首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solvent kinetic isotope effect study of electron transfer in two complex flavoproteins, xanthine oxidase and trimethylamine dehydrogenase, has been undertaken. With xanthine oxidase, electron transfer from the molybdenum center to the proximal iron-sulfur center of the enzyme occurs with a modest solvent kinetic isotope effect of 2.2, indicating that electron transfer out of the molybdenum center is at least partially coupled to deprotonation of the Mo(V) donor. A Marcus-type analysis yields a decay factor, beta, of 1.4 A(-1), indicating that, although the pyranopterin cofactor of the molybdenum center forms a nearly contiguous covalent bridge from the molybdenum atom to the proximal iron-sulfur center of the enzyme, it affords no exceptionally effective mode of electron transfer between the two centers. For trimethylamine dehydrogenase, rates of electron equilibration between the flavin and iron-sulfur center of the one-electron reduced enzyme have been determined, complementing previous studies of electron transfer in the two-electron reduced form. The results indicate a substantial solvent kinetic isotope effect of 10 +/- 4, consistent with a model for electron transfer that involves discrete protonation/deprotonation and electron transfer steps. This contrasts to the behavior seen with xanthine oxidase, and the basis for this difference is discussed in the context of the structures for the two proteins and the ionization properties of their flavin sites. With xanthine oxidase, a rationale is presented as to why it is desirable in certain cases that the physical layout of redox-active sites not be uniformly increasing in reduction potential in the direction of physiological electron transfer.  相似文献   

2.
The kinetics of electron transfer within the molybdoflavoenzyme xanthine oxidase has been investigated using the technique of pulse radiolysis. Subsequent to one-electron reduction of native enzyme at 20 degrees C in 20 mM pyrophosphate buffer, pH 8.5, using the CO-.2 species as reductant, a spectral change is observed having a rate constant of approximately 290 s-1. From its wavelength dependence, this spectral change is assigned to the transfer of an electron from flavin semiquinone (formed on reaction with the CO2-. species) to one of the iron-sulfur centers of the enzyme in an intramolecular equilibration process. The value for this rate constant agrees well with the 330 s-1 observed in previous stopped-flow pH-jump experiments carried out at 25 degrees C (Hille, R., and Massey, V. (1986) J. Biol. Chem. 261, 1241-1247). Experimental results with fully reduced enzyme reacting with the radiolytically generated N.3 species also support the conclusion that the equilibration of reducing equivalents among the oxidation-reduction centers of xanthine oxidase is a rapid process. Evidence is also found that xanthine oxidase possesses an unusually reactive disulfide bond that is reduced rapidly by radiolytically generated radicals. The ramifications of the present results with regard to the interpretation of experiments involving chemically reactive radical species, generated either by photolysis or radiolysis, are discussed.  相似文献   

3.
R Hille 《Biochemistry》1991,30(35):8522-8529
Solvent kinetic isotope effect studies of electron transfer within xanthine oxidase have been performed, using a stopped-flow pH-jump technique to perturb the distribution of reducing equivalents within partially reduced enzyme and follow the kinetics of reequilibration spectrophotometrically. It is found that the rate constant for electron transfer between the flavin and one of the iron-sulfur centers of the enzyme observed when the pH is jumped from 10 to 6 decreases from 173 to 25 s-1 on going from H2O to D2O, giving an observed solvent kinetic isotope effect of 6.9. An effect of comparable magnitude is observed for the pH jump in the opposite direction, the rate constant decreasing from 395 to 56 s-1. The solvent kinetic isotope effect on kobs is found to be directly proportional to the mole fraction of D2O in the reaction mix for the pH jump in each direction, consistent with the effect arising from a single exchangeable proton. Calculations of the microscopic rate constants for electron transfer between the flavin and the iron-sulfur center indicate that the intrinsic solvent kinetic isotope effect for electron transfer from the neutral flavin semiquinone to the iron-sulfur center designated Fe/S I is substantially greater than for electron transfer in the opposite direction and that the observed solvent kinetic isotope effect is a weighted averaged of the intrinsic isotope effects for the forward and reverse microscopic electron-transfer steps.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) were inactivated by incubation with nitric oxide under anaerobic conditions in the presence of xanthine or allopurinol. The inactivation was not pronounced in the absence of an electron donor, indicating that only the reduced enzyme form was inactivated by nitric oxide. The second-order rate constant of the reaction between reduced XO and nitric oxide was determined to be 14.8 +/- 1.4 M-1 s-1 at 25 degrees C. The inactivated enzymes lacked xanthine-dichlorophenolindophenol activity, and the oxypurinol-bound form of XO was partly protected from the inactivation. The absorption spectrum of the inactivated enzyme was not markedly different from that of the normal enzyme. The flavin and iron-sulfur centers of inactivated XO were reduced by dithionite and reoxidized readily with oxygen, and inactivated XDH retained electron transfer activities from NADH to electron acceptors, consistent with the conclusion that the flavin and iron-sulfur centers of the inactivated enzyme both remained intact. Inactivated XO reduced with 6-methylpurine showed no "very rapid" spectra, indicating that the molybdopterin moiety was damaged. Furthermore, inactivated XO reduced by dithionite showed the same slow Mo(V) spectrum as that derived from the desulfo-type enzyme. On the other hand, inactivated XO reduced by dithionite exhibited the same signals for iron-sulfur centers as the normal enzyme. Inactivated XO recovered its activity in the presence of a sulfide-generating system. It is concluded that nitric oxide reacts with an essential sulfur of the reduced molybdenum center of XO and XDH to produce desulfo-type inactive enzymes.  相似文献   

