首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure is described for the preparation of stable phycobilisomes from the unicellular cyanobacterium Synechococcus sp. 6301 (also known as Anacystis nidulans). Excitation of the phycocyanin in these particles at 580 nm leads to maximum fluorescence emission, from allophycocyanin and allophycocyanin B, at 673 nm. Electron microscopy shows that the phycobilisomes are clusters of rods. The rods are made up of stacks of discs which exhibit the dimensions of short stacks made up primarily of phycocyanin (Eiserling, F. A., and Glazer, A. N. (1974) J. Ultrastruct. Res. 47, 16-25). Loss of the clusters, by dissociation into rods under suitable conditions, is associated with loss of energy transfer as shown by a shift in fluorescence emission maximum to 652 nm. Synechococcus sp. 6301 phycobilisomes were shown to contain five nonpigmented polypeptides in addition to the colored subunits (which carry the covalently bound tetrapyrrole prosthetic groups) of the phycobiliproteins. Evidence is presented to demonstrate that these colorless polypeptides are genuine components of the phycobilisome. The nonpigmented polypeptides represent approximately 12% of the protein of the phycobilisomes; phycocyanin, approximately 75%, and allophycocyanin, approximately 12%. Spectroscopic studies that phycocyanin is in the hexamer form, (alpha beta)6, in intact phycobilisomes, and that the circular dichroism and absorbance of this aggregate are little affected by incorporation into the phycobilisome structure.  相似文献   

2.
The phycobilisomes of the unicellular cyanobacterium Synechocystis 6701, grown in white light, contain C-phycoerythrin, C-phycocyanin, and allophycocyanin in a molar ration of approximately 2:2:1, and in addition, polypeptides of 99, 46, 33.5, 31.5, 30.5, and 27 x 10(3) Daltons, as well as a trace of a approximately 9 x 10(3)-dalton component. Two nitrosoguanidine-induced mutants of this organism produce aberrant phycobilisomes. Crude cell extracts of these mutants, 6701-NTG25 and NTG31, contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ration of 1:5:1:1 and 0.55:0.3:1.0, respectively. The phycobilisomes from both mutants lack the 33.5 x 10(3)-dalton polypeptide. Wile-type phycobilisomes consist of a core composed of an equilateral array of three cylindrical elements surrounded by six rods in a fanlike arrangement. The rods are made up of stacked disks, 11 nm in diameter and 6 nm thick. In phycobilisomes of mutant 6701-NTG25, numerous particles with fewer than six rods are seen. Mutant 6701-NTG31 produces incomplete structures that extend from triangular core particles, through cores with one or two attached rods, to cores with as many as five rods. The structure of the core appears unaltered throughout. The amount of phycocyanin (relative to allophycocyanin) appears to determine the number of rods per core. A common assembly form seen in 6701-NTG31 is the core with two rods attached at opposite sides. From observations of this form, it is concluded that the core elements are cylindrical, with a height of 14 nm and a diameter of 11 nm. No consistently recognizable structural details are evident within the core elements.  相似文献   

3.
Phycobilisomes of the cyanobacterium Synechococcus 6301 contain the phycobiliproteins phycocyanin, allophycocyanin, and allophycocyanin B, and four major non pigmented polypeptides of 75, 33, 30, and 27 kdaltons. The molar ratio of phycocyanin to allophycocyanin in wild type phycobilisomes can be varied over about a two-fold range by alterations in culture conditions with parallel changes in the amounts of the 33 and 30 kdalton polypeptides whereas the levels of the 27 and 75 kdalton polypeptides do not vary. Two nitrosoguanidine-induced mutants, AN112 and AN135, produce abnormally small phycobilisomes, containing only 35 and 50% of the wild type level of phycocyanin. AN135 phycobilisomes contain less 33 kdalton polypeptide than wild type and the 30 kdalton polypeptide is only detected in phycobilisomes from cultures grown under conditions favoring high levels of phycocyanin. AN112 lacks both the 30 and 33 kdalton polypeptides and produces phycobilisomes of constant size and composition, independent of growth conditions. Both mutant phycobilisomes have wild type levels of 27 and 75 kdalton polypeptides relative to allophycocyanin and have normal energy transfer properties. These results indicate that modulation of phycobilisome size involves concurrent regulation of the levels of phycocyanin and of both the 30 and 33 kdalton polypeptides with no change in the composition of the allophycocyanin-containing core.Abbreviations LP cells cells grown under conditions favoring low p phycobiliprotein levels - HP cells cells grown under conditions favoring high phycobiliprotein levels - SDS sodium dodecylsulfate - EDTA ethylenediamine tetraacetic acid - NaK-PO4 NaH2PO4 titrated with K2HPO4 to a given pH A preliminary report of some of this work was presented at the 81st Annual Meeting of the American Society for Microbiology, Dallas, Texas, March 1981  相似文献   

