basement membrane of these processes. This complex ultrastructure of human tendons most likely offers a good buffer system against longitudinal, transversal, horizontal as well as rotational forces during movement and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号