首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ausili A  Scirè A  Damiani E  Zolese G  Bertoli E  Tanfani F 《Biochemistry》2005,44(49):15997-16006
Despite extensive investigations on thermal denaturation of alpha(1)-acid glycoprotein (AGP) using a variety of techniques, structural features of the folded-unfolded state in terms of residual secondary structures and the structural transitions involved in this process have not been fully characterized. In this study we employed FT-IR spectroscopy to investigate the thermal unfolding and reversibility of temperature-induced changes in AGP. The data revealed a fully reversible beta-sheet-rich protein which exhibits a molten globule-like state, an important protein folding intermediate. 2D-IR COS revealed the sequence of the conformational changes occurring before denaturation and confirmed the formation of this intermediate which was further supported by CD spectroscopy. On account of the similarities in the FT-IR spectra of AGP with those of porcine odorant-binding protein (OBP), homology modeling of AGP using OBP as template was performed. The resemblance of AGP and OBP 3D structures confirmed the similarities of data obtained using FT-IR spectroscopy. Overall, FT-IR spectroscopy appears to be useful for investigating the structural characteristics and stability of proteins whose 3D structures are unavailable and for assessing the molten globule-like state in small beta-sheet-rich proteins.  相似文献   

2.
The effect of Ficoll 70 on the thermal stability and structure of creatine kinase (CK) was studied using far-UV CD spectra and intrinsic fluorescence spectra. The thermal transition curves monitored by CD spectra were fitted to a two-state model using a modified form of the van’t Hoff equation to obtain the transition temperature (T m) and enthalpy change (ΔH u) of thermally induced denaturation of CK in the absence and presence of Ficoll 70. An increase in T m with constant ΔH u was observed with increasing Ficoll 70 concentration, suggesting that Ficoll 70 enhances the thermal stability of CK. Fluorescence spectral measurements confirmed this protective effect of Ficoll 70 on CK structure. In addition, we observed a crowding-induced compaction effect on the structure of both native state and thermally denatured state of CK in the presence of Ficoll 70, which is more obvious on the structure of the denatured ensemble compared to that of the native ensemble. Our observations qualitatively accord with the predictions of previously proposed crowding theory for the effect of intermolecular excluded volume on protein stability and structure. These findings imply that the effects of macromolecular crowding are essential to our understanding of protein folding and unfolding occurring in vivo.  相似文献   

3.
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant.  相似文献   

4.
The effect of methylurea, N,N'-dimethylurea, ethylurea, and butylurea as well as guanidine hydrochloride (GuHCl), urea and pH on the thermal stability, structural properties, and preferential solvation changes accompanying the thermal unfolding of ribonuclease A (RNase A) has been investigated by differential scanning calorimetry (DSC), UV, and circular dichroism (CD) spectroscopy. The results show that the thermal stability of RNase A decreases with increasing concentration of denaturants and the size of the hydrophobic group substituted on the urea molecule. From CD measurements in the near- and far-UV range, it has been observed that the tertiary structure of RNase A melts at about 3 degrees C lower temperature than its secondary structure, which means that the hierarchy in structural building blocks exists for RNase A even at conditions at which according to DSC and UV measurements the RNase A unfolding can be interpreted in terms of a two-state approximation. The far-UV CD spectra also show that the final denatured states of RNase A at high temperatures in the presence of different denaturants including 4.5 M GuHCl are similar to each other but different from the one obtained in 4.5 M GuHCl at 25 degrees C. The concentration dependence of the preferential solvation change delta r23, expressed as the number of cosolvent molecules entering or leaving the solvation shell of the protein upon denaturation and calculated from DSC data, shows the same relative denaturation efficiency of alkylureas as other methods.  相似文献   

