首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Treatment of erythrocyte ghosts in random positions in a suspension with membrane fusion-inducing direct current electric field pulses causes the membranes to become fusogenic. Significant fusion yields are observed if the membranes are dielectrophoretically aligned into membrane-membrane contact with a weak alternating electric field as much as 5 min after the application of the pulses. This demonstrates that a long-lived membrane structural alteration is involved in this fusion mechanism. Other experiments indicate that the areas on the membrane which become fusogenic after treatment with the pulses may be very highly localized. The locations of these fusogenic areas coincide with where the trans-membrane electric field strength was greatest during the pulse. The fusogenic membrane alteration, or components thereof, in these areas laterally diffuses very slowly or not at all, or, to be fusogenic, must be present at concentrations in the membrane above a certain threshold. The loss of soluble 0.9-3-nm-diameter fluorescent probes from resealed cytoplasmic compartments of randomly positioned erythrocyte ghosts occurs through electric field pulse-induced pores only during a pulse but not between pulses or after a train of pulses if the probe diameter is 1.2 nm or greater. For a given pulse treatment of membranes in random positions in suspensions, an increase in ionic strength of the medium results in (a) a decrease in loss during the pulse, (b) no difference in loss between pulses, and (c) an increase in fusion yield when membrane-membrane contact is established. The latter two results (b and c) are incompatible with a fusion mechanism that proposes a simple relationship between electric field-induced pores and fusion.  相似文献   

2.
D S Dimitrov  A E Sowers 《Biochemistry》1990,29(36):8337-8344
Low light level video microscopy of the fusion of DiI- (1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) labeled rabbit erythrocyte ghosts with unlabeled rabbit erythrocyte ghosts, held in stable apposition by dielectrophoresis in sodium phosphate buffers, showed reproducible time intervals (delays) between the application of a single fusogenic electric pulse and the earliest detection of fluorescence in the unlabeled adjacent membranes. The delay increased over the range 0.3-4 s with a decrease in (i) the electric field strength of the fusion-inducing pulse from 1000 to 250 V/mm, (ii) the decay half-time of the fusogenic pulse in the range 1.8-0.073 ms, and (iii) the dielectrophoretic force which brings the membranes into close apposition. A change in the buffer viscosity from 1.8 to 10 mP.s caused the delay to increase from 0.36 to 3.7 s (in glycerol solutions) or to 5.2 s (in sucrose solutions). The delay decreased 2-3 times with an increase in temperature from 21 to 37 degrees C. It did not differ significantly for "white" ghosts [0.013 mM hemoglobin (Hb)] or "red" ghosts (0.15 mM Hb) or buffer strength over the range 5-60 mM (sodium phosphate, pH 8.5). The calculated activation energy, 17 kcal/mol, does not depend on the field strength. The yield of fused cells was high when the delay was short. The delay in electrofusion resembles the delays in pH-dependent fusion of vesicular stomatitis viruses with erythrocyte ghosts [Clague, M. J., Schoch, C., Zech, L., & Blumenthal, R. (1990) Biochemistry 29, 1303-1308] and of fibroblasts expressing influenza hemagglutinin and red blood cells [Morris, S. J., Sarkar, D.P., White, J. M., & Blumenthal, R. (1989) J. Biol. Chem. 264, 3972-3978].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Y Wu  J G Montes    R A Sjodin 《Biophysical journal》1992,61(3):810-815
Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It was found that plots of pseudothreshold vs reciprocal half time were linear for each protocol; when extrapolated to reciprocal half time = 0 (i.e., t----infinity), these lines intersected the ordinate at values of the field strength considered to be the true electrofusion thresholds. In this fashion, the contact-first protocol gave an electrofusion threshold of 46.5 +/- 11.5 V/mm for hemoglobin-free ghosts (white ghosts) and 40.9 +/- 8.8 V/mm for ghosts with fractional hemoglobin (pink ghosts), while the threshold for the pulse-first protocol applied to pink ghosts was determined to be 93.4 +/- 11.0 V/mm. Although the thresholds depended on the electrofusion protocol, plots of critical field strength vs reciprocal time had the same slopes, i.e., approximately 24 Vs/mm. The results suggest that the fusogenic state induced by an electric pulse in either the contact-first protocol or the pulse-first protocol (long-lived fusogenic state) may in fact share a common mechanism, if the two states are not actually identical.  相似文献   

4.
The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells’ response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41?±?9?% yield, while in isotonic buffer 32?±?11?% yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1?% in isotonic buffer to 10?±?4?% in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.  相似文献   