4.
Synechocystis 6701 phycobilisomes contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ratio of approximately 2:2:1, and other polypeptides of 99-, 46-, 33.5-, 31.5-, 30.5-, and 27-kdaltons. Wild- type phycobilisomes consist of a core of three cylindrical elements in an equilateral array surrounded by a fanlike array of six rods each made up of 3-4 stacked disks. Twelve nitrosoguanidine-induced mutants were isolated which produced phycobilisomes containing between 0 and 53% of the wild-type level of phycoerythrin and grossly altered levels of the 30.5- and 31.5-kdalton polypeptides. Assembly defects in these mutant particles were shown to be limited to the phycoerythrin portions of the rod substructures of the phycobilisome. Quantitative analysis of phycobilisomes from wild-type and mutant cells, grown either in white light or chromatically adapted to red light, indicated a molar ratio of the 30.5- and 31.5-kdalton polypeptides to phycoerythrin of 1:6, i.e., one 30.5- or one 31.5-kdaltons polypeptide per (alpha beta)6 phycoerythrin hexamer. Presence of the phycoerythrin-31.5-kdalton complex in phycobilisomes did not require the presence of the 30.5- kdalton polypeptide. The converse situation was not observed. These and earlier studies (R. C. Williams, J. C. Gingrich, and A. N. Glazer. 1980. J. Cell Biol. 85:558-566) show that the average rod in wild type Synechocystis 6701 phycobilisomes consists of four stacked disk-shaped complexes: phycocyanin (alpha beta)6-27 kdalton, phycocyanin (alpha beta)6-33.5 kdalton, phycoerythrin (alpha beta)6-31.5 kdalton, and phycoerythrin-30.5 kdalton, listed in order starting with the disk proximal to the core.  相似文献   

5.
The phycobiliproteins contain a conserved unique modified residue, gamma-N-methylasparagine at beta-72. This study examines the consequences of this methylation for the structure and function of phycocyanin and of phycobilisomes. An assay for the protein asparagine methylase activity was developed using [methyl-3H]S-adenosylmethionine and apophycocyanin purified from Escherichia coli containing the genes for the alpha and beta subunits of phycocyanin from Synechococcus sp. PCC 7002 as substrates. This assay permitted the partial purification, from Synechococcus sp. PCC 6301, of the activity that methylates phycocyanin and allophycocyanin completely at residue beta-72. Using the methylase assay, two independent nitrosoguanidine-induced mutants of Synechococcus sp. PCC 7942 were isolated that do not exhibit detectable phycobiliprotein methylase activity. These mutants, designated pcm 1 and pcm 2, produce phycocyanin and allophycocyanin unmethylated at beta-72. The phycobiliproteins in these mutants are assembled into phycobilisomes and can be methylated in vitro by the partially purified methylase from Synechococcus sp. PCC 6301. The mutants produce phycobiliproteins in amounts comparable to those of wild-type and the mutant and wild-type phycocyanins are equivalent with respect to thermal stability profiles. Monomeric phycocyanins purified from these strains show small spectral shifts that correlate with the level of methylation. Phycobilisomes from the mutant strains exhibit defects in energy transfer, both in vivo and in vitro, that are also correlated with deficiencies in methylation. Unmethylated or undermethylated phycobilisomes show greater emission from phycocyanin and allophycocyanin and lower fluorescence emission quantum yields than do fully methylated particles. The results support the conclusion that the site-specific methylation of phycobiliproteins contributes significantly to the efficiency of directional energy transfer in the phycobilisome.  相似文献   