5.
The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase   总被引:1,自引:0,他引:1  
Xanthine oxidoreductases (XOR), xanthine dehydrogenase (XDH, EC1.1.1.204) and xanthine oxidase (XO, EC1.2.3.2), are the best-studied molybdenum-containing iron-sulfur flavoproteins. The mammalian enzymes exist originally as the dehydrogenase form (XDH) but can be converted to the oxidase form (XO) either reversibly by oxidation of sulfhydryl residues of the protein molecule or irreversibly by proteolysis. The active form of the enzyme is a homodimer of molecular mass 290 kDa. Each subunit contains one molybdopterin group, two non-identical [2Fe-2S] centers, and one flavin adenine dinucleotide (FAD) cofactor. This review focuses mainly on the role of the two iron-sulfur centers in catalysis, as recently elucidated by means of X-ray crystal structure and site-directed mutagenesis studies. The arrangements of cofactors indicate that the two iron-sulfur centers provide an electron transfer pathway from molybdenum to FAD. However, kinetic and thermodynamic studies suggest that these two iron-sulfur centers have roles not only in the pathway of electron flow, but also as an electron sink to provide electrons to the FAD center so that the reactivity of FAD with the electron acceptor substrate might be thermodynamically controlled by way of one-electron-reduced or fully reduced state.  相似文献   

6.
R K Hughes 《Biochemistry》1992,31(12):3073-3083
Xanthine dehydrogenase has been purified to homogeneity by conventional procedures from the wild-type strain of the fruit fly Drosophila melanogaster, as well as from a rosy mutant strain (E89----K, ry5231) known to carry a point mutation in the iron-sulfur domain of the enzyme. The wild-type enzyme had all the specific properties that are peculiar to the molybdenum-containing hydroxylases. It had normal contents of molybdenum, the pterin molybdenum cofactor, FAD, and iron-sulfur centers. EPR studies showed its molybdenum center to be quite indistinguishable from that of milk xanthine oxidase. As isolated, only about 10% of the enzyme was present in the functional form, with most or all of the remainder as the inactive desulfo form. It is suggested that this may be present in vivo. Extensive proteolysis accompanied by the development of oxidase activity took place during isolation, but dehydrogenase activity was retained. EPR properties of the reduced iron-sulfur centers, Fe-SI and Fe-SII, in the enzyme are very similar to those of the corresponding centers in milk xanthine oxidase. The E89----K mutant enzyme variant was in all respects closely similar to the wild-type enzyme, with the exception that it lacked both of the iron-sulfur centers. This was established both by its having the absorption spectrum of a simple flavoprotein and by the complete absence of EPR signals characteristic of iron-sulfur centers in the reduced enzyme. Despite the lack of iron-sulfur centers, the mutant enzyme had xanthine:NAD+ oxidoreductase activity indistinguishable from that of the wild-type enzyme. Stopped-flow measurements indicated that, as for the wild-type enzyme, reduction of the mutant enzyme was rate-limiting in turnover. Thus, the iron-sulfur centers appear irrelevant to the normal turnover of the wild-type enzyme with these substrates. However, activity to certain oxidizing substrates, particularly phenazine methosulfate, is abolished in the mutant enzyme variant. This is one of the first examples of deletion by genetic means of iron-sulfur centers from an iron-sulfur protein. The relevance of our findings both to the roles of iron-sulfur centers in other systems and to the nature of the oxidizing substrate for the Drosophila enzyme in vivo are briefly discussed.  相似文献   

