共查询到20条相似文献,搜索用时 15 毫秒
1.
Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest 总被引:23,自引:0,他引:23
PETER HÖGBERG HOUBAO FAN † MAUD QUIST ‡ DAN BINKLEY§ CARL OLOF TAMM¶ 《Global Change Biology》2006,12(3):489-499
Relations among nitrogen load, soil acidification and forest growth have been evaluated based on short‐term (<15 years) experiments, or on surveys across gradients of N deposition that may also include variations in edaphic conditions and other pollutants, which confound the interpretation of effects of N per se. We report effects on trees and soils in a uniquely long‐term (30 years) experiment with annual N loading on an un‐polluted boreal forest. Ammonium nitrate was added to replicated (N=3) 0.09 ha plots at two doses, N1 and N2, 34 and 68 kg N ha?1 yr?1, respectively. A third treatment, N3, 108 kg N ha?1 yr?1, was terminated after 20 years, allowing assessment of recovery during 10 years. Tree growth initially responded positively to all N treatments, but the longer term response was highly rate dependent with no gain in N3, a gain of 50 m3 ha?1 stemwood in N2 and a gain of 100 m3 ha?1 stemwood in excess of the control (N0) in N1. High N treatments caused losses of up to 70% of exchangeable base cations (Ca2+, Mg2+, K+) in the mineral soil, along with decreases in pH and increases in exchangeable Al3+. In contrast, the organic mor‐layer (forest floor) in the N‐treated plots had similar amounts per hectare of exchangeable base cations as in the N0 treatment. Magnesium was even higher in the mor of N‐treated plots, providing evidence of up‐lift by the trees from the mineral soil. Tree growth did not correlate with the soil Ca/Al ratio (a suggested predictor of effects of soil acidity on tree growth). A boron deficiency occurred on N‐treated plots, but was corrected at an early stage. Extractable NH4+ and NO3?were high in mor and mineral soils of on‐going N treatments, while NH4+ was elevated in the mor only in N3 plots. Ten years after termination of N addition in the N3 treatment, the pH had increased significantly in the mineral soil; there were also tendencies of higher soil base status and concentrations of base cations in the foliage. Our data suggest the recovery of soil chemical properties, notably pH, may be quicker after removal of the N‐load than predicted. Our long‐term experiment demonstrated the fundamental importance of the rate of N application relative to the total amount of N applied, in particular with regard to tree growth and C sequestration. Hence, experiments adding high doses of N over short periods do not mimic the long‐term effects of N deposition at lower rates. 相似文献
2.
Amino acid mineralization and its fate in soil have effects on soil nitrogen cycling. Here we used 15N-labeled alanine and methionine to study differences in their mineralization from soil organic nitrogen under 60% WHC (water holding capacity) and 90% WHC soil conditions. We found that the maximum mineralization rates were at the 24th hours for alanine and at the 5th hours for methionine, and about two times greater rates at 60% WHC than at 90% WHC. The half-live was 24–72 h for alanine and > 72 h for methionine. Half-lives of amino acids occurred sooner under 90% WHC than under 60% WHC. The results suggested that some kind of amino acids do lead the nitrogen cycling in a specific ecosystem or as a sign to trigger soil nitrogen cycling when land utilization was altered or disturbed severely by humans. 相似文献
3.