5.
The technique of electric pulse-induced cell fusion (electro-fusion) was used to obtain heterokaryons between normal human lymphoblasts (HSC93) and mouse leukemic lymphoblasts (MCN151). The two types of cells were brought into contact in the cell suspension by dielectrophoresis with an alternating electric field (0.8 kV/cm, 100 kHz) in the presence of calcium ions and pronase E. Cell fusion was induced by giving two successive electric pulses (3.3 and 5 kV/cm, 10 microsec). Prior treatment of human (but not mouse) lymphoblasts with neuraminidase improved fusion efficiency. Differential staining of the two types of cells with Janus Green and Neutral Red showed that about 40% of the viable fused cells underwent heterokaryonic fusion. We concluded that electrofusion is an efficient method for obtaining heterokaryons from human and mouse lymphoblasts.  相似文献   

6.
Mittal A  Bentz J 《Biophysical journal》2001,81(3):1521-1535
The data of Danieli et al. (J. Cell Biol. 133:559-569, 1996) and Blumenthal et al. (J. Cell Biol. 135:63-71, 1996) for fusion between hemagglutinin (HA)-expressing cells and fluorescently labeled erythrocytes has been analyzed using a recently published comprehensive mass action kinetic model for HA-mediated fusion. This model includes the measurable steps in the fusion process, i.e., first pore formation, lipid mixing, and content mixing of aqueous fluorescent markers. It contains two core parameters of the fusion site architecture. The first is the minimum number of aggregated HAs needed to sustain subsequent fusion intermediates. The second is the minimal number of those HAs within the fusogenic aggregate that must undergo a slow "essential" conformational change needed to initiate bilayer destabilization. Because the kinetic model has several parameters, each data set was exhaustively fitted to obtain all best fits. Although each of the data sets required particular parameter ranges for best fits, a consensus subset of these parameter ranges could fit all of the data. Thus, this comprehensive model subsumes the available mass action kinetic data for the fusion of HA-expressing cells with erythrocytes, despite the differences in assays and experimental design, which necessitated transforming fluorescence dequenching intensities to equivalent cumulative waiting time distributions. We find that HAs bound to sialates on glycophorin can participate in fusion as members of the fusogenic aggregate, but they cannot undergo the essential conformational change that initiates bilayer destabilization, thus solving a long-standing debate. Also, the similarity in rate constants for lipid mixing and content mixing found here for HA-mediated fusion and by Lee and Lentz (Proc. Natl. Acad. Sci. U.S.A. 95:9274-9279, 1998) for PEG-induced fusion of phosphatidylcholine liposomes supports the idea that subsequent to stable fusion pore formation, the evolution of fusion intermediates is determined more by the lipids than by the proteins.  相似文献   

7.
8.
Atif SM  Hasan I  Ahmad N  Khan U  Owais M 《FEBS letters》2006,580(9):2183-2190
The membrane-membrane fusion during fertilization of oocyte by spermatozoa is believed to be mainly mediated by so called "fusion proteins". In the present study we have tried to demonstrate that beside the proteins, lipid components of membrane may play an important role in fusion of oocyte with spermatozoa. Conventional membrane-membrane fusion assays were used as means to demonstrate fusogenic potential of human sperm membrane lipids. The liposomes (spermatosomes) made of the lipids isolated from sperm membrane were found to undergo strong membrane-membrane fusion as evident from fluorescence dequenching and resonance energy transfer assays. Furthermore, the fusion of these liposomes with living cells (J774 A.1 macrophage cell line) was demonstrated to result in an effective transfer of a water-soluble fluorescent probe (calcein) to cytosol of the target cell. Lastly, the liposomes were demonstrated to behave like efficient vehicles for the in vivo cytosolic delivery of the antigens to target cells resulting in elicitation of antigen specific CD8(+) T cell responses.  相似文献   

9.
Investigations were carried out on the effect of plasma membrane lipid modifications on the fusogenic capacity of control and ras-transformed fibroblasts. The plasma membrane lipid composition was modified by treatment of cells with exogenous phospholipases C and D, sphingomyelinase and cyclodextrin. The used enzymes hydrolyzed definite membrane lipids thus inducing specific modifications of the lipid composition while cyclodextrin treatment reduced significantly the level of cholesterol. The cells with modified membranes were used for assessment of their fusogenic capacity with model membranes with a constant lipid composition. Treatment with phospholipases C and D stimulated the fusogenic potential of both cell lines whereas the specific reduction of either sphingomyelin or cholesterol induced the opposite effect. The results showed that all modifications of the plasma membrane lipid composition affected the fusogenic capacity irrespective of the initial differences in the membrane lipid composition of the two cell lines. These results support the notion that the lipid composition plays a significant role in the processes of membrane-membrane fusion. This role could be either direct or through modulation of the activity of specific proteins which regulate membrane fusion.  相似文献   