7.
The rate at which reducing equivalents equilibrate among the several oxidation-reduction active sites in xanthine oxidase has been investigated using a pH-jump technique in which partially reduced enzyme in dilute buffer is mixed with concentrated anaerobic buffer at a different pH in a conventional stopped flow apparatus. It is found that the rate constant associated with the observed spectral change varies with pH, doubling from 155 s-1 at pH 6 to 330 s-1 at pH 8.5, but is always found to be approximately 10-fold greater than kcat at the same pH. The observation of fast rates for the equilibration of reducing equivalents within xanthine oxidase is consistent with a great deal of indirect evidence from conventional kinetic studies of both the oxidative and reductive half-reactions of xanthine oxidase and lends support to the rapid equilibrium model that has been proposed for the oxidation-reduction interactions of the several centers in xanthine oxidase (Olson, J. S., Ballou, D. P., Palmer, G., and Massey, V. (1974) J. Biol. Chem. 249, 4363-4382). The present conclusions are in conflict, however, with the interpretation of recent flash photolysis experiments with xanthine oxidase (Battacharyya, A., Tollin, G., Davis, M. D., and Edmondson, D. E. (1983) Biochemistry 22, 5270-5279). Possible sources for the apparent inconsistencies between the flash photolysis results and those of the present experiments are discussed.  相似文献   

8.
Samples of rapidly frozen xanthine oxidase reduced with xanthine have been warmed between ?78°C and ?50°C. EPR measurements of oxidation — reduction processes at these temperatures have revealed a new EPR signal which appears to be a disulfide radical involved in xanthine hydrolysis. Other EPR signal changes indicate that at pH 6.5 enzyme reduction by xanthine is rate limiting and at pH 8.5 or higher that some step following enzyme reduction is rate limiting. Evidence is presented for the lack of anaerobicity in most rapid freeze apparatus, the oxygen entering the samples during rapid freeze quenching in isopentane.  相似文献   

9.
The optical electron paramagnetic resonance and M?ssbauer spectral properties of the two iron-sulfur centers present in milk xanthine oxidase have been reexamined. It is found in the case of the optical spectral change observed on reduction of the enzyme that the two centers contribute approximately equally, with a ratio of spectral contributions for Fe/S I and Fe/S II of 0.55:0.45. This conclusion is based both on the behavior of the spectral change at wavelengths where only the two iron-sulfur centers contribute to the spectral change (under experimental conditions minimizing the effect of flavin semiquinone) during reductive titrations and a comparison of the spectra of 1- and 2-electron reduced enzyme under different conditions. This very similar spectral weighting for the two centers applies throughout the visible region. In the case of the EPR spectra, it is found from computer simulation of the signals observed under nonsaturating conditions that iron-sulfur center II exhibits g values of 1.902, 1.991, and 2.110 and does not exhibit two g values above that for the free electron, as has been reported (Lowe, J., Lynden-Bell, R.M., and Bray, R. C. (1972) Biochem. J. 130, 239-249). The g values for iron-sulfur center I obtained from the simulations are 1.894, 1.932, and 2.022. Finally, M?ssbauer spectra of xanthine oxidase have been obtained, and it is found that while the two iron-sulfur centers are indistinguishable in the oxidized state, the ferrous iron in one of the reduced iron-sulfur centers exhibits an unusually large quadrupole coupling.  相似文献   

