首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncoprotein 18 (Op18, also termed p19, 19K, metablastin, stathmin, and prosolin) is a recently identified regulator of microtubule (MT) dynamics. Op18 is a target for both cell cycle and cell surface receptor-coupled kinase systems, and phosphorylation of Op18 on specific combinations of sites has been shown to switch off its MT-destabilizing activity. Here we show that induced expression of the catalytic subunit of cAMP-dependent protein kinase (PKA) results in a dramatic increase in cellular MT polymer content concomitant with phosphorylation and partial degradation of Op18. That PKA may regulate the MT system by downregulation of Op18 activity was evaluated by a genetic system allowing conditional co-expression of PKA and a series of kinase target site–deficient mutants of Op18. The results show that phosphorylation of Op18 on two specific sites, Ser-16 and Ser-63, is necessary and sufficient for PKA to switch off Op18 activity in intact cells. The regulatory importance of dual phosphorylation on Ser-16 and Ser-63 of Op18 was reproduced by in vitro assays. These results suggest a simple model where PKA phosphorylation downregulates the MT-destabilizing activity of Op18, which in turn promotes increased tubulin polymerization. Hence, the present study shows that Op18 has the potential to regulate the MT system in response to external signals such as cAMP-linked agonists.  相似文献   

2.
Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of "mitotic chromatin." Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.  相似文献   

3.
Oncoprotein 18 (Op18; also termed p19, 19K, p18, prosolin, and stathmin) is a regulator of microtubule (MT) dynamics and is phosphorylated by multiple kinase systems on four Ser residues. In addition to cell cycle-regulated phosphorylation, external signals induce phosphorylation of Op18 on Ser-25 by the mitogen-activated protein kinase and on Ser-16 by the Ca2+/calmodulin-dependent kinase IV/Gr (CaMK IV/Gr). Here we show that induced expression of a constitutively active mutant of CaMK IV/Gr results in phosphorylation of Op18 on Ser-16. In parallel, we also observed partial degradation of Op18 and a rapid increase of total cellular MTs. These results suggest a link between CaMK IV/Gr, Op18, and MT dynamics. To explore such a putative link, we optimized a genetic system that allowed conditional coexpression of a series of CaMK IV/Gr and Op18 derivatives. The result shows that CaMK IV/Gr can suppress the MT-regulating activity of Op18 by phosphorylation on Ser-16. In line with these results, by employing a chemical cross-linking protocol, it was shown that phosphorylation of Ser-16 is involved in weakening of the interactions between Op18 and tubulin. Taken together, these data suggest that the mechanism of CaMK IV/Gr-mediated suppression of Op18 activity involves both partial degradation of Op18 and direct modulation of the MT-destabilizing activity of this protein. These results show that Op18 phosphorylation by CaMK IV/Gr may couple alterations of MT dynamics in response to external signals that involve Ca2+.  相似文献   

4.
Oncoprotein 18/stathmin (Op18) is a recently identified phosphorylation-responsive regulator of the microtubule (MT) system. It was originally proposed that Op18 specifically regulates dynamic properties of MTs by associating with tubulin, but it has subsequently been proposed that Op18 acts simply by sequestering of tubulin heterodimers. We have dissected the mechanistic action of Op18 by generation of two distinct classes of mutants. One class has interruptions of the heptad repeats of a potential coiled-coil region of Op18, and the other involves substitution at all four phosphorylation sites with negatively charged Glu residues. Both types of mutation result in Op18 proteins with a limited decrease in tubulin complex formation. However, the MT-destabilizing activities of the coiled-coil mutants are more severely reduced in transfected leukemia cells than those of the Glu-substituted Op18 derivative, providing evidence for tubulin-directed regulatory activities distinct from tubulin complex formation. Analysis of Op18-mediated regulation of tubulin GTPase activity and taxol-promoted tubulin polymerization showed that while wild-type and Glu-substituted Op18 derivatives are active, the coiled-coil mutants are essentially inactive. This suggests that Op18-tubulin contact involves structural motifs that deliver a signal of regulatory importance to the MT system.  相似文献   