Z. Yu Q. Zhang T.E.C. Kraus R.A. Dahlgren C. Anastasio R.J. Zasoski 《Biogeochemistry》2002,61(2):173-198
Dissolved organic nitrogen (DON) may play an important role in plantnutrition and nitrogen fluxes in forest ecosystems. In spite of the apparentimportance of DON, there is a paucity of information concerning its chemicalcomposition. However, it is exactly this chemical characterization that isrequired to understand the importance of DON in ecosystem processes. Theprimaryobjective of this study was to characterize the distribution of free aminoacidsand hydrolyzable peptides/proteins in the DON fraction of Oa horizon leachatesalong an extreme edaphic gradient in northern California. Insitu soil solutions were extracted by centrifugation from Oahorizonscollected beneath Pinus muricata (Bishop pine) andCupressus pygmaea (pygmy cypress) on slightlyacidic/fertile and highly acidic/infertile sites. DON accounted for 77 to99% of the total dissolved nitrogen in Oa horizon leachates. Nitrogen infree amino acids and alkyl amines ranged from 0.04–0.07 mgN/L on the low fertility site to 0.45–0.49 mg N/L onthe high fertility site, and accounted for 1.5 to 10.6% of the DON fraction.Serine, glutamic acid, leucine, ornithine, alanine, aspartic acid andmethylamine were generally the most abundant free amino compounds. Combinedamino acids released by acid hydrolysis accounted for 48 to 74% of theDON, suggesting that proteins and peptides were the main contributor to DON inOa horizon leachates. Together, nitrogen from free andcombined amino compounds accounted for 59 to 78% of the DON. Most of theDON was found in the hydrophobic fraction, which suggests the presence ofprotein/peptide-polyphenol complexes or amino compounds associated withhumic substances. Because free and combined amino acids can be an importantnitrogen source for some plants, soil DON may play an important role in plantnutrition and ecosystem function. 相似文献
4.
Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert 总被引:26,自引:2,他引:26
Matthew L. Brooks 《Journal of Applied Ecology》2003,40(2):344-353
5.
A. Tietema 《Biogeochemistry》1993,20(1):45-62
Litterbag experiments were carried out in five forest ecosystems in the Netherlands to study weight loss and nitrogen dynamics during the first two years of decomposition of leaf and needle litter. All forests were characterized by a relatively high atmospheric nitrogen input by throughfall, ranging from 22–55 kg N ha–1 yr–1.Correlation analysis of all seven leaf and needle litters revealed no significant relation between the measured litter quality indices (nitrogen and lignin concentration, lignin-to-nitrogen ratio) and the decomposition rate. A significant linear relation was found between initial lignin-to-nitrogen ratio and critical nitrogen concentration, suggesting an effect of litter quality on nitrogen dynamics.Comparison of the decomposition of oak leaves in a nitrogen-limited and a nitrogen-saturated forest suggested an increased nitrogen availability. The differences in capacities to retain atmospheric nitrogen inputs between these two sites could be explained by differences in net nitrogen immobilization in first year decomposing oak leaves: in the nitrogen-limited oak forest a major part (55%) of the nitrogen input by throughfall was immobilized in the first year oak leaf litter.The three coniferous forests consisted of two monocultures of Douglas fir and a mixed stand of Douglas fir and Scots pine. Despite comparable litter quality in the Douglas fir needles in all sites, completely different nitrogen dynamics were found. 相似文献
6.
Estimation of nitrogen saturation on the basis of long-term fertilization experiments 总被引:2,自引:0,他引:2
Eino Mälkönen 《Plant and Soil》1990,128(1):75-82
The obvious changes in some properties of forest soil due to atmospheric nitrogen deposition under Finnish conditions were estimated on the basis of long-term fertilization experiments. The experiments were established during the years 1959–1965. Nitrogen fertilization was repeated three to four times. During the study period averaging 23 years, the cumulative amount of fertilizer nitrogen totalled about 400 kg N ha-1. The main results are as follows. Nitrogen addition increased the quantity of organic matter in the humus layer, but has not clear effect on its quality. Nitrogen fertilization did not increase soil acidity. 相似文献
7.
Heinz W. Zöttl 《Plant and Soil》1990,128(1):83-89
The effects of increased deposition of nitrogen compounds on forest sites are discussed based on literature data and own results from both earlier fertilization experiments and the ARINUS study area in the Black Forest. The influence on mycorrhiza is stated suppressive as well as stimulating so that no general conclusion can be drawn. The nitrogen nutrition status of coniferous forests is still sub-optimal over wide areas with a yearly deposition of 10–20 kg N ha-1. Under considerable higher input rates the insufficient supply of other nutrients and imbalances in the nutritional status of trees are possible. When discussing nitrogen saturation of ecosystems, the nitrogen storage capacity of soils has to be considered as a decisive factor which varies from site to site. Any actual input/output balance is strongly influenced by the internal turnover processes resulting from former land use. 相似文献
8.
Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest 总被引:15,自引:0,他引:15
STEVEN D. ALLISON † CLAUDIA I. CZIMCZIK† KATHLEEN K. TRESEDER † 《Global Change Biology》2008,14(5):1156-1168
Climate warming could increase rates of soil organic matter turnover and nutrient mineralization, particularly in northern high‐latitude ecosystems. However, the effects of increasing nutrient availability on microbial processes in these ecosystems are poorly understood. To determine how soil microbes respond to nutrient enrichment, we measured microbial biomass, extracellular enzyme activities, soil respiration, and the community composition of active fungi in nitrogen (N) fertilized soils of a boreal forest in central Alaska. We predicted that N addition would suppress fungal activity relative to bacteria, but stimulate carbon (C)‐degrading enzyme activities and soil respiration. Instead, we found no evidence for a suppression of fungal activity, although fungal sporocarp production declined significantly, and the relative abundance of two fungal taxa changed dramatically with N fertilization. Microbial biomass as measured by chloroform fumigation did not respond to fertilization, nor did the ratio of fungi : bacteria as measured by quantitative polymerase chain reaction. However, microbial biomass C : N ratios narrowed significantly from 16.0 ± 1.4 to 5.2 ± 0.3 with fertilization. N fertilization significantly increased the activity of a cellulose‐degrading enzyme and suppressed the activities of protein‐ and chitin‐degrading enzymes but had no effect on soil respiration rates or 14C signatures. These results indicate that N fertilization alters microbial community composition and allocation to extracellular enzyme production without affecting soil respiration. Thus, our results do not provide evidence for strong microbial feedbacks to the boreal C cycle under climate warming or N addition. However, organic N cycling may decline due to a reduction in the activity of enzymes that target nitrogenous compounds. 相似文献
9.
10.
In the years 1986–1988 investigations were carried out on the influence of fertilizers on the mycorrhizal status of herb-layer plants of a mixed oak-pine forest in the Niepolomice Forest (Southern Poland). The site enrichment with N, P, K altered the frequency of mycorrhizal infection in most species investigated and decreased the percentage of colonized root cells. Some species disappear after fertilization (e.g. Vaccinium myrtillus L.). Among the species vigorously expanding after the treatment, mainly nonmycorrhizal plants (e.g. Festuca gigantea (L.) Vill.) were found. Some species (e.g. Milium effusum L.) favourably reacting to mineral fertilization, lost their mycorrhizae. 相似文献
11.
Nitrogen transformations in two nitrogen saturated forest ecosystems subjected to an experimental decrease in nitrogen deposition 总被引:1,自引:0,他引:1
Nitrogen transformations were studied in the forest floor and mineral soil (0–5 cm) of a Douglas fir forest (Pseudotsuga menziesii (Mirb.) Franco.) and a Scots pine forest (Pinus sylvestris L.) in the Netherlands. Curren nitrogen depositions (40 and 56 kg N ha-1 yr-1, respectively) were reduced to natural background levels (1–2 kg N ha-1 yr-1) by a roof construction. The study concentrated on rates and dynamic properties of nitrogen transformations and their link with the leaching pattern and nitrogen uptake of the vegetation under high and reduced nitrogen deposition levels. Results of an in situ field incubation experiment and laboratory incubations were compared. No effect of the reduced N deposition on nitrogen transformations was found in the Douglas fir forest. In the Scots pine forest, however, during some periods of the year nitrogen transformations were significantly decreased under the low nitrogen deposition level. At low nitrogen inputs a net immobilization occurred during most of the year leading to a very small net mineralization for the whole year. In laboratory and in individual field plots nitrogen transformations were negatively correlated with initial inorganic nitrogen concentrations. Nitrogen budget estimates showed that nitrogen transformations were probably underestimated by the in situ incubation technique. Nevertheless less nitrogen was available for plant uptake and leaching at the low deposition plots. 相似文献
12.