10.
Product formation during the oxidation of xanthine oxidase has been examined directly by using cytochrome c peroxidase as a trapping agent for hydrogen peroxide and the reduction of cytochrome c as a measure of superoxide formation. When fully reduced enzyme is mixed with high concentrations of oxygen, 2 molecules of H2O2/flavin are produced rapidly, while 1 molecule of O2-/flavin is produced rapidly and another produced much more slowly. Time courses for superoxide formation and those for the absorbance changes due to enzyme oxidation were fitted successfully to the mechanism proposed earlier (Olson, J. S., Ballou, D. P., Palmer, G., and Massey, V. (1974) J. Biol. Chem. 249, 4363-4382). In this scheme, each oxidative step is initiated by the very rapid and reversible formation of an oxygen.FADH2 complex (the apparent KD = 2.2 X 10(-4) M at 20 degrees C, pH 8.3). In the cases of 6- and 4-electron-reduced enzyme, 2 electrons are transferred rapidly (ke = 60 s-1) to generate hydrogen peroxide and partially oxidized xanthine oxidase. In the case of the 2-electron-reduced enzyme, only 1 electron is transferred rapidly and superoxide is produced. The remaining electron remains in the iron-sulfur centers and is removed slowly by a second order process (ks = 1 X 10(4) M-1 s-1). When the pH is decreased from 9.9 to 6.2, both the apparent KD for oxygen binding and the rapid rate of electron transfer are decreased about 20-fold. This result is suggestive of uncompetitive inhibition and implies that proton binding to the enzyme-flavin active site affects primarily the rate of electron transfer, not the formation of the initial oxygen complex.  相似文献   

11.
A comparative study using laser flash photolysis of the kinetics of reduction and intramolecular electron transfer among the redox centers of chicken liver xanthine dehydrogenase and of bovine milk xanthine oxidase is described. The photogenerated reductant, 5-deazariboflavin semiquinone, reacts with the dehydrogenase (presumably at the Mo center) in a second-order manner, with a rate constant (k = 6 x 10(7) M-1 s-1) similar to that observed with the oxidase [k = 3 x 10(7) M-1 s-1; Bhattacharyya et al. (1983) Biochemistry 22, 5270-5279]. In the case of the dehydrogenase, neutral FAD radical formation is found to occur by intramolecular electron transfer (kobs = 1600 s-1), presumably from the Mo center, whereas with the oxidase the flavin radical forms via a bimolecular process involving direct reduction by the deazaflavin semiquinone (k = 2 x 10(8) M-1 s-1). Biphasic rates of Fe/S center reduction are observed with both enzymes, which are due to intramolecular electron transfer (kobs approximately 100 s-1 and kobs = 8-11 s-1). Intramolecular oxidation of the FAD radical in each enzyme occurs with a rate constant comparable to that of the rapid phase of Fe/S center reduction. The methylviologen radical, generated by the reaction of the oxidized viologen with 5-deazariboflavin semiquinone, reacts with both the dehydrogenase and the oxidase in a second-order manner (k = 7 x 10(5) M-1 s-1 and 4 x 10(6) M-1 s-1, respectively). Alkylation of the FAD centers results in substantial alterations in the kinetics of the reaction of the viologen radical with the oxidase but not with the dehydrogenase. These results suggest that the viologen radical reacts directly with the FAD center in the oxidase but not in the dehydrogenase, as is the case with the deazaflavin radical. The data support the conclusion that the environments of the FAD centers differ in the two enzymes, which is in accord with other studies addressing this problem from a different perspective [Massey et al. (1989) J. Biol. Chem. 264, 10567-10573]. In contrast, the rate constants for intramolecular electron transfer among the Mo, FAD, and Fe/S centers in the two enzymes (where they can be determined) are quite similar.  相似文献   

12.
Trimethylamine dehydrogenase from the pseudomonad Methylophilus methylotrophus has been examined using the technique of pulse radiolysis to rapidly introduce a single reducing equivalent into the enzyme. Using enzyme that has had its iron-sulfur center rendered redox-inert by prior reaction with ferricenium hexafluorophosphate, we determined the spectral change associated with formation of both the anionic and neutral forms that were generated at high and low pH, respectively, of the unique 6-cysteinyl-FMN of the enzyme. With native enzyme, electron transfer was observed within the radiolytically generated one-electron reduced enzyme but only at low pH (6.0). The kinetics and thermodynamics of this electron transfer in one-electron reduced enzyme may be compared with that studied previously in the two-electron reduced enzyme. In contrast to previous studies with two-electron reduced enzyme in which a pK(a) of approximately 8 was determined for the flavin semiquinone, in the one-electron reduced enzyme the semiquinone was not substantially protonated even at pH 6. 0. These results indicate that reduction of the iron-sulfur center of the enzyme significantly decreases the pK(a) of the flavin semiquinone of the active site. This provides further evidence, in conjunction with the strong magnetic interaction known to exist between the centers in the two-electron reduced enzyme, that the two redox-active centers in trimethylamine dehydrogenase are in intimate contact with one another in the active site of the enzyme.  相似文献   