5.
Oncoprotein 18 (Op18; also termed p19, 19K, metablastin, stathmin, and prosolin) is a conserved protein that regulates microtubule (MT) dynamics. Op18 is multisite phosphorylated on four Ser residues during mitosis; two of these Ser residues, Ser-25 and Ser-38, are targets for cyclin-dependent protein kinases (CDKs), and the other two Ser residues, Ser-16 and Ser-63, are targets for an unidentified protein kinase. Mutations of the two CDK sites have recently been shown to result in a mitotic block caused by destabilization of MTs. To understand the role of Op18 in regulation of MT dynamics during mitosis, in this study we dissected the functions of all four phosphorylation sites of Op18 by combining genetic, morphological, and biochemical analyses. The data show that all four phosphorylation sites are involved in switching off Op18 activity during mitosis, an event that appears to be essential for formation of the spindle during metaphase. However, the mechanisms by which specific sites down-regulate Op18 activity differ. Hence, dual phosphorylation on the CDK sites Ser-25 and Ser-38 appears to be required for phosphorylation of Ser-16 and Ser-63; however, by themselves, the CDK sites are of only minor importance in direct regulation of Op18 activity. Subsequent phosphorylation of either Ser-16, Ser-63, or both efficiently switches off Op18 activity.  相似文献   

6.
Tumor necrosis factor (TNF)-induced cell death in the fibrosarcoma cell line L929 occurs independently of caspase activation and cytochrome c release. However, it is dependent on mitochondria and is characterized by increased production of reactive oxygen intermediates that are essential to the death process. To identify signaling molecules involved in this TNF-induced, reactive oxygen intermediate-dependent cell death pathway, we performed a comparative study by two-dimensional gel electrophoresis of phosphoproteins from a mitochondria-enriched fraction derived from TNF-treated and control cells. TNF induced rapid and persistent phosphorylation of the phosphorylation-responsive regulator of the microtubule (MT) dynamics, oncoprotein 18 (Op18). By using induced overexpression of wild type Op18 and phosphorylation site-deficient mutants S25A/S38A and S16A/S63A in L929 cells, we show that TNF-induced phosphorylation on each of the four Ser residues of Op18 promotes cell death and that Ser(16) and Ser(63) are the primary sites. This hyperphosphorylation of Op18 is known to completely turn off its MT-destabilizing activity. As a result, TNF treatment of L929 cells induced elongated and extremely tangled microtubules. These TNF-induced changes to the MT network were also observed in cells overexpressing wild type Op18 and, to a lesser extent, in cells overexpressing the S25A/S38A mutant. No changes in the MT network were observed upon TNF treatment of cells overexpressing the S16A/S63A mutant, and these cells were desensitized to TNF-induced cell death. These findings indicate that TNF-induced MT stabilization is mediated by hyperphosphorylation of Op18 and that this promotes cell death. The data suggest that Op18 and the MT network play a functional role in transduction of the cell death signal to the mitochondria.  相似文献   

7.
Oncoprotein18/stathmin (Op18) is a microtubule (MT) destabilizing protein that is inactivated during mitosis by phosphorylation at four Ser-residues. Op18 has at least two functions; the N-terminal region is required for catastrophe-promotion (i.e., transition from elongation to shortening), while the C-terminal region is required to inhibit MT-polymerization rate in vitro. We show here that a "pseudophosphorylation" derivative of Op18 (i.e., four Ser- to Glu-substitutions at phosphorylation sites) exhibits a selective loss of catastrophe-promoting activity. This is contrasted to authentic phosphorylation, which efficiently attenuates all activities except tubulin binding. In intact cells, overexpression of pseudophosphorylated Op18, which is not phosphorylated by endogenous kinases, is shown to destabilize interphase MTs but to leave spindle formation untouched. To test if the mitotic spindle is sensitive only to the catastrophe-promoting activity of Op18 and resistant to C-terminally associated activities, N- and C-terminal truncations with defined activity-profiles were employed. The cell-cycle phenotypes of nonphosphorylatable mutants (i.e., four Ser- to Ala-substitutions) of these truncation derivatives demonstrated that catastrophe promotion is required for interference with the mitotic spindle, while the C-terminally associated activities are sufficient to destabilize interphase MTs. These results demonstrate that specific Op18 derivatives with defined activity-profiles can be used as probes to distinguish interphase and mitotic MTs.  相似文献   

