首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of erythrocyte ghosts in random positions in a suspension with membrane fusion-inducing direct current electric field pulses causes the membranes to become fusogenic. Significant fusion yields are observed if the membranes are dielectrophoretically aligned into membrane-membrane contact with a weak alternating electric field as much as 5 min after the application of the pulses. This demonstrates that a long-lived membrane structural alteration is involved in this fusion mechanism. Other experiments indicate that the areas on the membrane which become fusogenic after treatment with the pulses may be very highly localized. The locations of these fusogenic areas coincide with where the trans-membrane electric field strength was greatest during the pulse. The fusogenic membrane alteration, or components thereof, in these areas laterally diffuses very slowly or not at all, or, to be fusogenic, must be present at concentrations in the membrane above a certain threshold. The loss of soluble 0.9-3-nm-diameter fluorescent probes from resealed cytoplasmic compartments of randomly positioned erythrocyte ghosts occurs through electric field pulse-induced pores only during a pulse but not between pulses or after a train of pulses if the probe diameter is 1.2 nm or greater. For a given pulse treatment of membranes in random positions in suspensions, an increase in ionic strength of the medium results in (a) a decrease in loss during the pulse, (b) no difference in loss between pulses, and (c) an increase in fusion yield when membrane-membrane contact is established. The latter two results (b and c) are incompatible with a fusion mechanism that proposes a simple relationship between electric field-induced pores and fusion.  相似文献   

2.
Electropermeabilized tobacco mesophyll protoplasts are shown to fuse by creating cell contact several minutes after electropulsation. Electropermeabilization was analysed by measuring calcein uptake. Experiments were performed at low temperature to avoid resealing of protoplast transient permeation structures. These results confirm that the long-lived permeabilized state induced by the electric field is associated to a fusogenic state, under viability conditions. This is indicative that as for mammalian cells, the electric field-induced membrane modifications, which give the permeable state, are such as to decrease the magnitude of the intercellular repulsive forces between plant protoplasts. Such a fusion method may be useful for somatic hybrids production with protoplasts showing morphological and physiological differences.  相似文献   

3.
The mechanism of membrane fusion was studied by using human erythrocyte ghosts held in close contact by alternating current-induced dielectrophoresis and inducing fusion with a single electric field pulse. Individual fusion events were followed visually using either 1,1'-dihexadecyl-3,3,3',3'-tetramethylindo carbocyanine perchlorate as a membrane-mixing label or 10-kD fluorescein isothiocyanate-dextran as a contents-mixing label. However, over a range of variables, the number of contents-mixing events usually considerably exceeded the number of membrane-mixing events, although the discrepancy was less at higher ionic strength. However, when the dielectrophoretic force holding the membranes in contact was turned off after the pulse, Brownian motion caused some of the groups of ghosts in which contents mixing occurred to eventually separate from one another, showing that they could not represent fusion events. Separate experiments showed, conversely, that fusion did occur in the groups that did not separate after the dielectrophoresis was turned off.  相似文献   

4.
Calcium bursts induced by nanosecond electric pulses   总被引:14,自引:0,他引:14  
We report here real-time imaging of calcium bursts in human lymphocytes exposed to nanosecond, megavolt-per-meter pulsed electric fields. Ultra-short (less than 30 ns), high-field (greater than 1 MV/m), electric pulses induce increases in cytosolic calcium concentration and translocation of phosphatidylserine (PS) to the outer layer of the plasma membrane in Jurkat T lymphoblasts. Pulse-induced calcium bursts occur within milliseconds and PS externalization within minutes. Caspase activation and other indicators of apoptosis follow these initial symptoms of nanosecond pulse exposure. Pulse-induced PS translocation is observed even in the presence of caspase inhibitors. Ultra-short, high-field, electroperturbative pulse effects differ substantially from those associated with electroporation, where pulses of a few tens of kilovolts-per-meter lasting a few tens of microseconds open pores in the cytoplasmic membrane. Nanosecond pulsed electric fields, because their duration is less than the plasma membrane charging time, develop voltages across intracellular structures without porating the cell.  相似文献   

5.
N Kami-ike  S Kudo    H Hotani 《Biophysical journal》1991,60(6):1350-1355
The bacterial flagellar motor is the only molecular rotary machine found in living organisms, converting the protonmotive force, i.e., the membrane voltage and proton gradients across the cell membrane, into the mechanical force of rotation (torque). We have developed a method for holding a bacterial cell at the tip of a glass micropipette and applying electric pulses through the micropipette. This method has enabled us to observe the dynamical responses of flagellar rotation to electric pulses that change the membrane voltage transiently and repeatedly. We have observed that acceleration and deceleration of motor rotation are induced by application of these electric pulses. The change in the rotation rate occurred within 5 ms after pulse application.  相似文献   

6.
1. We present the laser-Raman spectra of human erythrocyte ghosts, isolated by standard conditions and compare these with the spectra of lecithin liposomes and fat-free serum albumin. 2. The hydrocarbon stretching modes of membrane lipids are temperature sensitive and may serve as a index of hydrocarbon chain motion. 3. The Amide I and Amide III bands of ghosts in H-2O and 2-H-2O, indicate a mixture of alpha-helical and unordered conformation, but do not allow a quantitative estimate of secondary structure. 4. Strong, scattering bands at 1530 and 1165 cm-1 are attributable to conjugated double bond systems, probably of membrane-associated carotenoids. Their high intensity is due to resonance enhancement.  相似文献   