6.
Synechococcus 6301 mutant, strain AN112, produces phycobilisomes containing two major biliproteins, phycocyanin and allophycocyanin, and two major linker polypeptides of 27 and 75 kilodaltons (27K and 75K). These phycobilisomes have a molecular weight of approximately 2.5 X 10(6) and are the smallest of these particles known to date. Sucrose density gradient centrifugation of AN112 phycobilisomes partially dissociated in 50 mM N-[tris(hydroxymethyl)methyl]glycine, 5 mM CaCl2, 10% (w/v) glycerol, pH 7.8, separated three distinct fractions: (1) free trimeric biliproteins, (2) hexameric complexes of phycocyanin with 27K (11 S particles), and (3) phycobilisome subassemblies equivalent in mass to approximately 25% of the intact phycobilisome (18 S particles). The 18 S particles contained equimolar amounts of phycocyanin and allophycocyanin, which represented approximately 30 and 50%, respectively, of the content of these biliproteins in the AN112 phycobilisome. The 18 S particles also contained 75% and 100%, respectively, of 27K and 75K polypeptides; i.e. 75K was present in a 2-fold higher amount than in the intact phycobilisome. The absorption spectrum (lambda max 648 nm) of the 18 S particles was similar to that of allophycocyanin. Upon excitation at 580 nm, these particles exhibited a fluorescence emission spectrum consisting of 680 and 660 nm components, identical with that of intact phycobilisomes. The circular dichroism spectra of AN112 phycobilisomes and of the 18 S particles, in the region between 650 and 700 nm, were also very similar. Allophycocyanin B, which fluoresces at 680 nm, was found in fraction 1, and was totally absent from the 18 S particle. Thus, the long wavelength emission of the 18 S particle must have arisen from another terminal energy acceptor. The most probable candidate is the 75K polypeptide, which has been shown to carry a bilin chromophore and emit near 680 nm (Lundell, D. J., Yamanaka, G., and Glazer, A. N. (1980) J. Cell Biol. 91, 315-319). The 27K polypeptide, present in both fractions 2 and 3, was a component of different complexes in the two fractions. Fraction 2 displayed the physical and spectroscopic properties characteristic of the phycocyanin-linker complex, (alpha beta)6.27K. However, in the 18 S particle, 27K functioned in the assembly and attachment of phycocyanin trimers to a core domain. Based on the analysis of the components in fractions 1-3, a model is proposed which describes the structure of the AN112 phycobilisome, with emphasis on the roles of the linker polypeptides in the assembly of the core.  相似文献   

7.
We have identified the function of the `extra' polypeptides involved in phycobilisome assembly in Nostoc sp. These phycobilisomes, as those of other cyanobacteria, are composed of an allophycocyanin core, phycoerythrin- and phycocyanin-containing rods, and five additional polypeptides of 95, 34.5, 34, 32, and 29 kilodaltons. The 95 kilodalton polypeptide anchors the phycobilisome to the thylakoid membrane (Rusckowski, Zilinskas 1982 Plant Physiol 70: 1055-1059); the 29 kilodalton polypeptide attaches the phycoerythrin- and phycocyanin-containing rods to the allophycocyanin core (Glick, Zilinskas 1982 Plant Physiol 69: 991-997). Two populations of rods can exist simultaneously or separately in phycobilisomes, depending upon illumination conditions. In white light, only one type of rod with phycoerythrin and phycocyanin in a 2:1 molar ratio is synthesized. Associated with this rod are the 29, 32, and 34 kilodalton colorless polypeptides; the 32 kilodalton polypeptide links the two phycoerythrin hexamers, and the 34 kilodalton polypeptide attaches a phycoerythrin hexamer to a phycocyanin hexamer. The second rod, containing predominantly phycocyanin, and the 34.5 and 29 kilodalton polypeptides, is synthesized by redlight-adapted cells; the 34.5 kilodalton polypeptide links two phycocyanin hexamers. These assignments are based on isolation of rods, dissociation of these rods into their component biliproteins, and analysis of colorless polypeptide composition, followed by investigation of complexes formed or not formed upon their recombination.  相似文献   

