首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated 37 radiation-sensitive mutants of the basidiomyceteCoprinus cinereus. Each mutation is recessive, and the collection defines at least ten complementation groups for survival of gamma irradiation. Four complementation groups define the genesrad3, rad9, rad11 andrad12, which are required both for survival of gamma irradiation and for meiosis. Mutants in each of these four groups fail to complete meiosis and produce mushrooms with greatly reduced numbers of viable spores. Propidium iodide staining of meiotic nuclei showed a characteristic terminal appearance for each mutant: few cells of any of the meiotic mutants progress beyond prophase I, and both condensation and fragmentation or dispersal of meiotic chromatin are frequently observed. Scanning electron micrographs showed that the meiotic mutants make varying numbers (0–6) of basidiospore initials and that few of these initials develop into mature spores. When initials are present they are always symmetrically arrayed on the basidium, regardless of initial number. In quantitative measurements of gamma ray sensitivity, double mutants of every tested combination ofrad3, rad9, rad11 andrad12 consistently showed the same gamma ray sensitivity as the more sensitive single mutant parent of the cross. Therefore, these four genes are in the same pathway for the repair of gamma radiation damage, and this pathway also represents one or more functions essential for meiosis.  相似文献   

2.
We have utilized spreading methods as well as serial sectioning three-dimensional reconstruction to examine meiotic chromosome behavior in cells homozygous for the rad3-1 mutation in Coprinus cinereus. Comparison of 42 wild-type nuclei that had been spread, stained with silver, and viewed by electron microscopy with 30 mutant nuclei treated in the same manner revealed several defects in the mutant. Axial core formation was defective in the mutant, although limited side-by-side association of axial cores was observed. To detect any differences in three-dimensional architecture between the wild-type and mutant nuclei, we reconstructed three of the former and six of the latter after serial sectioning. It was not possible to trace the expected number of axial cores from section to section in the mutant, although some tripartite synaptonemal complex was observed. Many axial core ends failed to terminate in the nuclear envelope in the mutant. This spectrum of defects (incomplete axial core assembly with some tripartite synaptonemal complex formation) had not been observed previously in either C. cinereus or other systems. We conclude that this combination of spreading and sectioning methods is very useful for analysis of meiotic mutants. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Checkpoint gene function prevents meiotic progression when recombination is blocked by mutations in the recA homologue DMC1. Bypass of dmc1 arrest by mutation of the DNA damage checkpoint genes MEC1, RAD17, or RAD24 results in a dramatic loss of spore viability, suggesting that these genes play an important role in monitoring the progression of recombination. We show here that the role of mitotic checkpoint genes in meiosis is not limited to maintaining arrest in abnormal meioses; mec1-1, rad24, and rad17 single mutants have additional meiotic defects. All three mutants display Zip1 polycomplexes in two- to threefold more nuclei than observed in wild-type controls, suggesting that synapsis may be aberrant. Additionally, all three mutants exhibit elevated levels of ectopic recombination in a novel physical assay. rad17 mutants also alter the fraction of recombination events that are accompanied by an exchange of flanking markers. Crossovers are associated with up to 90% of recombination events for one pair of alleles in rad17, as compared with 65% in wild type. Meiotic progression is not required to allow ectopic recombination in rad17 mutants, as it still occurs at elevated levels in ndt80 mutants that arrest in prophase regardless of checkpoint signaling. These observations support the suggestion that MEC1, RAD17, and RAD24, in addition to their proposed monitoring function, act to promote normal meiotic recombination.  相似文献   

4.
The Mre11/Rad50/Nbs1 (MRN) complex is required for eukaryotic DNA double-strand break (DSB) repair and meiotic recombination. We cloned the Coprinus cinereus rad50 gene and showed that it corresponds to the complementation group previously named rad12, identified mutations in 15 rad50 alleles, and mapped two of the mutations onto molecular models of Rad50 structure. We found that C. cinereus rad50 and mre11 mutants arrest in meiosis and that this arrest is Spo11 dependent. In addition, some rad50 alleles form inducible, Spo11-dependent Rad51 foci and therefore must be forming meiotic DSBs. Thus, we think it likely that arrest in both mre11-1 and the collection of rad50 mutants is the result of unrepaired or improperly processed DSBs in the genome and that Rad50 and Mre11 are dispensable in C. cinereus for DSB formation, but required for appropriate DSB processing. We found that the ability of rad50 mutant strains to form Rad51 foci correlates with their ability to promote synaptonemal complex formation and with levels of stable meiotic pairing and that partial pairing, recombination initiation, and synapsis occur in the absence of wild-type Rad50 catalytic domains. Examination of single- and double-mutant strains showed that a spo11 mutation that prevents DSB formation enhances axial element (AE) formation for rad50-4, an allele predicted to encode a protein with intact hook region and hook-proximal coiled coils, but not for rad50-1, an allele predicted to encode a severely truncated protein, or for rad50-5, which encodes a protein whose hook-proximal coiled-coil region is disrupted. Therefore, Rad50 has an essential structural role in the formation of AEs, separate from the DSB-processing activity of the MRN complex.  相似文献   

