共查询到20条相似文献,搜索用时 0 毫秒
1.
ESR spectral changes induced by chlorpromazine in spin-labeled erythrocyte ghost membranes 总被引:2,自引:0,他引:2
Chlorpromazine interacted preferentially with membrane proteins rather than membrane lipids in the initial incorporation into human erythrocyte ghosts, as demonstrated by means of the fluorescence quenching and a maleimide spin label. In this state the membrane fluidity increased. At higher concentrations of chlorpromazine, the membrane fluidity decreased and a motionally restricted signal from fatty acid spin labels appeared predominantly. However, no such signal appeared in protein-free vesicles. The temperature and pH dependences of the outer hyperfine splitting of this restricted signal were very similar to those of bovine serum albumin. On the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chlorpromazine-treated and -untreated ghosts, it was found that there was no significant difference in membrane proteins between both samples except for the changes of a few bands which were not directly concerned with the occurrence of this restricted signal. These results suggest that the fatty acid spin labels bind preferably to membrane proteins as the lipid domain becomes packed with chlorpromazine. 相似文献
2.
chlorpromazine interacted preferentially with membrane proteins rather than membrane lipids in the initial incorporation into human erythrocyte ghosts, as demonstrated by means of the fluorescence quenching and a maleimide spin label. In this state the membrane fluidity increased. At higher concentrations of chlorpromazine, the membrane fluidity decreased and a motionally restricted signal from fatty acid spin labels appeared predominantly. However, no such signal appeared in protein-free vesicles. The temperature and pH dependences of the outer hyperfine splitting of this restricted signal were very similar to those of bovine serum albumin. On the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chlorpromazine-treated and -untreated ghosts, it was found that there was no significant difference in membrane proteins between both samples except for the changes of a few bands which were not directly concerned with the occurrence of this restricted signal. These results suggest that the fatty acid spin labels bind preferably to membrane proteins as the lipid domain becomes packed with chlorpromazine. 相似文献
3.
Cross-linking of glycolipids in erythrocyte ghost membrane 总被引:2,自引:0,他引:2
T H Ji 《The Journal of biological chemistry》1974,249(24):7841-7847
4.
M R Lieber Y Lange R S Weinstein T L Steck 《The Journal of biological chemistry》1984,259(14):9225-9234
The interaction of the amphipath chlorpromazine (CPZ) with the human erythrocyte membrane was evaluated. The partition coefficient of CPZ between the membrane bilayer and the aqueous compartment, measured spectrophotometrically, ranged between 1 and 3 X 10(3). An independent estimate, 4.6 X 10(3), was obtained by a novel method which avoided the measurement of binding and determined instead the variation of the hemolytic potency of the amphipath with the ratio of buffer volume to membrane volume. The maximal uptake of CPZ exceeded 2 X 10(9) molecules/red cell, corresponding to a volume greater than that of the bilayer itself. Such heavily loaded membranes were increased in thickness more than 2-fold, suggesting the formation of a CPZ-rich zone at the center of the bilayer. Ghosts loaded with massive levels of CPZ condensed approximately 20-fold in surface area and increased proportionately in thickness, suggesting the formation of a novel CPZ-lipid solution. CPZ caused hemolysis by a colloid-osmotic mechanism. By measuring the simultaneous uptake of mannitol and sucrose, we determined that CPZ induced holes of constant size but variable number. If circular, the holes would have had a diameter of approximately 14 A. The time-averaged number of holes ranged from 0.09 per cell (signifying intermittency) to 16. Freeze-fracture electron microscopy of CPZ-treated red cells revealed multiple round patches of nearly particle-free bilayer up to 0.3 micron in diameter with crowding of the intramembrane particles into the surrounding membrane. We interpret these images to signify lateral phase separation within the CPZ-treated bilayer. Hemolysis could, therefore, result from the intermittent opening of weak seams at phase boundaries; these could then be fluctuating slits approximately 14 A in width and of variable length, rather than simple circular holes. 相似文献
5.
6.