8.
Resonance Raman spectra of native C-phycocyanin, allophycocyanin and whole, intact phycobilisomes from the blue-green alga Anacystis nidulans (Synechococcus 6301) are reported. A tentative assignment for the more prominent resonance Raman bands is suggested. The possibly sensitive regions for inter-chromophore interactions in the case of phycobilisomes are also discussed.  相似文献   

9.
The picosecond fluorescence and energy-transfer kinetics of isolated phycobilisomes from Synechococcus 6301 were studied under low intensity excitation. Different combinations of excitation and emission wavelengths were used in order to monitor selectively the fluorescence of the pigments phycocyanin and allophycocyanin. The relatively long overall energy-transfer time of 120 ps from the phycocyanin rods to the allophycocyanin-core is rationalized in terms of the special structure of the rods being built up of several phycocyanin hexamers in this alga species. The fluorescence lifetime of the terminal chromophores in the core was determined to be 1.8–1.9 ns depending on the excitation wavelength. A fast decay component of 20 ± 10 ps which is most prominent at short emission wavelengths is assigned to arise mainly from energy transfer within the C-phycocyanin-units from ‘sensitizing’ to ‘fluorescing’ chromophores.  相似文献   

10.
11.
Phycobilisomes from the nonchromatic adapting cyanobacterium Spirulina platensis are composed of a central core containing allophycocyanin and rods with phycocyanin and linker polypeptides in a regular array. Room temperature absorption spectra of phycobilisomes from this organism indicated the presence of phycocyanin and allophycocyanin. However, low temperature absorption spectra showed the association of a phycobiliviolin type of chromophore within phycobilisomes. This chromophore had an absorption maximum at 590 nanometers when phycobilisomes were suspended in 0.75 molar K-phosphate buffer (pH 7.0). Purified phycocyanin from this cyanobacterium was found to consist of three subparticles and the phycobiliviolin type of chromophore was associated with the lowest density subparticle. Circular dichroism spectra of phycocyanin subparticles also indicated the association of this chromophore with the lowest density subparticle. Absorption spectral analysis of α and β subunits of phycocyanin showed that phycobiliviolin type of chromophore was attached to the α subunit, but not the β subunit. Effect of light quality showed that green light enhanced the synthesis of this chromophore as analyzed from the room temperature absorption spectra of phycocyanin subparticles and subunits, while red or white light did not have any effect. Low temperature absorption spectra of phycobilisomes isolated from green, red, and white light conditions also indicated the enhancement of phycobiliviolin type of chromophore under green light.  相似文献   

12.
Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-β-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNRL) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNRL accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNRL and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.  相似文献   

13.
Phycobilisome composition and possible relationship to reaction centers   总被引:2,自引:0,他引:2  
The photosynthetic apparatus was studied in Anacystis nidulans wild type and in a spontaneous pigment mutant 85Y which had improved growth in far-red light (greater than 650 nm). Two phycobiliproteins, C-phycocyanin (lambda max 625) and allophycocyanin (lambda max 650), were present in a molar ratio of approximately 3:1 in the wild type and approximately 0.4:1 in the mutant. Phycobilisomes of wild type cells were larger (57 X 30 nm) than those of the mutant 85Y (28 X 15 nm). In the mutant they seemed to consist primarily of the allophycocyanin core. Fluorescence emission maxima of wild type and mutant 85Y phycobilisomes were at 680 nm (23 degrees C) and 685 nm (-196 degrees C). Excitation maxima of phycobilisomes were at 630 and 650 nm for the wild type and the mutant 85Y, respectively. The phycobilisomes of wild type cells whether grown in white or far-red light had the same size and pigment composition. A typical wild type cell in white light had a thylakoid area of 22.8 microns 2, but in far-red light the area was reduced to 13.5 microns 2, which was close to that of 85Y at 13.6 microns 2. Chlorophyll molecules per cell decreased in far-red light from 1.1 X 10(7) in wild type (white light) to 4.5 X 10(6) in mutant 85Y (far-red). The number of phycobilisomes per cell (approx 2 X 10(4)), calculated from the phycobiliprotein content and phycobilisome size, was about the same in wild type (white light) and mutant 85Y (far-red light), but the number of phycobilisomes per unit area of thylakoid was significantly greater in mutant 85Y than in wild type. The present results suggest that the phycobilisomes are linked with reaction centers and that the PSII complement (photo-system II and phycobilisome) was fully maintained in far-red light.  相似文献   