5.
Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae promotes homologous pairing of DNA in vitro and sep1 mutants display pleiotropic phenotypes in both vegetative and meiotic cells. In this study, we examined in detail the ability of the sep1 mutant to progress through meiosis I prophase and to undergo meiotic recombination. In meiotic return-to-growth experiments, commitment to meiotic recombination began at the same time in wild type and mutant; however, recombinants accumulated at decreased rates in the mutant. Gene conversion eventually reached nearly wild-type levels, whereas crossing over reached 15-50% of wild type. In an assay of intrachromosomal pop-out recombination, the sep1, dmc1 and rad51 single mutations had only small effects; however, pop-out recombination was virtually eliminated in the sep1 dmc1 and sep1 rad51 double mutants, providing evidence for multiple recombination pathways. Analysis of meiotic recombination intermediates indicates that the sep1 mutant is deficient in meiotic double-strand break repair. In a physical assay, the formation of mature reciprocal recombinants in the sep1 mutant was delayed relative to wild type and ultimately reached only 50% of the wild-type level. Electron microscopic analysis of meiotic nuclear spreads indicates that the sep1δ mutant arrests in pachytene, with apparently normal synaptonemal complex. This arrest is RAD9-independent. We hypothesize that the Sep1 protein participates directly in meiotic recombination and that other strand exchange enzymes, acting in parallel recombination pathways, are able to substitute partially for the absence of the Sep1 protein.  相似文献   

6.
We have isolated 37 radiation-sensitive mutants of the basidiomyceteCoprinus cinereus. Each mutation is recessive, and the collection defines at least ten complementation groups for survival of gamma irradiation. Four complementation groups define the genesrad3, rad9, rad11 andrad12, which are required both for survival of gamma irradiation and for meiosis. Mutants in each of these four groups fail to complete meiosis and produce mushrooms with greatly reduced numbers of viable spores. Propidium iodide staining of meiotic nuclei showed a characteristic terminal appearance for each mutant: few cells of any of the meiotic mutants progress beyond prophase I, and both condensation and fragmentation or dispersal of meiotic chromatin are frequently observed. Scanning electron micrographs showed that the meiotic mutants make varying numbers (0–6) of basidiospore initials and that few of these initials develop into mature spores. When initials are present they are always symmetrically arrayed on the basidium, regardless of initial number. In quantitative measurements of gamma ray sensitivity, double mutants of every tested combination ofrad3, rad9, rad11 andrad12 consistently showed the same gamma ray sensitivity as the more sensitive single mutant parent of the cross. Therefore, these four genes are in the same pathway for the repair of gamma radiation damage, and this pathway also represents one or more functions essential for meiosis.  相似文献   

7.
Mer3 is an evolutionarily conserved DNA helicase that has crucial roles in meiotic recombination and crossover formation. We have identified the MER3 homolog in Coprinus cinereus (Ccmer3) and show that it is expressed in zygotene and pachytene meiocytes. Immunostaining analysis indicated that CcMer3 was localized on chromosomes at zygotene and pachytene and CcMer3 foci were more frequent on paired than unpaired chromosomes. We generated a C. cinereus mer3 mutant (#1) and found that it showed abnormal meiosis progression and underwent apoptosis after prophase I. Basidiospore production in #1 was reduced to 0.8% of the wild-type level; the spores showed slower germination at 25°C but were similar to the wild type at 37°C. Electron microscopic analysis of chromosome spreads revealed that axial elements were formed in the mutant but that synapsis was defective, resulting in a reduction in spore production. Our results demonstrate that CcMer3 is required for synaptonemal complex formation after axial elements align and is thus essential for homologous synapsis.  相似文献   