5.
The protein ROF2 from the plant Arabidopsis thaliana acts as a heat stress modulator, being involved in the long-term acquired thermotolerance of the plant. Here we investigate the relationship between the biological function and the structure of ROF2, inferred by circular dichroism (CD) spectroscopy. The far-UV CD spectra, analyzed with the CDPro and DICHROWEB program packages, yield the percentages of α-helices, β-sheets, unordered regions, turns and poly(Pro)II-helices in the secondary structure of ROF2. According to the analysis, the percentages of the structural elements of ROF2 are about 40% for β-sheets, 30% for unordered regions, 17% for turns, 10% for poly(Pro)II-helices and 3% for α-helices. The near-UV CD spectra suggest that ROF2 proteins can associate, forming super-secondary structures. Our CD experiments performed at temperatures between 5 °C and 97 °C indicate that the thermal denaturation of ROF2 caused by a raise in temperature up to 55 °C is followed by a thermal refolding of the protein as the temperature is raised further. The new secondary structure, acquired around 65 °C, remains stable up to 97 °C. The structural stability of ROF2 at high temperatures might play an important role in the experimentally observed thermotolerance of Arabidopsis thaliana.  相似文献   

6.
Alpha1-proteinase inhibitor (alpha1Pi) and ovalbumin are both members of the serpin superfamily. They share about a 30% sequence identity and exhibit great similarity in their three-dimensional structures. However, no apparent functional relationship has been found between the two proteins. Unlike alpha1Pi, ovalbumin shows no inhibitory effect to serine proteases. To see whether or not a conformational factor(s) may contribute to the functional difference, we carried out comparative analysis of the two proteins' secondary structure, thermal stability, and H-D exchange using FT-IR and CD spectroscopy. FT-IR analysis reveals significant differences in the amide I spectral patterns of the two proteins. Upon thermal denaturation, both proteins exhibit a strong low-wavenumber beta-sheet band at 1624 cm(-1) and a weak high-wavenumber beta-sheet band at 1694 cm(-1), indicative of intermolecular aggregate formation. However, the midpoint of the thermal-induced transition of alpha1Pi (approximately 55 degrees C) is 18 degrees C lower than that of ovalbumin (approximately 73 degrees C). The thermal stability analysis provides new insight into the structural changes associated with denaturation. The result of H-D exchange explains some puzzling spectral differences between the two proteins in D2O reported previously.  相似文献   

7.
Despite the fact that the porcine odorant-binding protein (pOBP) possesses a single tryptophan residue (Trp 16) that is characterized by a high density microenvironment (80 atoms in a sphere with radius 7 A) with only one polar group (Lys 120) and three bound water molecules, pOBP displayed a red shifted fluorescence emission spectrum (lambda(max) = 340 nm). The protein unfolding in 5M GdnHCl was accompanied by the red shift of the fluorescence emission spectrum (lambda(max) = 353 nm), by the increase of fluorescence quantum yield, and by the decrease of lifetime of the excited state (from 4.25 ns in native state to 3.15 ns in the presence of 5M GdnHCl). Taken together these data indicate the existence of an exciplex complex (Trp 16 with Lys 120 and/or with bound molecules of water) in the protein native state. Heat-induced denaturation of pOBP resulted in significant red shifts of the fluorescence emission spectra: the value of the ratio (I(320)/I(365)) upon excitation at lambda(ex) = 297 nm (parameter A) decreases from 1.07 to 0.64 passing from 60 to 85 degrees C, and the calculated midpoint of transition was centered at 70 degrees C. Interestingly, even at higher temperature, the values of the parameter A both in the absence and in the presence of GdnHCl did not coincide. This suggests that a portion of the protein structure is still preserved upon the temperature-induced denaturation of the protein in the absence of GdnHCl. CD experiments performed on pOBP in the absence and in the presence of GdnHCl and at different temperatures were in agreement with the fluorescence results. In addition, the obtained experimental data were corroborated by the analysis of the 3D structure of pOBP which revealed the amino acid residues that contribute to the protein dynamics and stability. Finally, molecular dynamics simulation experiments pointed out the important role of ion pair interactions as well as the molecular motifs that are responsible for the high thermal stability of pOBP, and elucidated the reasons of the protein aggregation that occurred at high temperature.  相似文献   