14.
The structure and function of phycobilisomes in the rhodophyte Porphyridium sp. were investigated by comparing the properties of the wild type with a pigment mutant called C12. When grown under low light, cells of C12 were bright orange, while wild-type cells were deep red. The results obtained from a characterization of purified phycobilisomes of the mutant C12 led us to propose the existence in Porphyridium sp. phycobilisomes of two types of rods, some containing only phycoerythrin and others containing phycoerythrin bound to phycocyanin, which is in turn linked to the core by the linker LRC. By studying the partitioning of phycobiliproteins between phycobilisomes and pools of free phycobiliproteins, we found that phycocyanin in the C12 mutant was only present in the pool of free proteins and that its specific linker, LRC, was totally absent. Phycoerythrin was present in the free pool and in the purified phycobilisomes as well. One of the three specific phycoerythrin linkers γ was missing. In light of the fact that in the C12 mutant, the linker LRC is absent and that there is no phycocyanin bound to the phycobilisomes, we propose that the rods in the mutant contain only phycoerythrin. These phycobilisomes are nevertheless functional and exhibit an efficient excitation transfer from phycoerythrin directly to allophycocyanin. Electron microscopy showed the purified phycobilisomes of C12 to be less dense than those of the wild type. This change was attributed to the disappearance of the rods containing the combination phycocyanin/phycoerythrin. Light still regulates phycobiliprotein synthesis in the mutant, as shown by the change in the color of the culture, which turned green-yellow when cells were shifted from low light to high light growth conditions. Light also regulates the structure of the phycobilisomes, which have fewer rods under high light growth conditions.  相似文献   

15.
The 18 S subassembly particles obtained by partial dissociation of phycobilisomes from Synechococcus 6301 (Anacystis nidulans) strain AN 112 contain approximately one-half of the mass of the phycobilisome and include core-rod junctions (Yamanaka, G., Lundell, D. J., and Glazer, A. N. (1982) J. Biol. Chem. 257, 4077-4086). The polypeptide composition of 18 S complexes, determined by analysis of uniformly 14C-labeled phycobilisomes, gave the following stoichiometry: 75K:27K:18.3K:alpha beta allophycocyanin monomer: alpha beta phycocyanin monomer of 1:2:1:5:6; where 75K, 27K, etc. represent polypeptides of 75, 27 kilodaltons, etc. The 18.3K polypeptide is a hitherto underscribed biliprotein bearing a single phycocyanobilin. The NH2-terminal sequence of this subunit was determined to be homologous to that of the beta subunit of allophycocyanin. Chromatography of products resulting from limited trypsin treatment of the 18 S complex led to the isolation of three subcomplexes: a mixture of (alpha beta)3 . 22K and (alpha beta)3 . 24K phycocyanin complexes, an (alpha beta)3 allophycocyanin trimer, and an (alpha beta)2 . 18.3K.40K.11K allophycocyanin-containing complex. The 22K and 24K components were products of the degradation of the 27K polypeptides, whereas the 40K and 11K components were derived from the 75K polypeptide. The subcomplexes accounted for the composition of the 18 S complex. Determination of the composition, stoichiometry, and spectroscopic properties of the subcomplexes has led to a model of the polypeptide arrangement within the 18 S complex and of the pathway of energy transfer among these polypeptides.  相似文献   