8.
M. E. Zolan  C. J. Tremel    P. J. Pukkila 《Genetics》1988,120(2):379-387
We have isolated four gamma-ray-sensitive mutants of the basidiomycete Coprinus cinereus. When homozygous, two of these (rad 3-1 and rad 9-1) produce fruiting bodies with very few viable basidiospores, the products of meiosis in this organism. A less radiation-sensitive allele of RAD 3, rad 3-2, causes no apparent meiotic defect in homozygous strains. Quantitative measurements of oidial survival of rad 3-1; rad 9-1 double mutants compared to the single mutants indicated that rad 3-1 and rad 9-1 mutants are defective in the same DNA repair pathway. In the few viable basidiospores that are produced by these two strains, essentially normal levels of meiotic recombination can be detected. None of the mutants exhibits increased sensitivity to UV radiation. Cytological examination of meiotic chromosomes from mutant and wild-type fruiting bodies showed that rad 3-1 homozygous strains fail to condense and pair homologous chromosomes during prophase I. Although rad 9-1 strains are successful at chromosome pairing, meiosis is usually not completed in these mutants.  相似文献   

9.
The Mre11-Rad50-Nbs1 (MRN) complex is required for numerous cellular processes that involve interactions with DNA double-strand breaks. For the majority of these processes, the MRN complex is thought to act as a unit, with each protein aiding the activity of the others. We have examined the relationship between Mre11 and Rad50 during meiosis in the basidiomycete Coprinus cinereus (Coprinopsis cinerea), investigating to what extent activities of Mre11 and Rad50 are interdependent. We showed that mre11-1 is epistatic to rad50-1 with respect to the time of meiotic arrest, indicating that Mre11 activity facilitates the diffuse diplotene arrest of rad50 mutants. Anti-Mre11 and anti-Rad50 antibodies were used to examine MRN complex localization in a wild-type strain and in spo11, mre11, and rad50 mutants. In wild type, numbers of Mre11 and Rad50 foci peaked at time points corresponding to leptotene and early zygotene. In the spo11-1 mutant, which is defective in meiotic double-strand break formation, foci accumulated throughout prophase I. Of seven MRN mutants examined, only two rad50 strains exhibited Mre11 and Rad50 foci that localized to chromatin, although Mre11 protein was found in the cell for all of them. Analysis of predicted mutant structures showed that stable localization of Mre11 and Rad50 does not depend upon a wild-type hook-proximal coiled coil, but does require the presence of the Rad50 ATPase/adenylate cyclase domains. We found that Mre11 and Rad50 were interdependent for binding to meiotic chromosomes. However, the majority of foci observed apparently contained only one of the two proteins. Independent Mre11 and Rad50 foci might indicate disassociation of the complex during meiosis or could reflect independent structural roles for the two proteins in meiotic chromatin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
An ultrastructural analysis of three yeast rad 6-1/rad 6-1 diploids on sporulation medium for 0, 6, 10, and 24 h shows that arrest occurs at meiotic prophase. Two strains, CL 139 and PU 6, fail to complete chromosome synapsis based on the continued presence of single chromosomal cores in arrested nuclei. A clone derived from CL 139, however, showed complete pairing as evident from the presence of 17 synaptonemal complexes. All three strains underwent spindle pole body duplication but the poles failed to form a proper metaphase I spindle. A revertant Rad 6+ isolated from CL 139 showed normal chromosome behaviour and normal kinetic functions. It is concluded that the absence of meiotic recombination in some Rad 6 strains may result from asynapsis, but that in other strains (e.g., CL 139s) recombination fails in spite of complete synapsis. In all cases the lack of sporulation is adequately explained by failure of the kinetic apparatus to form a metaphase I spindle.  相似文献   

11.
Qiao H  Offenberg HH  Anderson LK 《Chromosoma》2012,121(3):291-305
In most multicellular eukaryotes, synapsis [synaptonemal complex (SC) formation] between pairs of homologous chromosomes during prophase I of meiosis is closely linked with crossing over. Asynaptic mutants in plants have reduced synapsis and increased univalent frequency, often resulting in genetically unbalanced gametes and reduced fertility. Surprisingly, some asynaptic mutants (like as1 in tomato) have wild-type or increased levels of crossing over. To investigate, we examined SC spreads from as1/as1 microsporocytes using both light and electron microscopic immunolocalization. We observed increased numbers of MLH1 foci (a crossover marker) per unit length of SC in as1 mutants compared to wild-type. These changes are associated with reduced levels of detectable cohesin proteins in the axial and lateral elements (AE/LEs) of SCs, and the AE/LEs of as1 mutants are also significantly longer than those of wild-type or another asynaptic mutant. These results indicate that chromosome axis structure, synapsis, and crossover control are all closely linked in plants.  相似文献   