10.
Melia TJ 《FEBS letters》2007,581(11):2131-2139
Three recent papers have addressed a long-standing question in exocytosis: how does a sudden calcium influx trigger a coordinated synchronous release in regulated exocytosis [Giraudo, C.G., Eng, W.S., Melia, T.J. and Rothman, J.E. (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676-680; Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. and McNew, J.A. (2006) Hemifusion arrest by complexin is relieved by Ca(2+)-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748-750; Tang, J., Maximov, A., Shin, O.H., Dai, H., Rizo, J. and Sudhof, T.C. (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175-1187]? Using diverse approaches that include cell-free reconstitution of the membrane fusion machinery and in vivo manipulation of fusogenic proteins, these groups have established that the complexin proteins are fusion clamps. By arresting vesicle secretion just prior to fusion, complexin primes select vesicles for a fast, synchronous response to calcium.  相似文献   

11.
A new quantitative approach to study cell membrane electrofusion has been developed. Erythrocyte ghosts were brought into close contact using dielectrophoresis and then treated with one square or even exponentially decaying fusogenic pulse. Individual fusion events were followed by lateral diffusion of the fluorescent lipid analogue 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) from originally labeled to unlabeled adjacent ghosts. It was found that ghost fusion can be described as a first-order rate process with corresponding rate constants; a true fusion rate constant, k(f), for the square waveform pulse and an effective fusion rate constant, k(ef), for the exponential pulse. Compared with the fusion yield, the fusion rate constants are more fundamental characteristics of the fusion process and have implications for its mechanisms. Values of k(f) for rabbit and human erythrocyte ghosts were obtained at different electric field strength and temperatures. Arrhenius k(f) plots revealed that the activation energy of ghost electrofusion is in the range of 6-10 kT. Measurements were also made with the rabbit erythrocyte ghosts exposed to 42 degrees C for 10 min (to disrupt the spectrin network) or 0.1-1.0 mM uranyl acetate (to stabilize the bilayer lipid matrix of membranes). A correlation between the dependence of the fusion and previously published pore-formation rate constants for all experimental conditions suggests that the cell membrane electrofusion process involve pores formed during reversible electrical breakdown. A statistical analysis of fusion products (a) further supports the idea that electrofusion is a stochastic process and (b) shows that the probability of ghost electrofusion is independent of the presence of Dil as a label as well as the number of fused ghosts.  相似文献   

12.
Electrofusion yields in rabbit erythrocyte ghosts containing various amounts of hemoglobin, bovine serum albumin, or dextran at low concentrations were measured as a function of pulse field strength and pulse decay half-time. The presence of any of the macromolecules in low concentrations caused fusion yields to be significantly higher than when the ghosts were white (i.e., containing only buffer). The fusion yield enhancement was also critically dependent on the parameters of the electric field pulse. The fusion yield was also significantly affected by small changes in the concentration of hemoglobin when it was present outside the ghost membranes in the suspension buffer.  相似文献   

13.
Data reported in the literature indicate that lipid movement between intracellular organelles can occur through contacts and close physical association of membranes (Vance, J.E. 1990. J Biol Chem 265: 7248-7256). The advantage of this mechanism is that the direct interaction of membranes provides the translocation event without the involvement of lipid-transport systems. However, pre-requisite for the functioning of this machinery is the presence of protein factors controlling membrane association and fusion. In the present work we have found that liposomes fuse to mitochondria at acidic pH and that the pre-treatment of mitochondria with pronase inhibits the fusogenic activity. Mixing of 14C-phosphatilyserine (PS) labeled liposomes with mitochondria at pH 6.0 results in the translocation of 14C-PS into mitochondria and in its decarboxylation to14 C-phosphatidylethanolamine through the PS decarboxylase activity localized on the outer surface of the inner mitochondrial membrane. Incorporation of 14C-PS is inhibited by the pre-treatment of mitochondria with pronase or with EEDQ, a reagent for the derivatization of the protonated form of carboxylic groups. These results indicate the presence of a protein associated with mitochondria which is able to trigger the fusion of liposomes to the mitochondrial membrane. A partial purification of a mitochondrial fusogenic glycoprotein is described in this work. The activity of the fusogenic protein appears to be dependent on the extent of protonation of the residual carboxylic groups and is influenced by the glucidic moiety, as demonstrated by its interaction with Concanavalin A. The purifed protein is able to promote the recover of the14 C-PS import from liposomes to pronase-treated mitochondria. Therefore, the protein is candidate to be an essential component in the machinery for the mitochondrial import of PS. (Mol Cell Biochem 175: 71–80, 1997)  相似文献   