16.
A spontaneous, stable, pigmentation mutant of Nostoc sp. strain MAC was isolated. Under various growth conditions, this mutant, R-MAC, had similar phycoerythrin contents (relative to allophycocyanin) but significantly lower phycocyanin contents (relative to allophycocyanin) than the parent strain. In saturating white light, the mutant grew more slowly than the parent strain. In nonsaturating red light, MAC grew with a shorter generation time than the mutant; however, R-MAC grew more quickly in nonsaturating green light.

When the parental and mutant strains were grown in green light, the phycoerythrin contents, relative to allophycocyanin, were significantly higher than the phycoerythrin contents of cells grown in red light. For both strains, the relative phycocyanin contents were only slightly higher for cells grown in red light than for cells grown in green light. These changes characterize both MAC and R-MAC as belonging to chromatic adaptation group II: phycoerythrin synthesis alone photocontrolled.

A comparative analysis of the phycobilisomes, isolated from cultures of MAC and R-MAC grown in both red and green light, was performed by polyacrylamide gel electrophoresis in the presence of 8.0 molar urea or sodium dodecyl sulfate. Consistent with the assignment of MAC and R-MAC to chromatic adaptation group II, no evidence for the synthesis of red light-inducible phycocyanin subunits was found in either strain. Phycobilisomes isolated from MAC and R-MAC contained linker polypeptides with relative molecular masses of 95, 34.5, 34, 32, and 29 kilodaltons. When grown in red light, phycobilisomes of the mutant R-MAC appeared to contain a slightly higher amount of the 32-kilodalton linker polypeptide than did the phycobilisomes isolated from the parental strain under the same conditions. The 34.5-kilodalton linker polypeptide was totally absent from phycobilisomes isolated from cells of either MAC or R-MAC grown in green light.

  相似文献   

17.
In exponentially growing cells of Synechococcus sp. 6301, over 95% of the phycobiliproteins are located in phycobilisomes, and the remainder is present in the form of low molecular weight aggregates. In addition to the subunits of the phycobiliproteins (C-phycocyanin, allophycocyanin, allophycocyanin B), the phycobilisomes of this unicellular cyanobacterium contain five non-pigmented polypeptides. During the initial phase of starvation (24 h after removal of combined nitrogen from the growth medium), the phycobiliproteins in the low molecular weight fraction largely disappeared. Phycocyanin was lost more rapidly from this fraction than allophycocyanin. Simultaneous changes in the phycobilisome were (1) a decrease in sedimentation coefficient, (2) a decrease in phycocyanin: allophycocyanin ratio, (3) a shift in the fluorescence emission maximum from 673 to 676 nm, and (4) a selective complete loss of a 30,000 dalton non-pigmented polypeptide. Upon extensive nitrogen starvation (72 h), the intracellular level of phycocyanin decreased by over 30-fold. These results indicate that in the early stage of nitrogen starvation, the free phycobiliproteins of the cell are degraded, as well as a significant proportion of the phycocyanin from the periphery of the phycobilisome. However, the structures partially depleted of phycocyanin still function efficiently in energy transfer. On extended starvation, total degradation of residual phycobilisomes takes place, possibly in conjunction with the detachment of these structures from the thylakoids.None of the effects of the absence of combined nitrogen were seen when cells were starved in the presence of chloramphenicol, or in a methionine auxotroph starved for methionine.Abbreviations Used NaK-PO4 NaH2PO4 titrated with K2HPO4 to a given pH - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