8.
Oncoprotein 18 (Op18, also termed p19, p18, prosolin or stathmin) is a cytosolic protein of previously unknown function. Phosphorylation of Op18 is cell cycle regulated by cyclin-dependent kinases (CDKs), and expression of a 'CDK target site-deficient mutant' results in a phenotype indicative of a role for Op18 during mitosis. This phenotype is compatible with the idea that Op18 is a phosphorylation-responsive regulator of microtubule (MT) dynamics. Therefore, in this study, we analyzed MTs in cells induced to express either wild-type or mutated Op18. The results showed that wild-type Op18 and a CDK target site mutant both efficiently elicited rapid depolymerization of MTs. This result contrasts with clear-cut differences in their cell cycle phenotypes. Morphological analysis of MTs explained this apparent discrepancy: while interphase MTs were depolymerized in cells expressing either Op18 derivative, apparently normal mitotic spindles were formed only in cells overexpressing wild-type Op18. This result correlates with our finding that only mutated Op18 causes a block during mitosis. Hence, we conclude that Op18 decreases MT stability and that this activity of Op18 is subject to cell cycle regulation by CDKs.  相似文献   

9.
Regulation of Op18 during spindle assembly in Xenopus egg extracts   总被引:5,自引:0,他引:5  
Oncoprotein 18 (Op18) is a microtubule-destabilizing protein that is negatively regulated by phosphorylation. To evaluate the role of the three Op18 phosphorylation sites in Xenopus (Ser 16, 25, and 39), we added wild-type Op18, a nonphosphorylatable triple Ser to Ala mutant (Op18-AAA), and to mimic phosphorylation, a triple Ser to Glu mutant (Op18-EEE) to egg extracts and monitored spindle assembly. Op18-AAA dramatically decreased microtubule length and density, while Op18-EEE did not significantly affect spindle microtubules. Affinity chromatography with these proteins revealed that the microtubule-destabilizing activity correlated with the ability of Op18 to bind tubulin. Since hyperphosphorylation of Op18 is observed upon addition of mitotic chromatin to extracts, we reasoned that chromatin-associated proteins might play a role in Op18 regulation. We have performed a preliminary characterization of the chromatin proteins recruited to DNA beads, and identified the Xenopus polo-like kinase Plx1 as a chromatin-associated kinase that regulates Op18 phosphorylation. Depletion of Plx1 inhibits chromatin-induced Op18 hyperphosphorylation and spindle assembly in extracts. Therefore, Plx1 may promote microtubule stabilization and spindle assembly by inhibiting Op18.  相似文献   

10.
The oncoprotein 18/stathmin family of microtubule destabilizers.   总被引:19,自引:0,他引:19  
The past several years have seen major advances in our understanding of the mechanisms of microtubule destabilization by oncoprotein18/stathmin (Op18/stathmin) and related proteins. New structural information has clearly shown how members of the Op18/stathmin protein family bind tubulin dimers and suggests models for how these proteins stimulate catastrophe, the transition from microtubule growth to shortening. Regulation of Op18/stathmin by phosphorylation continues to capture much attention. Studies suggest that phosphorylation occurs in a localized fashion, resulting in decreased microtubule destabilizing activity near chromatin or microtubule polymer. A spatial gradient of inactive Op18/stathmin associated with chromatin or microtubules could contribute significantly to mitotic spindle assembly.  相似文献   

11.
Op18 is a highly conserved major cytosolic phosphoprotein that has been implicated in signal transduction in a wide variety of cell types. Freshly isolated peripheral blood lymphocytes (PBL) constitutively express low levels of mostly unphosphorylated Op18. After mitogenic stimulation of PBL, Op18 synthesis is induced at a time when cells are entering S-phase. In this study, we have examined the phosphorylation of Op18 in freshly isolated PBL after activation of the T cell receptor by OKT3. Quantitative analysis of Op18 phosphorylation was undertaken by metabolic labeling with 32Pi and PhosphorImager analysis of two-dimensional gels. After 10 or 15 min of activation by OKT3, one of the three major phosphorylated forms of Op18, designated Op18c, increased approximately 10-fold, which represented a most pronounced change among a large number of phosphoproteins analyzed. In time course experiments, increased Op18 phosphorylation to yield Op18c was observed as early as 2 min. Continued OKT3-induced activation for 20 to 72 h resulted in a further increase in phosphorylated Op18 forms, which paralleled new Op18 synthesis and occurred at a time when cells were entering S-phase, as determined by [3H]-thymidine incorporation. Inhibitors of lymphoid proliferation, cyclosporin A and RPM, had no effect on early (less than 15 min) phosphorylation. Addition of calphostin C, a specific inhibitor of protein kinase C, 1 min prior to stimulation of resting T cells with OKT3 completely inhibited further phosphorylation of Op18. Incubation of PBL with calphostin C for 75 min decreased constitutive levels of phosphorylated Op18. In contrast, inhibition of cyclic nucleotide-dependent protein kinases with HA1004 had no effect on Op18 phosphorylation. Activation of cAMP-dependent protein kinase with Forskolin or 8Br-cAMP did not increase Op18 phosphorylation. Our results suggest that Op18 phosphorylation is mediated by protein kinase C activation as an early event in T cell activation through the T cell receptor.  相似文献   