8.
Hyperthermophilic enzymes are of industrial importance and interest, especially due to their denaturation kinetics at commercial sterilisation temperatures inside safety indicating time–temperature integrators (TTIs). The thermal stability and irreversible thermal inactivation of native extracellular Pyrococcus furiosus α-amylase were investigated using differential scanning calorimetry, circular dichroism and Fourier transform infrared spectroscopy. Denaturation of the amylase was irreversible above a Tm of approximately 106 °C and could be described by a one-step irreversible model. The activation energy at 121 °C was found to be 316 kJ/mol. Using CD and FT-IR spectroscopy it was shown that folding and stability greatly increase with temperature. Under an isothermal holding temperature of 121 °C, the structure of the PFA changes during denaturation from an α-helical structure, through a β-sheet structure to an aggregated protein. Such data reinforces the use of P. furiosus α-amylase as a labile species in TTIs.  相似文献   

9.
The effects on thermal denaturation of calf thymus DNA (ct-DNA) and its conformational changes induced by the presence in solution of different polyols, namely glycerol, i-erytritol, (−) and (+) arabitol, -mannitol, -sorbitol and myo-inositol, have been investigated by means of differential scanning calorimetry (DSC) and circular dichroism (CD). By increasing the concentration of these additives a decrease in both the denaturation enthalpy (ΔdH) and temperature of the maximum of the denaturation peak (Tmax) of DNA is observed. The values of these thermodynamic parameters depend on both the nature and concentration of the solute. The overall destabilization of DNA molecule has been related to the different capability of polyhydric alcohols to interact with the polynucleotide solvation sites replacing water and to the modification of the electrostatic interactions between the polynucleotide and its surrounding atmosphere of counterions. The particular behaviour of (−) arabitol, which showed a much greater destabilizing ability compared to the other polyols, was further investigated and attributed to a direct more effective interaction with the double helix of DNA. CD spectra showed only a slight alteration of DNA-B structure in the presence of all the molecules here studied, except for (−) arabitol where the DNA molecule seems to undergo a meaningful conformational change. The salt concentration dependence of DNA thermal stability in the presence of (−) arabitol indicates a conformational change of polynucleotide towards a more extended conformation.  相似文献   

10.
Although the thermal unfolding/aggregation behavior of proteins in solution has been extensively studied, little is known about proteins immobilized on the surface of nanoparticles and other solid-phase materials. In this study we carefully monitor and analyze the thermal denaturation process of three model proteins adsorbed onto aluminum hydroxide as a function of temperature by FT-IR spectroscopy. The results reveal that the proteins immobilized onto aluminum hydroxide retain their native conformation at lower temperatures (<45 °C). Upon thermal denaturation, the structural transition between the native and denatured states is very similar, in terms of disappearance of the major native secondary structural elements, between the proteins adsorbed onto aluminum hydroxide adjuvant and in solution. This result suggests that the thermal stability of proteins is not significantly affected, or marginally affected at most, by the adsorption onto aluminum hydroxide adjuvant, considering a 5 °C temperature interval used for data collection. However, the adsorption rate and crowding of proteins on aluminum hydroxide particles have a profound effect on the aggregation behavior of the proteins, hydrogen bonding strength of intermolecular β-sheet aggregates and conformation of intermediate states.  相似文献   

11.
DSC analysis has been used to quantify the reversibility of unfolding following thermal denaturation of lysozyme. Since the temperature at which protein unfolding occurs, Tm, varies with different solution conditions, the effect on the melting temperature and the degree of refolding after thermal denaturation in low ionic strength sodium phosphate buffers (5–1000 mM) over a range of pH (5–9) in the presence/absence of disaccharides is examined. This study compares the enthalpies of unfolding during successive heating cycles to quantify reversibility following thermal denaturation. The disaccharides, trehalose and maltose were used to assess if the disaccharide induced increase in Tm is reflected in the reversibility of thermally induced denaturation. There was extensive overlap between the Tm values where non-reversible and reversible thermal denaturation occurred. Indeed, for pH 6, at the highest and lowest Tm, no refolding was observed whereas refolding was observed for intermediate values, but with similar Tm values having different proportions of refolded protein. We established a method to measure the degree of reversible unfolding following thermal denaturation and hence indirectly, the degree to which protein is lost to irreversible aggregation, and show that solution conditions which increase melt transition temperatures do not automatically confer an increase in reversibility. This type of analysis may prove useful in assessing the stability of proteins in both the biopharmaceutical and food industries.  相似文献   