12.
L. C. Seitz  K. Tang  W. J. Cummings    M. E. Zolan 《Genetics》1996,142(4):1105-1117
The rad9 gene of Coprinus cinereus is essential for the normal completion of meiosis. We examined surface-spread preparations of wild-type and rad9-1 nuclei from the meiotic stages of karyogamy through metaphase I, and we determined the primary sequence, structure, and meiotic expression of the rad9 gene. In wild-type C. cinereus, karyogamy is followed by condensation and alignment of homologous chromosomes. Condensation and axial core development largely precede synapsis, which often initiates at telomeres. A diffuse diplotene phase coincides with dissolution of the synaptonemal complex, and subsequently chromosomes further condense as the cells progress into metaphase I. In contrast, although karyogamy and nucleolar fusion are apparently normal in rad9-1 basidia, only short stretches of synaptonemal complex form. These correlate with stretches of condensed chromatin, mostly at apparent chromosome ends, and regions of presumptive triple synapsis are numerous. rad9-1 basidia enter the diffuse stage of early diplotene, and then 50% of these cells enter metaphase I by the criteria of nucleolar elimination and at least some chromatin condensation. rad9 gene expression is induced after gamma irradiation and during meiosis. The gene has 27 exons and encodes a predicted protein of 2157 amino acids, with a proline-rich amino terminus.  相似文献   

13.
S. Prinz  A. Amon    F. Klein 《Genetics》1997,146(3):781-795
We have designed a screen to isolate mutants defective during a specific part of meiotic prophase I of the yeast Saccharomyces cerevisiae. Genes required for the repair of meiotic double-strand breaks or for the separation of recombined chromosomes are targets of this mutant hunt. The specificity is achieved by selecting for mutants that produce viable spores when recombination and reductional segregation are prevented by mutations in SPO11 and SPO13 genes, but fail to yield viable spores during a normal Rec(+) meiosis. We have identified and characterized a mutation com1-1, which blocks processing of meiotic double-strand breaks and which interferes with synaptonemal complex formation, homologous pairing and, as a consequence, spore viability after induction of meiotic recombination. The COM1/SAE2 gene was cloned by complementation, and the deletion mutant has a phenotype similar to com1-1. com1/sae2 mutants closely resemble the phenotype of rad50S, as assayed by phase-contrast microscopy for spore formation, physical and genetic analysis of recombination, fluorescence in situ hybridization to quantify homologous pairing and immunofluorescence and electron microscopy to determine the capability to synapse axial elements.  相似文献   

14.
Meiosis-specific arrest revealed in DNA topoisomerase II mutants.   总被引:10,自引:2,他引:8       下载免费PDF全文
Although the processes of mitosis and meiosis are similar, there is evidence for fundamental regulatory differences between the two. To examine these differences, we have compared the meiotic phenotype of DNA topoisomerase II mutants with their previously described mitotic phenotype (C. Holm, T. Goto, J. Wang, and D. Botstein, Cell 41:553-563, 1985). top2 mutants in meiosis show no defects in the latest detectable stages of recombination, yet they arrest prior to spindle establishment at meiosis I. Fluorescence and electron microscopy reveal that top2 mutants exhibit wild-type levels of meiotic chromosome condensation and form morphologically normal synaptonemal complex but are delayed in the exit from pachytene. Arrested cells retain viability and form colonies if transferred to mitotic medium. Our results suggest that the top2 meiotic arrest is regulatory in nature. This arrest may have evolved to ensure the resolution of fortuitous tangles between nonhomologous chromosomes.  相似文献   

15.
The meiotic effects of several cell division cycle (cdc) mutations of Saccharomyces cerevisiae have been investigated by electron microscopy and by genetic and biochemical methods. Diploid strains homozygous for cdc mutations known to confer defects on vegetative DNA synthesis were subjected to restrictive conditions during meiosis. Electron microscopy revealed that all four mutants were conditionally arrested in meiosis after duplication of the spindle pole bodies but before spindle formation for the first meiotic division. None of these mutants became committed to recombination or contained synaptonemal complex at the meiotic arrest. — The mutants differed in their ability to undergo premeiotic DNA synthesis under restrictive conditions. Both cdc8 and cdc21, which are defective in the propagation of vegetative DNA synthesis, also failed to undergo premeiotic DNA synthesis. The arrest of these mutants at the stage before meiosis I spindle formation could be attributed to the failure of DNA synthesis because inhibition of synthesis by hydroxyurea also caused arrest at this stage. — Premeiotic DNA synthesis occurred before the arrest of cdc7, which is defective in the initiation of vegetative DNA synthesis, and of cdc2, which synthesizes vegetative DNA but does so defectively. The meiotic arrest of cdc7 homozygotes was partially reversible. Even if further semiconservative DNA replication was inhibited by the addition of hydroxyurea, released cells rapidly underwent commitment to recombination and formation of synaptonemal complexes. The cdc7 homozygote is therefore reversibly arrested in meiosis after DNA replication, whereas vegetative cultures have previously been shown to be defective only in the initiation of DNA synthesis.  相似文献   