12.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein (MAP) kinase kinase kinase that activates the JNK and p38 MAP kinase cascades and has a broad range of biological activities including cell differentiation and stress-induced apoptosis. However, effector molecules of ASK1-MAP kinase cascades that exert such activities have not been fully identified. Here we have identified oncoprotein 18 (Op18)/stathmin as a potential target of the ASK1-p38 cascade. By two-dimensional electrophoresis, phosphorylation of Op18/stathmin was found to be increased upon the expression of constitutively active ASK1 (ASK1DeltaN) in PC12 cells. The ASK1-dependent increase in the phosphorylation of Op18/stathmin was attenuated by the treatment with SB203580, suggesting that p38alpha and/or p38beta contribute to the phosphorylation of Op18/stathmin. Consistently, we found that all four isoforms of p38 directly phosphorylated Op18/stathmin primarily at serine 25 in vitro. Taken together with the quantitative RT-PCR data indicating that p38alpha was the dominantly expressed isoform in PC12 cells, ASK1-induced phosphorylation of Op18/stathmin appears to be mediated mainly through p38alpha in these cells. Given that the microtubule-destabilizing activity of Op18/stathmin is regulated by its phosphorylation, the ASK1-p38 cascade may regulate microtubule dynamics through Op18/stathmin.  相似文献   

13.
Oncoprotein18/stathmin (Op18) is a regulator of microtubule (MT) dynamics that binds tubulin heterodimers and destabilizes MTs by promoting catastrophes (i.e., transitions from growing to shrinking MTs). Here, we have performed a deletion analysis to mechanistically dissect Op18 with respect to (a) modulation of tubulin GTP hydrolysis and exchange, (b) tubulin binding in vitro, and (c) tubulin association and MT-regulating activities in intact cells. The data reveal distinct types of region-specific Op18 modulation of tubulin GTP metabolism, namely inhibition of nucleotide exchange and stimulation or inhibition of GTP hydrolysis. These regulatory activities are mediated via two-site cooperative binding to tubulin by multiple nonessential physically separated regions of Op18. In vitro analysis revealed that NH(2)- and COOH-terminal truncations of Op18 have opposite effects on the rates of tubulin GTP hydrolysis. Transfection of human leukemia cells with these two types of mutants result in similar decrease of MT content, which in both cases appeared independent of a simple tubulin sequestering mechanism. However, the NH(2)- and COOH-terminal-truncated Op18 mutants regulate MTs by distinct mechanisms as evidenced by morphological analysis of microinjected newt lung cells. Hence, mutant analysis shows that Op18 has the potential to regulate tubulin/MTs by more than one specific mechanism.  相似文献   

14.
Megakaryocytes undergo an unusual cell cycle during differentiation that results in polyploidy through largely unknown mechanism(s). It has been shown that serine phosphorylation of oncoprotein 18 (Op18) is required for cell cycle progression specifically at the G2/M transition. Moreover, mutant forms of Op18 that are defective in one or more of the four serine residues induce G2/M arrest and subsequent polyploidization. Op18 phosphorylation is rapidly induced with phorbol myristate acetate (PMA) treatment in a wide range of human cells. In this study, we investigated the role of Op18 in PMA induced polyploidization during megakaryocyte differentiation of the human erythroleukemia cell line. Crucial to the molecular analysis of megakaryocyte differentiation, is the ability to fractionate cell populations with different ploidy levels. We have utilized cell elutriation as a fractionation strategy to analyze Op18 expression in synchronized cell subpopulations in different phases of the cell cycle or with progressive megakaryocyte polyploidization. In the absence of PMA, increased phosphorylation of Op18 was observed in HEL cells during cell cycle progression, as for other proliferating cells. However, in contrast to Jurkat leukemia cells chosen as control, HEL cells exhibited a lack of Op18 phosphorylation in response to PMA, which was accompanied by polyploidization and differentiation along the megakaryocytic lineage. To further determine the role of Op18 in polyploidization, HEL cells were transfected with different Op18 expression constructs. Differences in cell survival and polyploidization were observed between high and low Op18 expressors. An increased Op18 level reduced cell survival during the early stage of PMA induced megakaryocyte differentiation, but enhanced polyploidization efficiency. Our findings suggest that maintenance of a high level of unphosphorylated Op18 is required for efficient polyploidization during the differentiation program of megakaryocytes.  相似文献   