12.
The thermal denaturation of beta-lactoglobulin in aqueous solutions at pH 5.5 and 2.0 was investigated by differential scanning calorimetry (DSC) and circular dichroic (CD) measurements. By calorimetry, the denaturation temperatures (Td), denaturation enthalpies, and specific heat capacity changes for thermal denaturation in the temperature range scanned, i.e., 20-100 degrees C. The unfolding process was found to be only partially reversible. Analysis of the far-ultraviolet CD spectra reveals that with increasing temperature the mean residue ellipticity [( theta]) becomes less negative, which reflects unfolding of the native protein. At the highest temperature of CD measurements, i.e., 80 degrees C, conformational changes are to a large extent reversible.  相似文献   

13.
The effects of hydrostatic pressure on the structure and stability of porcine odorant-binding protein (pOBP) in the presence and absence of the odorant molecule 2-isobutyl-3-methoxypyrazine (IBMP) were studied by steady-state and time-resolved fluorescence spectroscopy as well as by molecular dynamics simulation. The authors found that the application of moderate values of hydrostatic pressure to pOBP solutions perturbed the microenvironment of Trp(16) and disrupted its highly quenched complex with Met(39). In addition, compared with the protein in the absence of IBMP, the MD simulations experiments carried out at different pressures highlighted the role of this ligand in stabilizing the Trp(16)/Met(39) interaction even at 2000 bar. The obtained results will assist for the tailoring of this protein as specific sensing element in a new class of fluorescence-based biosensors for the detection of explosives.  相似文献   

14.
The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl),pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65°C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasingpH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55°C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5°C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.  相似文献   

15.
Chu HL  Lin SY 《Biophysical chemistry》2001,89(2-3):173-180
Temperature-dependent secondary structures of the amyloid beta(1-40) peptide in the solid state were studied by simultaneous Fourier transform infrared/differential scanning calorimetry (FT-IR/DSC) microspectroscopic system with the heating-cooling-reheating cycle. The result indicates that a thermal transition temperature at 45 degrees C was easily obtained from the three-dimensional plot of the transmission FT-IR spectra as a function of temperature. Furthermore, the thermal-dependent conformational transformations, due to denaturation and aggregation, of solid amyloid beta(1-40) were mainly evidenced by reducing the compositions from 37 to 20-24% for alpha-helical and random coil structures but increasing the components from 27 to 45% for intermolecular beta-sheet structures. Thermal-irreversible behavior and a poor thermal stability of solid amyloid beta(1-40) were also observed from the poor restoration of the secondary conformational changes in the heated sample.  相似文献   

16.
The thermal stability of plastocyanin (PC) was determined as a function of oxidation state of the copper center and the presence of oxidants, reductants, oxygen, and EDTA. It was found that the copper center and its ligands play a crucial role in maintaining the stability of PC. Thermal denaturation was monitored by using far-uv circular dichroism (CD) spectra to monitor changes in secondary structure, the near-uv CD ellipticity at 280 nm to monitor changes in tertiary structure, and the absorbance at 597 nm and the 255-nm CD transition to monitor changes in the copper center. Reduced PC (Tm = 71 degrees C) was found to be more stable than the oxidized form (Tm = 61 degrees C). The Tm was increased by addition of reductants, removal of oxygen, or addition of EDTA. Two distinct denatured forms (designated D1 and D2) were separated by anion exchange fast protein liquid chromatography. Neither form contained a native copper center. Form D2 retained the characteristic 280-nm CD band but showed an altered far-uv CD spectrum. Its formation was inhibited by the addition of reductants or the removal of oxygen. It could be refolded to form native, Cu-PC upon incubation with copper plus a reductant such as dithionite. These results suggest that its formation involves the reversible oxidation of a group on the PC molecule, possibly a ligand to the copper such as Cys 84 or Met 92. Form D1 occurred in the presence of ferricyanide or at high temperatures in the presence of oxygen. EDTA inhibited its formation. Form D1 lost the 280-nm CD transition and its far-uv CD spectrum was altered. No renaturation was observed suggesting that Form D1 is the product of an irreversible oxidation step possibly involving a histidine ligand to the copper. Forms D1 and D2 are not interconvertible and represent the endpoints of two different denaturation pathways.  相似文献   