16.
The synaptonemal complex (SC) is a conserved protein structure that holds homologous chromosome pairs together throughout much of meiotic prophase I. It is essential for the formation of crossovers, which are required for the proper segregation of chromosomes into gametes. The assembly of the SC is likely to be regulated by post-translational modifications. The CSN/COP9 signalosome has been shown to act in many pathways, mainly via the ubiquitin degradation/proteasome pathway. Here we examine the role of the CSN/COP9 signalosome in SC assembly in the model organism C. elegans. Our work shows that mutants in three subunits of the CSN/COP9 signalosome fail to properly assemble the SC. In these mutants, SC proteins aggregate, leading to a decrease in proper pairing between homologous chromosomes. The reduction in homolog pairing also results in an accumulation of recombination intermediates and defects in repair of meiotic DSBs to form the designated crossovers. The effect of the CSN/COP9 signalosome mutants on synapsis and crossover formation is due to increased neddylation, as reducing neddylation in these mutants can partially suppress their phenotypes. We also find a marked increase in apoptosis in csn mutants that specifically eliminates nuclei with aggregated SC proteins. csn mutants exhibit defects in germline proliferation, and an almost complete pachytene arrest due to an inability to activate the MAPK pathway. The work described here supports a previously unknown role for the CSN/COP9 signalosome in chromosome behavior during meiotic prophase I.  相似文献   

17.
A whole-mount procedure for producing pachytene synaptonemal complex complements of Lilium longiflorum was developed. The method involves swelling of the meiotic nuclei followed by nonionic detergent lysis of the nuclear envelope. This technique adequately spreads out the long lily chromosomes while producing only minimal distortion of the chromosomal axes. The ultrastructure of the synaptonemal complex is normal, and the chromatin remains closely associated with the synaptonemal complex. The procedure also was used successfully to produce pachytene synaptonemal complex preparations of mouse chromosomes. In the mouse, the centromeric heterochromatin remains associated with the synaptonemal complex, but the euchromatin is more widely dispersed.  相似文献   

18.
Meiotic chromosome synapsis in a haploid yeast   总被引:14,自引:0,他引:14  
An extensive synaptonemal complex (SC) is found at pachytene in whole mount spread preparations of a haploid yeast, Saccharomyces cerevisiae, strain. Whereas unsynapsed axial elements are present only in a few nuclei, in others non-homologous synapsis involves virtually the whole chromosome set. This suggests that homology is not an indispensable precondition for SC formation in yeast but that chromosomes engage in non-homologous synapsis if no homologous partner is available. Recent evidence that in the sporulation deficient yeast mutants rad50 and mer1 axial elements do form but remain unsynapsed in the majority of nuclei is discussed in the light of the above findings.by D. Schweizer  相似文献   

19.
《The Journal of cell biology》1994,125(6):1191-1200
In situ hybridization was used to examine chromosome behavior at meiotic prophase in the rad50S, hop1, rad50, and spo11 mutants of Saccharomyces cerevisiae, which are defective in chromosome synapsis and meiotic recombination. Painting of chromosomes I and III revealed that chromosome condensation and pairing are reduced in these mutants. However, there is some residual pairing in meiosis, suggesting that homologue recognition is independent of synaptonemal complex formation and recombination. Association of homologues was observed in the rad50, rad50S, and spo11 mutants, which are defective in the formation or processing of meiotic double-strand breaks. This indicates that double- strand breaks are not an essential component of the meiotic homology searching mechanism or that there exist additional or alternative mechanisms for locating homologues.  相似文献   

20.
《Fly》2013,7(3):172-181
Using a FLP/FRT-based method to create germline clones, we screened Drosophila chromosome arms 2L and 3R for new female meiotic mutants. The screen was designed to recover mutants with severe effects on meiotic exchange and/or segregation. This screen yielded 11 new mutants, including six alleles of previously known meiotic genes (c(2)M and ald/mps1). The remaining five mutants appear to define at least four new genes whose ablation results in severe meiotic defects. Three of the novel meiotic mutants were identified at the molecular level. Two of these, mcm5A7 and tremF9, define roles in meiotic recombination, while a third, conaA12, is important for synaptonemal complex assembly. Surprisingly, five of the nine mutants for which the lesion has been identified at the molecular level are not the result of mutations characteristic of EMS mutagenesis, but rather due to the insertion of the transposable element Doc. This study demonstrates the utility of germline clone-based screens for the discovery of strong meiotic mutants, including mutations in essential genes, and the use of molecular genetic techniques to map the loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号