13.
Xanthine oxidase, an iron-sulfur molybdenum flavoprotein known to generate superoxide radical, was demonstrated in several bovine tissues. The enzyme (155 kd polypeptide) was purified from bovine milk lipid globules and antibodies were raised that allowed precipitation of the enzyme without inactivation of enzymatic activity. By immunolocalization techniques at light and electron microscope levels, the antigen was found in milk-secreting epithelial cells but not in epithelial cells of several other tissues. In a number of tissues, including mammary gland, liver, heart, lung and intestine, antibodies to xanthine oxidase stained only endothelial cells of capillaries, including sinusoids, but not endothelia of larger blood vessels and endocard. In both milk-secreting epithelial and capillary endothelial cells, xanthine oxidase was distributed throughout the cytoplasm. Results from biochemical and immunological studies suggest that xanthine oxidase is similar in the various tissues examined and may serve similar redox functions.  相似文献   

14.
Chicken liver xanthine dehydrogenase, like other xanthine-oxidizing enzymes, is a dimer of Mr = 150,000 subunits. Each subunit contains one molybdenum, one FAD, and two distinct Fe2S2 centers. Treatment with a number of proteases shows that the native enzyme subunit is cleaved at three distinct sites. However, the cleavage products can be separated only under denaturing conditions. Prolonged treatment with subtilisin at pH 10.1 has permitted the isolation of an Mr = 65,000 catalytically active fragment that is devoid of FAD but which contains the molybdenum and both types of iron-sulfur center. A model of the domain structure of the native enzyme is proposed.  相似文献   

15.
R Cammack  J H Weiner 《Biochemistry》1990,29(36):8410-8416
The electron transfer centers in dimethyl sulfoxide reductase were examined by EPR spectroscopy in membranes of the overproducing Escherichia coli strain HB101/pDMS159, and in purified enzyme. Iron-sulfur clusters of the [4Fe-4S] type and a molybdenum center were detected in the protein, which comprises three different subunits: DmsA, -B, and -C. The intensity of the reduced iron-sulfur clusters corresponded to 3.82 +/- 0.5 spins per molecule. The dithionite-reduced clusters were reoxidized by DMSO or TMAO. The enzyme, as prepared, showed a spectrum of Mo(V), which resembles the high-pH form of E. coli nitrate reductase. The Mo(V) detected by EPR was absent from a mutant which does not assemble the molybdenum cofactor. In these cases, the levels of EPR-detectable iron-sulfur clusters in the cells were increased. Extracts from HB101/pDMS159 enriched in DmsA showed more Mo(V) signals and considerably less iron-sulfur. These results are in agreement with predictions from amino acid sequence comparisons, that the molybdenum center is located in DmsA, while four iron-sulfur clusters are in DmsB. The midpoint potentials of the molybdenum and iron-sulfur clusters in the various preparations were determined by mediator titrations. The iron-sulfur signals could be best fitted by four clusters, with midpoint potentials spread between -50 and -330 mV. The midpoint potentials of the iron-sulfur clusters and Mo(V) species were pH dependent. In addition, all potentials became less negative in the presence of the detergent Triton X-100. Observation of relaxation enhancement of the Mo(V) species by the reduced [4Fe-4S] clusters indicated that the centers are in proximity within the protein.  相似文献   

16.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

17.
A J Moody  U Brandt  P R Rich 《FEBS letters》1991,293(1-2):101-105
Evidence is presented that single electron reduction is sufficient for rapid electron transfer (k greater than 20 s-1 at pH 8.0 in 0.43 M potassium EDTA) between haem a/CuA and the binuclear centre in 'fast' oxidase, whereas in 'slow' oxidase intramolecular electron transfer is slow even when both CuA and haem a are reduced (k congruent to 0.01 s-1). However, while a single electron can equilibrate rapidly between CuA, haem a and CuB in 'fast' oxidase, it seems that equilibration with haem a3 is relatively slow (k congruent to 2 s-1). Electron transfer between cytochrome c and CuA/haem a is similar for both types of enzyme (k congruent to 2.4 x 10(5) M-1.s-1).  相似文献   