17.
Protein structure and function can be regulated by no specific interactions, such as ionic interactions in the presence of salts. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. The aim of this study was to evaluate the thermal stability of GFP in the presence of different salts at several concentrations and exposed to constant temperatures, in a range of 70–95°C. Thermal stability was expressed in decimal reduction time. It was observed that the D‐values obtained were higher in the presence of citrate and phosphate, when compared with that obtained in their absence, indicating that these salts stabilized the protein against thermal denaturation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

18.
Reversible denaturation of the soybean Kunitz trypsin inhibitor   总被引:6,自引:0,他引:6  
The soybean Kunitz trypsin inhibitor (SKTI) is a beta-sheet protein with unusual stability to chemical and thermal denaturation. Different spectroscopic criteria were used to follow the thermal denaturation and renaturation of SKTI. Upon heating to 70 degrees C, changes in UV difference spectra showed increased absorbance at 292 and 297 nm, attributable to perturbation of aromatic residues. Cooling the protein resulted in restoration of the native spectrum unless reduced with dithiothreitol. Far- and near-UV CD spectra also indicate thermal unfolding involving the core tryptophan and tyrosine residues. Both CD and UV-absorbance data suggest a two-state transition with the midpoint at approximately 65 degrees C. CD data along with the increased fluorescence intensity of the reporter fluorophore, 1-anilino-8-naphthalenesulfonate with SKTI, between 60 and 70 degrees C, are consistent with a transition of the native inhibitor to an alternate conformation with a more molten state. Even after heating to 90 degrees C, subsequent cooling of SKTI resulted in >90% of native trypsin inhibition potential. These results indicate that thermal denaturation of SKTI is readily reversible to the native form upon cooling and may provide a useful system for future protein folding studies in the class of disordered beta-sheet proteins.  相似文献   

19.
Halophilic enzymes have been manifested for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation in presence of high temperature, pH, presence of organic solvents and chaotropic agents. The present study aims at understanding the stability and activity of a halophilic Bacillus sp. EMB9 protease in organic solvents. The protease was uniquely stable in polar solvents. A clear correlation was evident between the protease function and conformational transitions, validated by CD and fluorescence spectral studies. The study affirms that preservation of protein structure, possibly due to charge screening of the protein surface by Ca2+ and Na+ ions provides stability against organic solvents and averts denaturation. Salt was also found to exert a protective effect on dialyzed protease against chaotropism of solvents. Presence of 1 % (w/v) NaCl restored the activity in the dialyzed protease and prevented denaturation in methanol, toluene and n-decane. The work will have further implication on discerning protein folding in saline as well as non-aqueous environments.  相似文献   

20.
Calbindin-D(28K) is a biologically important protein required for normal neural function and for the transport of calcium in epithelial cells of the intestine and kidney. We have used fluorescence and circular dichroism (CD) spectroscopy to characterize the effects of calcium binding on the structure and stability of calbindin. Ca(2+) titration monitored by fluorescence spectroscopy reveals the presence of two classes of calcium-binding sites with association constants approximately 10(7.5) and approximately 10(8.9)M(-1). CD spectra in the far-UV spectral range show minor changes upon Ca(2+) titration, implying that the secondary structure of calbindin-D(28K) is not greatly affected. On the basis of the CD spectra in the near-UV spectral range, we conclude that the tertiary structure is more sensitive to Ca(2+) addition. The most significant change occurs between pCa 7.0 and pCa 8.0. The variations in the protein thermostability are correlated with those in the near-UV CD spectra. The enthalpy changes upon heat denaturation of calbindin in the apo-state are characteristic of proteins containing several weakly interacting domains with similar thermodynamical properties. Thus, calcium binding by calbindin-D(28K) largely affects the local structure around the aromatic residues and the thermal stability of the protein; the changes in the secondary structure are insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号