Erythrocyte membrane mechanical function is regulated by the spectrin-based membrane skeleton composed of alpha- and beta-spectrin, actin, protein 4.1R (4.1R), and adducin. Post-translational modifications of these proteins have been suggested to modulate membrane mechanical function. Indeed, beta-spectrin phosphorylation by casein kinase I has been shown to decrease membrane mechanical stability. However, the effects of the phosphorylation of skeletal proteins by protein kinase C (PKC), a serine/threonine kinase, have not been elucidated. In the present study, we explored the functional consequences of the phosphorylation of 4.1R and adducin by PKC. We identified Ser-312 in 4.1R as the PKC phosphorylation site. Using antibodies raised against phosphopeptides of 4.1R and adducin, we documented significant differences in the time course of phosphorylation of adducin and 4.1R by PKC. Although adducin was phosphorylated rapidly by the activation of membrane-bound atypical PKC by phorbol 12-myristate 13-acetate stimulation, there was a significant delay in the phosphorylation of 4.1R because of delayed recruitment of conventional PKC from cytosol to the membrane. This differential time course in the phosphorylation of 4.1R and adducin in conjunction with membrane mechanical stability measurements enabled us to document that, although phosphorylation of adducin by PKC has little effect on membrane mechanical stability, additional phosphorylation of 4.1R results in a marked decrease in membrane mechanical stability. We further showed that the phosphorylation of 4.1R by PKC results in its decreased ability to form a ternary complex with spectrin and actin as well as dissociation of glycophorin C from the membrane skeleton. These findings have enabled us to define a regulatory role for 4.1R phosphorylation in dynamic regulation of red cell membrane properties. 相似文献
7.
Inhibition of erythrocyte ghost ATPase by polyene antibiotics 总被引:2,自引:0,他引:2
The effect of micromolar concentrations of polyene antibiotics on erythrocyte ghost ATPase activities has been studied. (Mg2+)-ATPase is inhibited by amphotericin B and amphotericin B methyl ester, whereas (Na+ + K+ + Mg2+)-ATPase is inhibited by amphotericin B and lucensomycin. (Ca2+ + Mg2+)-ATPase is only slightly affected by polyene antibiotics. 相似文献
8.
Autologic plasma protects human erythrocytes from hemolysis induced by their suction through glass microfiber filters. The protective effect is related to the protein fraction with molecular mass above 100 kD and reproduced by gamma-globulin. The action of proteins is abolished after heating the erythrocytes above 45 degrees C as well as in the presence of galactose and ribose but not glucose, mannose and lactose. It is suggested that an increase in mechanical stability of erythrocytes is caused by interaction of immunoglobulins with glycoproteid and glycolipid membrane receptors and mediated by the changes of structural state of the cytoskeleton. 相似文献
9.
Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation of membrane 总被引:2,自引:0,他引:2
The fluidity of human erythrocyte membrane, and the effect of chlorpromazine at prelytic and lytic concentrations on the fluidity have been studied by using three kinds of fatty acid spin labels and measuring the temperature dependence of Mg2+-ATPase activity. The Arrhenius plot of the apparent rotational correlation time, tau c, for probes I(12,3) and I(5,10) showed an abrupt discontinuity at about 30 degrees C, and the plot for I(1,14) at 25 degrees C, indicating that a large difference in the fluidity exists between the interior and the outer surface of the lipid bilayer. The portions of the fatty acid chain near the ten carbon bond lengths removed from the bilayer surface became more fluid by chlorpromazine treatment; there was a decrease in the break point to around 26 degrees C following treatment with 0.6 or 1 mM of the drug. Two breaks at 21 and 30 degrees C in the Arrhenius plot of the Mg2+-ATPase activity were observed in normal erythrocyte membrane. The activation energy of the Mg2+-ATPase reaction has the values of 3.0 and 22.1 kcal/mol above the upper break and below the lower break, respectively. The drug exposure induced only a slight shift in the break temperatures, while the treatment significantly enhanced the associated activation energies of the reaction. These results suggest that the boundary phospholipids of the Mg2+-ATPase in the membrane are probably more rigid than the bulk lipids. 相似文献
10.