14.
Hybrid cells created by fusion of antigen presenting and tumour cells have been shown to induce potent protective and curative anti-tumour immunity in rodent cancer models. The application of hybrid cell vaccines for human tumour therapy and the timely intervention in disease control are limited by the requirement to derive sufficient autologous cells to preserve homologous tumour antigen presentation. In this study, the efficiency of various methods of electrofusion in generating hybrid human cells have been investigated with a variety of human haemopoietic, breast and prostate cell lines. Cell fusion using an electrical pulse is enhanced by a variety of stimuli to align cells electrically or bring cells into contact. Centrifugation of cells after an exponential pulse from a Gene Pulser electroporation apparatus provided the highest yield of mixed cell hybrids by FACS analysis. An extensive fusogenic condition generated in human cells after an electrical pulse contradicts the presumption that prior cell contact is necessary for cell fusion. Alignment of cells in a concurrent direct current charge and osmotic expansion of cells in polyethylene glycol also generated high levels of cell fusion. Waxing of one electrode of the electroporation cuvette served to polarize the fusion chamber and increase cell fusion 5-fold. Optimisation of a direct current charge in combination with a fusogenic pulse in which fusion of a range of human cells approached or exceeded 30% of the total pulsed cells. The yield of hybrid prostate and breast cancer cells with dendritic cells was similar to the homologous cell fusion efficiencies indicating that dendritic cells were highly amenable to fusion with human tumour cells under similar electrical parameters. Elimination of unfused cells by density gradient and culture is possible to further increase the quantity of hybrid cells. The generation and purification of quantities of hybrid cells sufficient for human vaccination raises the possibility of rapid, autologous tumour antigen presenting vaccines for trial with common human tumours.  相似文献   

15.
In vitro clustering and multiple fusion among macrophage endosomes   总被引:4,自引:0,他引:4  
Early steps of receptor-mediated endocytosis appear to require the fusion of endosomes with each other. Recently, these fusion events have been reconstituted in vitro using vesicle preparations from J774 macrophages which have internalized ligands via the mannose receptor (Diaz, R., Mayorga, L., and Stahl, P. (1988) J. Biol. Chem. 263, 6093-6100). The present studies indicate that endosomes first form clusters when incubated under fusogenic conditions. Aggregation state was determined by electron microscopy using vesicles containing ligand-coated colloidal gold of different sizes previously internalized via the mannose receptor. Aggregation required cytosol and ATP. Afterwards, the limiting membranes of the vesicles composing these aggregates undergo multiple fusion and bring about the formation of large diameter vesicles that maintained the same density as endosomes when analyzed by Percoll gradient sedimentation. These large diameter vesicles were no longer fusogenic in the fusion assay. Multiple fusion was determined morphologically by the co-localization of three different size colloidal gold vesicles inside endocytic vesicles and biochemically by the fusion-dependent formation of triple immune complexes between three endocytic ligands internalized by receptor-mediated endocytosis: anti-dinitrophenol mouse IgG and dinitrophenol-derivatized beta-glucuronidase, ligands for the mannose receptor, and aggregated rabbit anti-mouse IgG, a ligand for the macrophage Fc receptor.  相似文献   