18.
Electron transfer within Escherichia coli succinate:ubiquinone oxidoreductase has been examined by the pulse radiolysis technique using spectrophotometric detection. Electrons have been introduced into the protein by the bimolecular reaction with quantified concentrations of the low potential N-methylnicotinamide radical at a rate constant of 7 x 10(8) M(-1) s(-1). Two redox-active centers in the protein are initially reduced, assigned as the high potential [3Fe-4S] center and the bound ubiquinone, followed by intramolecular equilibration with the b heme in both cases. Electron equilibration at 25 degrees C from the ubisemiquinone proceeds with an observed rate constant of 7,200 s(-1) and from the more distant [3Fe-4S] reduced center at a rate constant of 1,200 s(-1). Temperature dependence studies have revealed that both reactions have large free energies of activation, with deltaG(double dagger) values of +0.53 and +0.58 eV, respectively. Cumulative spectral changes, as well as accompanying decreases in the rates of intramolecular electron transfer, observed upon adding electrons to progressively reduced protein, indicate that 4 electrons must be introduced into the protein before the heme center is fully reduced. Overall, evidence is presented that the heme, far from being a bystander in the efficient transfer of reducing equivalents from succinate to the ubiquinone via the flavin-Fe/S centers, plays a pivotal role in providing a lower energy pathway for the transfer of an electron from the high potential [3Fe-4S] center to ubiquinone.  相似文献   

19.
Sulfite oxidase purified from livers of tungsten-treated rats has been used for EPR studies of tungsten substituted at the molybdenum site of the enzyme in a fraction of the molecules. The EPR signal of W(V) in sulfite oxidase is quite similar to that of Mo(V) in its line shape and in its sensitivity to the presence of anions such as phosphate and fluoride. Hyperfine interaction with a dissociable proton is also observed in both signals. The pH-dependent alteration in line shape exhibited by the Mo(V) EPR signal of the rat liver enzyme. Incomplete reduction of the tungsten center at pH 9 is indicated by attenuated signal intensity at this pH. The W(V) signal has g values lower than those of the Mo(V) signal, has a much broader resonance envelope, and is much less readily saturated by increasing microwave power. Kinetic studies on the reduction of the heme and tungsten centers of sulfite oxidase have shown that reduction of de-molybdo forms of sulfite oxidase by sulfite is catalyzed by the residual traces of native molybdenum-containing molecules. Reduction is accomplished by electron transfer involving intermolecular heme-heme interaction. The W(V) signal is generated only after all the heme centers are reduced. The rate and extent of heme reduction at pH 9 are the same as at pH 7. Studies on the reoxidation of W(V) and reduced heme by O2 and by cytochrome c suggest that the cytochrome b5 of sulfite oxidase is the site of electron transfer to cytochrome c, whereas oxidase activity is the property of the molybdenum center. It appears that the tungsten center in sulfite oxidase is incapable of oxidizing sulfite.  相似文献   

20.
Laser flash photolysis has been used to investigate the kinetics of reduction of trimethylamine dehydrogenase by substoichiometric amounts of 5-deazariboflavin semiquinone, and the subsequent intramolecular electron transfer from the FMN cofactor to the Fe4S4 center. The initial reduction event followed second-order kinetics (k = 1.0 x 10(8) M-1 s-1 at pH 7.0 and 6.4 x 10(7) M-1 s-1 at pH 8.5) and resulted in the formation of the neutral FMN semiquinone and the reduced iron-sulfur cluster (in a ratio of approximately 1:3). Following this, a slower, protein concentration independent (and thus intramolecular) electron transfer was observed corresponding to FMN semiquinone oxidation and iron-sulfur cluster reduction (k = 62 s-1 at pH 7.0 and 30 s-1 at pH 8.5). The addition of the inhibitor tetramethylammonium chloride to the reaction mixture had no effect on these kinetic properties, suggesting that this compound exerts its effect on the reduced form of the enzyme. Treatment of the enzyme with phenylhydrazine, which introduces a phenyl group at the 4a-position of the FMN cofactor, decreased both the rate constant for reduction of the protein and the extent of FMN semiquinone production, while increasing the amount of iron-sulfur center reduction, consistent with the results obtained with the native enzyme. Experiments in which the kinetics of reduction of the enzyme were determined during various stages of partial reduction were also consistent with these results, and further indicated that the FMN semiquinone form of the enzyme is more reactive toward the deazariboflavin reductant than is the oxidized FMN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号