Profound digestion of unsealed human erythrocyte ghosts with high concentrations of Pronase results in a near complete loss of intramembrane particles while trypsin digestion is less effective. The small vesicles formed by proteolysis are agglutinable by soybean agglutinin (SBA), wheat germ agglutinin (WGA), and phytohemagglutinin (PHA), but not concanavalin A (ConA). Densitometer tracings of Pronase-treated vesicles analyzed on SDS-polyacrylamide gels demonstrated no detectable protein or glycoprotein migrating slower than the marking dye. The vesicles showed a loss of 90% Lowry positive material (the remainder may be non-protein chromogens), near depletion of sialyl residues, no significant change in lipid composition, and equal amounts of phospholipid phosphorus compared to an equal volume of ghosts. The lipid material extracted from Pronase-derived vesicles or intact ghosts inhibited hemagglutination with SBA and WGA but not ConA. SBA but not ConA was found to specifically bind to Pronase-derived vesicles while both lectins bound to native ghosts. These observations suggest that neither the integrity of the intramembrane particles nor the presence of membrane glycoprotein appears essential for SBA-, WGA-, and PHA-mediated agglutination. Furthermore, it appears that native membrane glycolipids (and perhaps glycopeptides) can bind SBA, WGA and PHA. The membrane glycolipids may play a larger role than heretofore realized in lectin-mediated agglutination of cells. 相似文献
11.
Eugene E. Quist 《Biochemical and biophysical research communications》1980,92(2):631-637
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity. 相似文献
12.
The determination of the electron density profile of the human erythrocyte ghost membrane by small-angle x-ray diffraction. 下载免费PDF全文
Diffraction patterns of stacked hemolyzed erythrocyte ghosts in the wet state were recorded. Three orders of a surprisingly high first-order periodicity of 600 A were detected. The scattering curves were evaluated by the Q-function method, including lattice distortions of the one-dimensional multilamellar system. The resulting electron density profile of the membrane in the wet state is strongly asymmetric. It consists of an asymmetrical bilayer-type part and an excess of positive relative electron density at the inner, cytoplasmic, side of the membrane. The extension of the whole membrane profile in the wet state is 100--120 A. We suggest that the innermost positive density peak mainly represents the loosely bound protein components spectrin and actin, located at the cytoplasmic side of the membrane and sometimes seen as "fuzzy" material on electron micrographs. 相似文献
13.
The band 3-ankyrin-spectrin bridge and the glycophorin C-protein 4.1-spectrin/actin bridge constitute the two major tethers between the erythrocyte membrane and its spectrin skeleton. Although a structural requirement for the band 3-ankyrin bridge is well established, the contribution of the glycophorin C-protein 4.1 bridge to red cell function remains to be defined. In order to explore this latter bridge further, we have identified and/or characterized five stimuli that sever the linkage in intact erythrocytes and have examined the impact of this rupture on membrane mechanical properties. We report here that elevation of cytosolic 2,3-bisphosphoglycerate, an increase in intracellular Ca(2+), removal of cell O(2), a decrease in intracellular pH, and activation of erythrocyte protein kinase C all promote dissociation of protein 4.1 from glycophorin C, leading to reduced retention of glycophorin C in detergent-extracted spectrin/actin skeletons. Significantly, where mechanical studies could be performed, we also observe that rupture of the membrane-to-skeleton bridge has little or no impact on the mechanical properties of the cell, as assayed by ektacytometry and nickel mesh filtration. We, therefore, suggest that, although regulation of the glycophorin C-protein 4.1-spectrin/actin bridge likely occurs physiologically, the role of the tether and the associated regulatory changes remain to be established. 相似文献
14.
15.
Incubation of human erythrocyte membrane with low concentration of prostaglandin E1 or prostacyclin increased the binding of 125I-labeled insulin to the membrane. The binding of the radioiodinated hormone was maximally stimulated at 3 nM prostaglandin E1 and the use of higher concentrations (above 8 nM) of the autacoid tended to reverse its own effect at lower concentrations. While prostaglandins A1, A2, B1, B2, D2, F1 alpha, F2 alpha or 6-keto-prostaglandin F1 alpha had no effect on the binding of insulin to the erythrocyte membrane, prostaglandin E2 at similar concentrations decreased the binding of the hormone. The effect of prostaglandin E1 on the increased binding of the insulin was found to be reversible and depended on the occupancy of the autacoid molecules on the membrane and showed positive cooperativity. Scatchard analysis of the binding of 125I-labeled insulin to the erythrocyte ghosts indicated that in the presence of the autacoid, the binding capacity of the insulin receptor increased 2-fold (from 207 to 424 fmol/mg protein) without any change in the ghosts affinity for the ligand (Kd 2.4 X 10(-9) versus 2.49 X 10(-9) M). As a consequence of increased binding of insulin to the erythrocyte membrane in the presence of prostaglandin E1 (3.0 nM), the optimal concentration of the peptide hormone for the maximal reduction of the membrane microviscosity decreased from approx. 1.6 to approx. 0.4 nM. Addition of prostaglandin E1 alone at the above concentration to the assay mixture had no effect on the membrane microviscosity. 相似文献
16.