16.
The vacuolar apical compartment (VAC) is an organelle found in Madin-Darby canine kidney (MDCK) cells with incomplete intercellular contacts by incubation in 5 microM Ca++ and in cells without contacts (single cells in subconfluent culture); characteristically, it displays apical biochemical markers and microvilli and excludes basolateral markers (Vega-Salas, D. E., P. J. I. Salas, and E. Rodriguez-Boulan. 1987. J. Cell Biol. 104:1249-1259). The apical surface of cells kept under these culture conditions is immature, with reduced numbers of microvilli and decreased levels of an apical biochemical marker (184 kD), which is, however, still highly polarized (Vega-Salas, D. E., P. J. I. Salas, D. Gundersen, and E. Rodriguez-Boulan. 1987. J. Cell Biol. 104:905-916). We describe here the morphological stages of VAC exocytosis which ultimately lead to the establishment of a differentiated apical domain. Addition of 1.8 mM Ca++ to monolayers developed in 5 microM Ca++ causes the rapid (20-40 min) fusion of VACs with the plasma membrane and their accessibility to external antibodies, as demonstrated by immunofluorescence, immunoperoxidase EM, and RIA with antibodies against the 184-kD apical plasma membrane marker. Exocytosis occurs towards areas of cell-cell contact in the developing lateral surface where they form intercellular pockets; fusion images are always observed immediately adjacent to the incomplete junctional bands detected by the ZO-1 antibody (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766). Blocks of newly incorporated VAC microvilli and 184-kD protein progressively move from intercellular ("primitive" lateral) spaces towards the microvilli-poor free cell surface. The definitive lateral domain is sealed behind these blocks by the growing tight junctional fence. These results demonstrate a fundamental role of cell-cell contact-mediated VAC exocytosis in the establishment of epithelial surface polarity. Because isolated stages (intercellular pockets) of the stereotyped sequence of events triggered by the establishment of intercellular contacts in MDCK cells have been reported during normal differentiation of intestine epithelium (Colony, P. C., and M. R. Neutra. 1983. Dev. Biol. 97:349-363), we speculate that the mechanism we describe here plays an important role in the establishment of epithelial cell polarity in vivo.  相似文献   

17.
D A Stenger  K V Kaler    S W Hui 《Biophysical journal》1991,59(5):1074-1084
The contributions of pulse-induced dipole-dipole interaction to the total pressure acting normal to the membranes of closely positioned pronase treated human erythrocytes during electrofusion was calculated. The total pressure was modeled as the sum of pressures arising from membrane potential and dipole-dipole attraction opposed by interbilayer repulsion. The dipole-dipole interaction was derived from the experimentally obtained cell polarizability. The threshold electric field amplitude necessary for fusion of pronase-treated human erythrocytes was experimentally obtained at various combinations of pulse duration, frequency, and the conductivity of the external medium. The theoretical values of the critical electric field amplitude compared favorably to the experimentally obtained threshold field amplitudes. Fusion by dc pulses may be primarily attributed to attainment of sufficiently high membrane potentials. However, with decreasing external conductivity and increasing sinusoidal pulse frequency (100 kHz-2.5 MHz), the induced dipole-dipole interactions provide the principal driving force for membrane failure leading to fusion.  相似文献   

18.
19.
We have identified a 25-kD cytosolic yeast protein that mediates a late, prefusion step in transport of proteins between compartments of the Golgi apparatus. Activity was followed using the previously described cell free assay for protein transport between Golgi compartments as modified to detect late acting cytosolic factors (Wattenberg, B. W., and J. E. Rothman. 1986. J. Biol. Chem. 263:2208-2213). In the reaction mediated by this protein, transport vesicles that have become attached to the target membrane during a preincubation are processed in preparation for fusion. The ultimate fusion event does not require the addition of cytosolic proteins (Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. 1984. Cell. 39:525-536). Although isolated from yeast, this protein has activity when assayed with mammalian membranes. This protein has been enriched over 150-fold from yeast cytosol, albeit not to complete homogeneity. The identity of a 25-kD polypeptide as the active component was confirmed by raising monoclonal antibodies to it. These antibodies were found to specifically inhibit transport activity. Because this is a protein operating in prefusion, it has been abbreviated POP.  相似文献   

20.
Cell electrofusion is a safe, non-viral and non-chemical method that can be used for preparing hybrid cells for human therapy. Electrofusion involves application of short high-voltage electric pulses to cells that are in close contact. Application of short, high-voltage electric pulses causes destabilization of cell plasma membranes. Destabilized membranes are more permeable for different molecules and also prone to fusion with any neighboring destabilized membranes. Electrofusion is thus a convenient method to achieve a non-specific fusion of very different cells in vitro. In order to obtain fusion, cell membranes, destabilized by electric field, must be in a close contact to allow merging of their lipid bilayers and consequently their cytoplasm. In this video, we demonstrate efficient electrofusion of cells in vitro by means of modified adherence method. In this method, cells are allowed to attach only slightly to the surface of the well, so that medium can be exchanged and cells still preserve their spherical shape. Fusion visualization is assessed by pre-labeling of the cytoplasm of cells with different fluorescent cell tracker dyes; half of the cells are labeled with orange CMRA and the other half with green CMFDA. Fusion yield is determined as the number of dually fluorescent cells divided with the number of all cells multiplied by two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号