首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

CXCL1 (CXC chemokine-ligand-1) is a ligand for CXC chemokine receptor 2 expressed on hepatic stellate cells (HSC). Thus, CXCL1 might contribute to HSC activation and fibrogenesis. In the present study, we investigated the influence of the CXCL1 rs4074 polymorphism on the occurrence of alcohol induced liver cirrhosis and hepatocellular carcinoma (HCC).

Methods

The study involved 458 patients with alcoholic cirrhosis (170 with HCC), 115 alcoholics without liver disease and 342 healthy controls. All subjects were genotyped for the CXCL1 rs4074 polymorphism and CXCL1 serum levels of 132 patients were measured. In vitro CXCL1 secretion in TLR-transfected cell lines were studied by ELISA.

Results

Distribution of the CXCL1 genotypes (GG/GA/AA) was 159/219/80 in patients with alcoholic cirrhosis, 52/44/19 in alcoholic controls and 158/140/44 in healthy controls. Patients with alcohol-induced cirrhosis were significantly more often carriers of the CXCL1 rs4074 A allele (65.3%) than alcoholics without liver disease (54.8%, OR=1.55; 95%CI=1.025-2.350; p=0.04) and healthy controls (53.8%, OR=1.62; 95%CI=1.212-2.151; p=0.001). Accordingly, the frequency of the CXCL1 rs4074 A allele was significantly higher in the cirrhotic patients than in the subjects without cirrhosis (41.4% vs. 33.9%, OR=1.38, 95% CI:1.14–1.66, p=0.001). Furthermore cirrhotic carriers of the CXCL1 rs4074 A allele had significantly higher CXCL1 serum levels than carriers of the GG genotype. In contrast to sera from healthy controls, sera from patients with alcoholic cirrhosis induced CXCL1 secretion in TLR2- (p=0.016) and TLR4- (p=0.008) transfected HEK293 cells. This finding indicates that sera from patients with alcoholic cirrhosis contain soluble ligands that can induce CXCL1 production via stimulation of TLRs.

Conclusion

The enhanced CXCL1 serum levels in carriers of the rs4074 A allele together with their increased frequency in patients with alcohol induced cirrhosis suggest the CXCL1 rs4074 A allele as a genetic risk factor for alcoholic cirrhosis.  相似文献   

2.
Genetic determinants of ethanol-induced liver damage   总被引:6,自引:0,他引:6  
BACKGROUND: Although a clear correlation exists between cumulative alcohol intake and liver disease, only some of the alcohol abusers develop signs of ethanol-induced liver damage. To identify some of the genetic variations predisposing persons to alcoholic liver disease (ALD), a genetic study was performed in heavy drinkers from the cohort of the Dionysis study, a survey aimed at evaluating liver disease in the open population of two towns in Northern Italy (6917 individuals). MATERIALS AND METHODS: 158 heavy drinkers (approximately 85% of all heavy drinkers in the population; daily alcohol intake > 120 g in males and >60 g in females) were investigated by the analysis of nine polymorphic regions, mapping in exons III and IX of the alcohol-dehydrogenase (ADH)-2 gene, in exon VIII of the ADH3 gene, in intron VI, in the promoter region of the cytochrome P4502E1 (CYP2E1) gene, and in the promoter region of the tumor necrosis factor-alpha gene. RESULTS: Heavy drinkers with or without ALD significantly differed for the distribution of alleles of the cytochrome P4502E1 (CYP2E1) and alcohol-dehydrogenase-3 (ADH-3) genes. In one town, allele C2 in the promoter region of the CYP2E1 gene had a frequency of 0.06 in healthy heavy drinkers, of 0.19 in heavy drinkers with ALD (p = 0.012), and of 0.33 in heavy drinkers with cirrhosis (p = 0.033). In the other town, whose inhabitants have different genetic derivation, a prominent association between ALD and homozygosity for allele ADH3*2 of ADH3 was found, with a prevalence of 0.31 in heavy drinkers with ALD and of 0.07 in healthy heavy drinkers controls (p = 0.004). CONCLUSIONS. Both heterozygosity for allele C2 of CYP2E1 and homozygosity for allele ADH3*2 of ADH3 are independent risk factors for ALD in alcohol abusers. The relative contribution of these genotypes to ALD is dependent on their frequency in the population. Overall, heavy drinkers lacking either of these two genotypes are 3.2 and 4.3 times more protected from developing ALD and cirrhosis respectively.  相似文献   