以长白山阔叶红松混交林为研究对象,于2006—2008年原位模拟不同形态氮((NH4)2SO4、NH4Cl和KNO3)沉降水平(22.5和45kgN·hm-2·a-1),利用树脂芯法技术(resin-core incubation technique)测定了表层(有机层0~7cm)和土层(0~15cm)土壤氮素净矿化、净氨化和净硝化通量的季节和年际变化规律。同时,结合前人报道的有关林地碳、氮过程及其环境变化影响的结果,力求有效预估森林生态系统中氮素年矿化通量对大气氮沉降量和水热条件等因子变化的响应。结果表明,长白山阔叶红松林地土壤氮素年净矿化通量为1.2~19.8kgN·hm-2·a-1,2008年不同深度的土壤氮素年净矿化通量均显著高于2006和2007年(P<0.05)。随着模拟氮沉降量增加,土壤氮素净矿化通量也随之增加,尤其外源NH4+-N输入对净矿化通量的促进作用更为明显(P<0.05),但随着施肥年限的延长,这种促进作用逐渐减弱。与林地0~15cm土壤相比,氮沉降增加对0~7cm有机层氮素净氨化和净矿化通量的促进作用更为明显,尤其NH4Cl处理的促进作用更大。结合前人报道的野外原位观测结果,土壤氮素年净矿化通量随氮素沉降量的增加而增大,氮沉降量对不同区域森林土壤氮素净矿化通量的贡献率约为52%;氮沉降量(x1)和pH值(x2)可以解释区域森林土壤氮素年净矿化通量(y)变化的70%(y=0.54x1-18.38x2-109.55,R2=0.70,P<0.0001)。前人研究结果仅提供区域年均温度,未考虑积温的影响,这可能是造成年净矿化通量与温度无关的原因。今后的研究工作应该加强区域森林土壤积温观测,进而更加准确地预估森林土壤氮素的年净矿化通量。 相似文献
13.
The effects of clearcut and partial harvesting of early-seral trembling aspen plots were compared to conventional clearcut harvesting in mid-seral mixedwood and late-seral conifer plots. Twice a year, for three consecutive years, we assessed mineral N and microbial dynamics in the forest floor of these plots to test three hypotheses related to the higher litter quality of aspen leaves and to the sustained inputs of available C on partially harvested plots: (1) the post-clearcutting mineral N flush and the net [(NO3–): (NO3– + NH4+)] production ratio (RNI) are higher in aspen plots than in black spruce plots, with intermediate values occurring in mixedwood plots; (2) net N mineralization rates in aspen plots are higher in spring than in autumn; and (3) compared to clearcutting, partial harvesting reduces potential ammonification and nitrification rates. Initial NH4+ and NO3– concentrations respectively ranged between 1.7–4.4 and 0.2–1.5 g N kg–1 Ntotal, net ammonification and nitrification rates (30 d incubations) respectively ranged between 5.3–17.8 and 0.1–27.6 g N kg–1 Ntotal, basal respiration ranged between 20.9–38.9 mg CO2-C kg–1 h–1, and microbial biomass ranged between 6.1–8.7 g Cmic kg–1. Although clearcutting increased NO3– concentrations in aspen plots, the balance of our results did not support our first hypothesis, because NH4+ concentrations increased in conifer plots only, potential ammonification was unaffected by clearcutting, potential nitrification increased in mixedwood plots only, and RNI increased in all plots. In each seral stage, basal respiration, microbial biomass, and metabolic quotient either increased or were unaffected by clearcutting, suggesting that increases in RNI after disturbance were not related to lower microbial immobilisation of NO3– due to lower available C. Forest floors in mid-seral mixedwood plots exhibited a distinct combination of mineral N and microbial properties, suggesting that the functional richness of the forest is enhanced not only by the number of species, but also by the diversity of assemblages that are present. Results supported our second hypothesis and showed, furthermore, that net N mineralization in conifer stands is greater in autumn than in spring. Partial harvesting in aspen stands resulted in lower potential mineralization of N and lower RNI, compared to clearcutting. Further lysimetry studies are needed to confirm whether partial harvesting mitigates NO3– leaching following disturbance. 相似文献
14.