7.
Human erythrocyte ghosts but was able to fuse only iso-human erythrocyte ghosts. Iso- and hypo-human erythrocyte ghosts were incubated with the proteolytic enzyme pronase under isotonic (iso-human erythrocyte ghosts) or hypotonic (hypo-human erythrocyte ghosts) conditions. Gel electrophoresis and electron microscope (freeze-etching) studies revealed that most of the erythrocyte membrane polypeptides were hydrolyzed by pronase under hypotonic conditions. Sendai virus readily agglutinated both pronase-digested iso-human erythrocyte ghosts and hypo-human erythrocyte ghosts were fused by the non-viral fusogenic agent glyceromonooleate. Freeze-etching studies revealed that during fusion the membranes of pronase-digested human erythrocyte ghosts are intermixed.  相似文献   

8.
Mayaro virus is an enveloped virus that belongs to the Alphavirus genus. To gain insight into the mechanism involved in Mayaro virus membrane fusion, we used hydrostatic pressure and low pH to isolate a fusion-active state of Mayaro glycoproteins. In response to pressure, E1 glycoprotein undergoes structural changes resulting in the formation of a stable conformation. This state was characterized and correlated to that induced by low pH as measured by intrinsic fluorescence, 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid, dipotassium salt fluorescence, fluorescence resonance energy transfer, electron microscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel, we used a neutralization assay to show that Mayaro virus in the fusogenic state retained most of the original immunogenic properties and could elicit high titers of neutralizing antibodies.  相似文献   

9.
The control of adenylate cyclase by calcium in turkey erythrocyte ghosts.   总被引:7,自引:0,他引:7  
The adenylate cyclase of turkey erythrocytes is inhibited by low concentrations of calcium. Calcium binds to the enzyme system so tightly that the enzyme can compete with ethylene glycol bis(beta-aminoethyl ether)-N, N1-tetraacetic acid (EGTA) for the metal. The calcium binding site is shown to be distinct from the magnesium binding sites required for activity. Thus Ca2+ functions as a negative allosteric effector. Calcium decreases dramatically the V max of the catecholamine-stimulated activity without affecting the affinity for the hormone or for the substrate ATP. The cooperativity in the response toward Mg2+ dependence (Hill coefficient, nH equals 3) is also unaffected by Ca2+ where as the S0.5 (concentration yielding one-half V max) for Mg2+ is affected only slightly. The Ca2+ effect is cooperative (nH equals 2) and therefore brought about by a cluster of Ca2+ binding sites. Mn2+ can substitute for Mg2+ as the enzyme activator but the Mn2+-activated enzyme is no longer inhibited by Ca2+. The possible physiological significance of the Ca2+ effect is discussed.  相似文献   

10.
Exposure to intense, nanosecond-duration electric pulses (nsEP) opens small but long-lived pores in the plasma membrane. We quantified the cell uptake of two membrane integrity marker dyes, YO-PRO-1 (YP) and propidium (Pr) in order to test whether the pore size is affected by the number of nsEP. The fluorescence of the dyes was calibrated against their concentrations by confocal imaging of stained homogenates of the cells. The calibrations revealed a two-phase dependence of Pr emission on the concentration (with a slower rise at < 4 μM) and a linear dependence for YP. CHO cells were exposed to nsEP trains (1 to 100 pulses, 60 ns, 13.2 kV/cm, 10 Hz) with Pr and YP in the medium, and the uptake of the dyes was monitored by time-lapse imaging for 3 min. Even a single nsEP triggered a modest but detectable entry of both dyes, which increased linearly when more pulses were applied. The influx of Pr per pulse was constant and independent of the pulse number. The influx of YP per pulse was highest with 1- and 2-pulse exposures, decreasing to about twice the Pr level for trains from 5 to 100 pulses. The constant YP/Pr influx ratio for trains of 5 to 100 pulses suggests that increasing the number of pulses permeabilizes cells to a greater extent by increasing the pore number and not the pore diameter.  相似文献   

11.
The role of osmotic forces and cell swelling in the influenza virus-induced fusion of unsealed or resealed ghosts of human erythrocytes was investigated under isotonic and hypotonic conditions using a recently developed fluorescence assay (Hoekstra, D., De Boer, T., Klappe, K., Wilschut, J. (1984) Biochemistry 23, 5675-5681). The method is based on the relief of fluorescence selfquenching of the fluorescent amphiphile octadecyl rhodamine B chloride (R18) incorporated into the ghost membrane as occurs when labeled membranes fuse with unlabeled membranes. No effect neither of the external osmotic pressure nor of cell swelling on virally mediated ghost fusion was established. Influenza virus fused unsealed ghosts as effectively as resealed ghosts. It is concluded that neither osmotic forces nor osmotic swelling of cells is necessary for virus-induced cell fusion. This is supported by microscopic observations of virus-induced fusion of intact erythrocytes in hypotonic and hypertonic media. A disruption of the spectrin-actin network did not cause an enhanced cell fusion at acidic pH of about 5 or any fusion at pH 7.4.  相似文献   