15.
Op18 is a highly conserved major cytosolic phosphoprotein which has been implicated in signal transduction in a wide variety of cell types. Freshly isolated peripheral blood lymphocytes (PBL) constitutively express low levels of mostly unphosphorylated Op18. Following mitogenic stimulation of PBL, Op18 synthesis is induced at a time when cells are entering S-phase. In this study we have characterized Op18 phosphorylation during progression of freshly isolated PBL through the cell cycle. Transition from G0 to G1 following activation with OKT3 was associated with an increase in a phosphorylated form designated Op18c. Progression of cells through G1 into S resulted in an increase in phosphorylated Op18 forms, designated Op18a and Op18b, which paralleled new Op18 synthesis. Transition of cells into G2 + M resulted in the appearance of the more acidic phosphorylated forms Op18d and Op18e. Calphostin C, a specific inhibitor of protein kinase C, dramatically decreased all forms of phosphorylated Op18 in OKT3 treated Jurkat cells. Our results suggest that Op18 phosphorylation is mediated in part by PKC activation as well as by other kinases yielding different phosphorylated forms at specific stages of the cell cycle.  相似文献   

16.
Op18/stathmin (Op18) is a phosphorylation-regulated microtubule destabilizer that is frequently overexpressed in tumors. The importance of Op18 in malignancy was recently suggested by identification of a somatic Q18-->E mutation of Op18 in an adenocarcinoma. We addressed the functional consequences of aberrant Op18 expression in leukemias by analyzing the cell cycle of K562 cells either depleted of Op18 by expression of interfering hairpin RNA or induced to express wild-type or Q18E substituted Op18. We show here that although Op18 depletion increases microtubule density during interphase, the density of mitotic spindles is essentially unaltered and cells divide normally. This is consistent with phosphorylation-inactivation of Op18 during mitosis. Overexpression of wild-type Op18 results in aneugenic activities, manifest as aberrant mitosis, polyploidization, and chromosome loss. One particularly significant finding was that the aneugenic activity of Op18 was dramatically increased by the Q18-->E mutation. The hyperactivity of mutant Op18 is apparent in its unphosphorylated state, and this mutation also suppresses phosphorylation-inactivation of the microtubule-destabilizing activity of Op18 without any apparent effect on its phosphorylation status. Thus, although Op18 is dispensable for mitosis, the hyperactive Q18-->E mutant, or overexpressed wild-type Op18, exerts aneugenic effects that are likely to contribute to chromosomal instability in tumors.  相似文献   

17.
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.  相似文献   

18.
19.
Membrane transport of WAVE2 that leads to lamellipodia formation requires a small GTPase Rac1, the motor protein kinesin, and microtubules. Here we explore the possibility of whether the Rac1-dependent and kinesin-mediated WAVE2 transport along microtubules is regulated by a p21-activated kinase Pak as a downstream effector of Rac1. We find that Pak1 constitutively binds to WAVE2 and is transported with WAVE2 to the leading edge by stimulation with hepatocyte growth factor (HGF). Concomitantly, phosphorylation of tubulin-bound stathmin/Op18 at serine 25 (Ser25) and Ser38, microtubule growth, and stathmin/Op18 binding to kinesin–WAVE2 complex were induced. The HGF-induced WAVE2 transport, lamellipodia formation, stathmin/Op18 phosphorylation at Ser38 and binding to kinesin–WAVE2 complex, but not stathmin/Op18 phosphorylation at Ser25 and microtubule growth, were abrogated by Pak1 inhibitor IPA-3 and Pak1 depletion with small interfering RNA (siRNA). Moreover, stathmin/Op18 depletion with siRNA caused significant inhibition of HGF-induced WAVE2 transport and lamellipodia formation, with HGF-independent promotion of microtubule growth. Collectively, it is suggested that Pak1 plays a critical role in HGF-induced WAVE2 transport and lamellipodia formation by directing Pak1–WAVE2–kinesin complex toward the ends of growing microtubules through phosphorylation and recruitment of tubulin-bound stathmin/Op18 to the complex.  相似文献   

20.
In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号