Nitrogen (N) deposition is expected to increase in northwestern Europe the next 50–100 years. The effects of higher N availability on lichens will presumably depend on their capacity to acquire carbon (C), that is, of the timing and duration of the wet and active state. If lichens respond like plants, their C and N status may affect their concentration of carbon-based secondary compounds (CBSCs), and thus their defence against herbivores, detrimental radiation, pathogens and parasites. In the present study we have manipulated N availability and timing and duration of the metabolically active state by spraying lichen transplants in an old spruce forest with rainwater or rainwater with added N corresponding to 50 kg N ha−1 yr−1 . The spraying was applied either at night, in the morning or at noon to also investigate the effect of timing and duration of the active state. Concentrations of N, chlorophyll a (Chl a ) and CBSCs were measured before and after one summer's spraying of 10 thalli in each of four different lichen species; Alectoria sarmentosa, Lobaria scrobiculata, Platismatia glauca , and Xanthoria aureola . The added N was readily taken up by all the lichen species. A. sarmentosa, P. glauca , and X. aureola increased their Chl a concentration in response to increased N, while L. scrobiculata increased Chl a in response to increased active time. None of the studied species reduced their concentration of secondary compounds during the experimental period, but in P. glauca the concentration of all compounds were significantly lower in N-treated thalli compared with those that got only rainwater. The results are consistent with a high degree of constitutive defence in three of four species, and we conclude that all the investigated lichens seem to have rather robust chemical defence systems despite considerable manipulation of the environmental conditions. 相似文献
15.
16.
M. C. Cowan 《Plant and Soil》1979,51(2):279-282
Summary When nitrogen fixation in peas was partially replaced by nitrate assimilation as the source of nitrogen, an increase was found in the amount of soluble nitrogen that could be extracted from the fruits of the plants, and within this soluble fraction, increases were found in the levels of some of the acidic amino acids. Levels of protein amino acids in the peas were generally unaffected by the type of nitrogen source except for the level of aspartic acid which was about 20 per cent lower in peas supplied with nitrate. No differences were found in the proportions of the essential amino acids. 相似文献
17.
Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input 总被引:1,自引:0,他引:1
BIRGIT KOEHLER MARIFE D. CORRE EDZO VELDKAMP HANS WULLAERT S. JOSEPH WRIGHT† 《Global Change Biology》2009,15(8):2049-2066
Tropical nitrogen (N) deposition is projected to increase substantially within the coming decades. Increases in soil emissions of the climate‐relevant trace gases NO and N2O are expected, but few studies address this possibility. We used N addition experiments to achieve N‐enriched conditions in contrasting montane and lowland forests and assessed changes in the timing and magnitude of soil N‐oxide emissions. We evaluated transitory effects, which occurred immediately after N addition, and long‐term effects measured at least 6 weeks after N addition. In the montane forest where stem growth was N limited, the first‐time N additions caused rapid increases in soil N‐oxide emissions. During the first 2 years of N addition, annual N‐oxide emissions were five times (transitory effect) and two times (long‐term effect) larger than controls. This contradicts the current assumption that N‐limited tropical montane forests will respond to N additions with only small and delayed increases in soil N‐oxide emissions. We attribute this fast and large response of soil N‐oxide emissions to the presence of an organic layer (a characteristic feature of this forest type) in which nitrification increased substantially following N addition. In the lowland forest where stem growth was neither N nor phosphorus (P) limited, the first‐time N additions caused only gradual and minimal increases in soil N‐oxide emissions. These first N additions were completed at the beginning of the wet season, and low soil water content may have limited nitrification. In contrast, the 9‐ and 10‐year N‐addition plots displayed instantaneous and large soil N‐oxide emissions. Annual N‐oxide emissions under chronic N addition were seven times (transitory effect) and four times (long‐term effect) larger than controls. Seasonal changes in soil water content also caused seasonal changes in soil N‐oxide emissions from the 9‐ and 10‐year N‐addition plots. This suggests that climate change scenarios, where rainfall quantity and seasonality change, will alter the relative importance of soil NO and N2O emissions from tropical forests exposed to elevated N deposition. 相似文献
18.