12.
10(-5) M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061-10(-6) cm.s-1). Saturation of influx and efflux occurs. Koizt = 4.43 mM. Voizt = 259.6 micron.min-1-Kiozt = 0.475 micron. Viozt = 28.3 micron.min-1 at 30 degrees C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cytochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9.10(-7) M). Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

13.
K Izuhara  K Okubo  N Hamasaki 《Biochemistry》1989,28(11):4725-4728
Diethyl pyrocarbonate inhibited the phosphate exchange across the human erythrocyte membrane. The exchange rate was inhibited only when the membranes were modified with the reagent from the cytosolic surface of resealed ghosts. The intracellular modification by diethyl pyrocarbonate inhibited the extracellular binding of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to band 3 protein. Furthermore, the extracellular 4,4'-dinitrostilbene-2,2'-disulfonic acid protected the membranes from the intracellular modification by diethyl pyrocarbonate. These results suggest that the extracellular binding of 4,4'-dinitrostilbene-2,2'-disulfonic acid to band 3 protein induces the conformational change of the intracellular counterpart of band 3 protein and the diethyl pyrocarbonate susceptible residue(s) is (are) hidden from the cytosolic surface of the cell membrane in connection with the conformational change. Conversely, under the conditions where the diethyl pyrocarbonate modification is confined to the intracellular side of the membrane, the extracellular binding site of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid is hidden from the cell surface.  相似文献   

14.
The phase transition of dimyristoylphosphatidylglycerol (DMPG) bilayers has been studied by measurements of light scattering under high electric field pulses. Midpoints of phase transitions have been identified by a clear discontinuity of field induced relaxation amplitudes. We show that the phase transition of DMPG suspensions in monovalent salt is virtually independent of the electric field strength up to approx. 35 kV/cm. A shift of the lipid phase by electric field pulses has been observed, however, for DMPG suspensions in the presence of Ca2+ ions. DMPG suspensions exhibit a jump of the phase transition temperature from 17 degrees C at Ca/DMPG molar ratios r less than 1/7 to 32 degrees C at r greater than 1/7. Field pulses of 60 to 100 microseconds applied to DMPG suspensions with Ca2+ at r greater than 1/7 induce discontinuities of relaxation amplitudes in the temperature range 15 to 22 degrees C in addition to the 'standard' one at 32 degrees C, when the electric field strength is above 15 kV/cm. These results indicate that electric field pulses induce a transition from the phase formed at 'high' Ca(2+)- to the one formed at 'low' Ca(2+)-ion concentrations. Our results are consistent with a dissociation field effect on Ca(2+)-lipid complexes which drives the phase transition.  相似文献   

15.
Low pH (below 6) induces the uptake of mammalian DNA in dog erythrocyte pink ghosts. Uptake requires either Ca2+ or Mg2+ and is stimulated by ATP. These agents induce a rapid sphering of the ghosts at 37 degrees C and sphering is required for uptake. Uptake is increased in ghosts which have been incubated 60-90 min before adding the DNA. Uptake is strongly temperature-dependent. Lowering the temperature of a suspension of ghosts taking up DNA at 37-0 degrees C stops uptake. It is concluded that uptake depends on active membrane processes and that it may depend on the capacity of the ghosts to maintain cation exchange.  相似文献   

16.
The effect of incubation with insulin on insulin-receptor internalization by erythrocyte ghosts was investigated. The number of surface insulin receptors decreased by 30-40% after incubation of ghosts with insulin. Total insulin-receptor binding to solubilized ghosts was the same in insulin-incubated and control ghosts, whereas insulin binding to an internal vesicular fraction was substantially increased in insulin-incubated ghosts. Our findings suggest that erythrocyte-ghost insulin receptors are internalized to a vesicular compartment in response to incubation with insulin.  相似文献   

17.
18.
Y Wu  J G Montes    R A Sjodin 《Biophysical journal》1992,61(3):810-815
Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It was found that plots of pseudothreshold vs reciprocal half time were linear for each protocol; when extrapolated to reciprocal half time = 0 (i.e., t----infinity), these lines intersected the ordinate at values of the field strength considered to be the true electrofusion thresholds. In this fashion, the contact-first protocol gave an electrofusion threshold of 46.5 +/- 11.5 V/mm for hemoglobin-free ghosts (white ghosts) and 40.9 +/- 8.8 V/mm for ghosts with fractional hemoglobin (pink ghosts), while the threshold for the pulse-first protocol applied to pink ghosts was determined to be 93.4 +/- 11.0 V/mm. Although the thresholds depended on the electrofusion protocol, plots of critical field strength vs reciprocal time had the same slopes, i.e., approximately 24 Vs/mm. The results suggest that the fusogenic state induced by an electric pulse in either the contact-first protocol or the pulse-first protocol (long-lived fusogenic state) may in fact share a common mechanism, if the two states are not actually identical.  相似文献   

19.
Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion.  相似文献   

20.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号