18.
Phycobilisomes of the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC7120 differ from typical tricylindrical, hemidiscoidal phycobilisomes in three respects. Firstly, size comparisons of the core-membrane linker phycobiliproteins (LCM) in different cyanobacteria by SDS/PAGE reveal an apparent molecular mass of 120 kDa for the LCM of M. laminosus and Anabaena sp. PCC7120. This observation suggests that the polypeptides of these species have four linker-repeat domains. Secondly, phycobilisomes of M. laminosus are shown to contain at least three, but most probably four, different rod-core linker polypeptides (LRC). These LRC, which attach the peripheral rods to the core and thereby make phycocyanin/allophycocyanin contacts, have been identified and characterized by N-terminal amino acid sequence analysis. Additionally, electron microscopy of phycobilisomes isolated from M. laminosus and Anabaena sp. PCC7120 reveals similar structures which differ from those of Calothrix sp. PCC7601 with their typical six, peripheral rods. Based upon protein-analytical results and a reinterpretation of the data of [Isono, T. & Katoh, T. (1987) Arch. Biochem. Biophys. 256, 317-324], we discuss structural implications of recent findings on the established hemidiscoidal model for the phycobilisomes of M. laminosus and Anabaena sp. PCC7120. Up to eight peripheral rods are suggested to radiate from a modified core substructure which contains two additional peripheral allophycocyanin hexamer equivalents that serve as the core-proximal discs for two peripheral rods.  相似文献   

19.
The recent availability of the whole genome of Synechococcus sp. strain WH8102 allows us to have a global view of the complex structure of the phycobilisomes of this marine picocyanobacterium. Genomic analyses revealed several new characteristics of these phycobilisomes, consisting of an allophycocyanin core and rods made of one type of phycocyanin and two types of phycoerythrins (I and II). Although the allophycocyanin appears to be similar to that found commonly in freshwater cyanobacteria, the phycocyanin is simpler since it possesses only one complete set of alpha and beta subunits and two rod-core linkers (CpcG1 and CpcG2). It is therefore probably made of a single hexameric disk per rod. In contrast, we have found two novel putative phycoerythrin-associated linker polypeptides that appear to be specific for marine Synechococcus spp. The first one (SYNW2000) is unusually long (548 residues) and apparently results from the fusion of a paralog of MpeC, a phycoerythrin II linker, and of CpeD, a phycoerythrin-I linker. The second one (SYNW1989) has a more classical size (300 residues) and is also an MpeC paralog. A biochemical analysis revealed that, like MpeC, these two novel linkers were both chromophorylated with phycourobilin. Our data suggest that they are both associated (partly or totally) with phycoerythrin II, and we propose to name SYNW2000 and SYNW1989 MpeD and MpeE, respectively. We further show that acclimation of phycobilisomes to high light leads to a dramatic reduction of MpeC, whereas the two novel linkers are not significantly affected. Models for the organization of the rods are proposed.  相似文献   

20.
Four novel mutants with altered phycobilisomes were constructed in the cyanobacterium Synechococcus 7942 to study factors influencing the rod length and composition. These mutants show (1) reduced phycocyanin content, (2) reduced phycocyanin content combined with loss of the 33 kDa linker, (3) loss of the 30 kDa rod-linker and (4) overexpression of the 9 kDa rod terminating linker. For these mutants we determined the 33 to 27 kDa and 30 to 27 kDa linker ratios in the isolated phycobilisomes and compared these ratios with those in the wild type. The 30 kDa linker can be incorporated into the rods in absence of the 33 kDa linker. The incorporation of the 30 kDa linker is lower in absence of the 33 kDa linker. When the 30 kDa linker is missing, an increase in the level of the 33 kDa linker is seen, indicating that there could be an excess of the 33 kDa linker in the cells. Our results also show that a reduction in the phycocyanin content causes a decrease in the rod length simultaneously with a reduction of the 30/27 linker ratio, without altering the 33/27 ratio. Reduced phycocyanin content and absence of the 33 kDa linker cause a dramatic reduction in the incorporation of the 30 kDa linker into the rods in the mutant B2SMIKM. Over-expression of the 9 kDa linker results in a decreased incorporation of both the 33 and 30 kDa linkers into the rods, the effect being more pronounced for the 30 kDa linker. This result indicates that the level of the 9 kDa linker relative to those of the 33 and the 30 kDa linkers may be an important determinant of the phycobilisome rod length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号