Anionic sites on the membrane intercalated particles of human erythrocyte ghost membranes. Freeze-etch localization 总被引:14,自引:0,他引:14
Freeze-fracture and freeze-etching techniques disclose exclusive association of a ferritin derivative (with high isoelectric point, used as a marker for anionic sites) with the regions at the outer and inner surface of the membrane of human erythrocyte ghosts which correspond to the membraneintercalated particles. At the outer surface the sites include sialoglycoprotein. Exclusive association of anionic sites and membrane particles, and comparison of the number of sialic acid residues and intercalated particles implies clustering of acidic groups over discrete sites at the surface. Association of the label with the outer and inner surface regions which correspond to the membrane intercalated particles, provides further support for the concept of protein-containing structures which are intercalated and traverse the hydrophobic matrix of membrane regions with bilayer organization. 相似文献
17.
Ahyayaucha H Gallego M Casis O Bennouna M 《Journal of physiology and biochemistry》2006,62(3):199-205
Chlorpromazine (CPZ), a phenothiazine derivative, is a potent antipsychotic agent and imipramine (IP) is a widely used tricyclic antidepressant. The interaction between these molecules and erythrocyte membranes is of particular interest considering the role of these cells in the transport and release of these drugs at the central nervous system. In the present paper, we intend to study the effects of IP on erythrocyte membranes and to compare these effects with those of CPZ. Erythrocytes from adult Sprague-Dawley rats were incubated separately with different concentrations of IP or CPZ for lh at room temperature, fixed and stained by Giemsa. Changes in erythrocyte morphology were quantified by an image analysis system. The interaction of both drugs, CPZ and IP, with the erythrocyte membrane causes similar changes in cell shape. Increasing concentrations of both drugs induces the formation of stomatocytes, spherostomatocytes and spherocytes, because of an irreversible loss of area and volume, probably due to endovesiculation. Our results also show that the CPZ is more potent than IP. 相似文献
18.
The endocytic vacuoles induced in white ghosts were found to be depleted of spectrin and therefore it was proposed that they arose from spectrin-free areas in the erythrocyte membrane. To follow changes in spectrin distribution during endocytosis, affinity-purified rabbit antispectrin antibodies were produced. Quantitative techniques were developed for the use of a highly specific 125I-F(ab')2 antispectrin, and these showed that before the appearance of vacuoles, as assessed by phase microscopy, there was a reproducible decrease in immunoreactive spectrin. To determine whether this spectrin decrease represented a local or diffuse spectrin loss or a spectrin rearrangement, morphologic studies were undertaken using transmission electron microscopy on samples treated with rabbit antispectrin and ferritin-conjugated goat anti-rabbit immunoglobulin. These studies showed that endocytosis was preceded by the creation of extensive spectrin-free areas separated by discrete spectrin-containing zones. Pretreatment of ghosts with alkaline phosphatase blocked all forms of endocytosis and prevented the creation of spectrin-free areas. Therefore, it is proposed that under the impetus of endocytosis inducers, phosphorylated spectrin is redistributed so that spectrin-free zones are created, and that endocytic vacuoles form and fuse in spectrin-free areas. 相似文献
19.
20.
Murdock DR Ermilov SA Spector AA Popel AS Brownell WE Anvari B 《Biophysical journal》2005,89(6):4090-4095
An optical tweezers system was used to characterize the effects of chlorpromazine (CPZ) on the mechanical properties of the mammalian outer hair cell (OHC) through the formation of plasma membrane tethers. Such tethers exhibited force relaxation when held at a constant length for several minutes. We used a second-order generalized Kelvin body to model tether-force behavior from which several mechanical parameters were then calculated including stiffness, viscosity-associated measures, and force relaxation time constants. The results of the analysis portray a two-part relaxation process characterized by significantly different rates of force decay, which we propose is due to the local reorganization of lipids within the tether and the flow of external lipid into the tether. We found that CPZ's effect was limited to the latter phenomenon since only the second phase of relaxation was significantly affected by the drug. This finding coupled with an observed large reduction in overall tether forces implies a common basis for the drug's effects, the plasma membrane-cytoskeleton interaction. The CPZ-induced changes in tether viscoelastic behavior suggest that alterations in the mechanical properties of the OHC lateral wall could play a role in the modulation of OHC electromotility by CPZ. 相似文献