Nutritional improvement of the aspartate family of amino acids in edible crop plants 总被引:3,自引:0,他引:3
Summary Plants are the primary source of protein for man and livestock, however, not all plants produce proteins which contain a balance of amino acids for the diet to ensure proper growth of livestock and humans. Alteration of the amino acid composition of plants may be accomplished using techniques of molecular biology and genetic engineering. Genes encoding key enzymes regulating the synthesis of lysine and threonine have been cloned from plants andE. coli and are available for modification and transformation into plants. Genes encoding seed storage proteins have been cloned and modified to encode more lysine residues for developing transgenic plants with higher seed lysine. Genes encoding seed storage proteins naturally higher in methionine have been cloned and expressed in transgenic plants, increasing methionine levels of the seed. These and other approaches hold great promise in their application to increasing the content of essential amino acids in plants.Abbreviations: AK = aspartokinase; HSDH = homoserine dehydrogenase; DS = dihydrodipicolinic acid synthase; AEC = S-(2-aminoethyl)-L-cysteineMention of trademark, proprietary product or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may be suitable. 相似文献
19.
Transformations and fluxes of N were examined in three forested sites located along a gradient of soil texture in the coastal forests of the Waquoit Bay watershed on Cape Cod. Total N leaching losses to ground water were 0.5 kg ha-1 yr-1 in the loamy sand site and 1.5 kg ha-1 yr-1 in the fine sand site. Leaching loss to groundwater was not measured in the coarse sand site due to the prohibitive depth of the water table but total N leaching loss to 1m depth in the mineral soil was 3.9 kg ha-1 yr-1. DON accounted for most of the leaching losses below the rooting zone (77–89%) and through the soil profile to ground water (60%–80%). Differences in DON retention capacity of the mineral soil in the sites along the soil texture gradient were most likely related to changes in mineral soil particle surface area and percolation rates associated with soil texture. Forests of the watershed functioned as a sink for inorganic N deposited on the surface of the watershed in wet and dry deposition but a source of dissolved organic N to ground water and adjoining coastal ecosystems. 相似文献
20.
Small birch plants ( Betula pendula Roth .) were grown at different rates of exponentially increasing nitrogen supply. This resulted in plants with different relative growth rates and different internal nitrogen concentrations. Within a nitrogen treatment, both of these variables remained constant with time.
Free amino acids were measured in leaves and roots of the seedlings at two different harvests. At greater nitrogen supply, higher concentrations of total amino acid nitrogen were found in roots and leaves. The ratio of amino acid nitrogen to total nitrogen was low albeit greater at higher nitrogen supply. Higher concentrations of amino acid nitrogen were mainly due to high concentrations of citrulline, glutamine, γ-aminobuitric acid and arginine.
Greater leaf concentrations of amino acid nitrogen at higher nitrogen supply may be related lo increased concentrations in the xylem sap and/or may be indicative of small excesses of nitrogen with respect to current nitrogen usage in protein synthesis. 相似文献
Free amino acids were measured in leaves and roots of the seedlings at two different harvests. At greater nitrogen supply, higher concentrations of total amino acid nitrogen were found in roots and leaves. The ratio of amino acid nitrogen to total nitrogen was low albeit greater at higher nitrogen supply. Higher concentrations of amino acid nitrogen were mainly due to high concentrations of citrulline, glutamine, γ-aminobuitric acid and arginine.
Greater leaf concentrations of amino acid nitrogen at higher nitrogen supply may be related lo increased concentrations in the xylem sap and/or may be indicative of small excesses of nitrogen with respect to current nitrogen usage in protein synthesis. 相似文献