3.
I S Afanas'eva  V A Spitsyn 《Genetika》1990,26(7):1309-1315
A total of 100 autopsy liver extracts from Russian individuals were examined for glutathione-S-transferase I (GST1) isozymes by means of starch gel electrophoresis. The gene frequencies of GST1* 1, GST1* 2 and GST1* 0 were 0.051, 0.251 and 0.697, respectively. Analysis of data obtained and those in literature for other populations revealed the difference between European and Mongoloid groups. The GST1 0 phenotype was found in samples of liver from individuals with alcoholic hepatitis at frequency 77.3%. The gene frequencies for GST1* 1, GST1* 2 and GST1* 0 were 0.020, 0.100 and 0.879, respectively.  相似文献   

4.
The genes that encode the major enzymes of alcohol metabolism, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), exhibit functional polymorphism. The variant alleles ADH2*2 and ADH3*1, which encode high-activity ADH isoforms, and the ALDH2*2 allele, which encodes the low-activity form of ALDH2, protect against alcoholism in East Asians. To investigate possible interactions among these protective genes, we genotyped 340 alcoholic and 545 control Han Chinese living in Taiwan at the ADH2, ADH3, and ALDH2 loci. After the influence of ALDH2*2 was controlled for, multiple logistic regression analysis indicated that allelic variation at ADH3 exerts no significant effect on the risk of alcoholism. This can be accounted for by linkage disequlibrium between ADH3*1 and ADH2*2 ALDH2*2 homozygosity, regardless of the ADH2 genotypes, was fully protective against alcoholism; no individual showing such homozygosity was found among the alcoholics. Logistic regression analyses of the remaining six combinatorial genotypes of the polymorphic ADH2 and ALDH2 loci indicated that individuals carrying one or two copies of ADH2*2 and a single copy of ALDH2*2 had the lowest risk (ORs 0.04-0.05) for alcoholism, as compared with the ADH2*1/*1 and ALDH2*1/*1 genotype. The disease risk associated with the ADH2*2/*2-ALDH2*1/*1 genotype appeared to be about half of that associated with the ADH2*1/*2-ALDH2*1/*1 genotype. The results suggest that protection afforded by the ADH2*2 allele may be independent of that afforded by ALDH2*2.  相似文献   

5.

Background

An isoleucine>methionine mutation at position 148 in the PNPLA3 gene (p.I148M, rs738409) has recently been identified as a susceptibility factor for liver damage in steatohepatitis. Here, we studied whether the PNPLA3 rs738409 polymorphism also affects predisposition to hepatocellular carcinoma (HCC).

Methods

We compared distributions of PNPLA3 genotypes in 80 and 81 Caucasian patients with alcoholic and hepatitis C virus (HCV)-associated HCC to 80 and 81 age- and sex-matched patients with alcohol-related and HCV-related cirrhosis without HCC, respectively. PNPLA3 genotypes in 190 healthy individuals from the same population served as reference. Potential confounders obesity, diabetes, HCV genotype and HBV co-infection were controlled by univariate and multivariate logistic regression with forward variable selection.

Results

PNPLA3 genotypes were in Hardy-Weinberg equilibrium for all study groups. The frequency of the 148M allele was significantly (p<0.001) increased in alcoholic cirrhosis with (53.7%) and without HCC (36.2%) but was not different between healthy controls (22.9%) and patients with cirrhosis (25.3%; p = 0.545) and HCC (30.2%; p = 0.071) due to hepatitis C. HCC risk was highest in 148M/M homozygous patients with alcoholic liver disease (odds ratio (OR) 16.8 versus healthy controls; 95% confidence interval (CI) 6.68–42.43, p<0.001). Finally, multivariate regression confirmed 148M/M homozygosity (OR 2.8; 95%-CI: 1.24–6.42; p = 0.013) as HCC risk factor in alcoholic cirrhosis. In HCV-related cirrhosis only HCV genotype 1 was confirmed as a HCC risk factor (OR 4.2; 95%-CI: 1.50–11.52; p = 0.006).

Conclusion

The PNPLA3 148M variant is a prominent risk factor for HCC in patients with alcoholic cirrhosis, while its effects are negligible in patients with cirrhosis due to HCV. This polymorphism provides an useful tool to identify individuals with particularly high HCC risk in patients with alcoholic liver disease that should be taken into account in future HCC prevention studies.  相似文献   

6.
Blood samples from 621 individuals of a Caste Hindu Population from West Bengal (India) were investigated in an attempt to find out an association between the AB0 blood groups and Haptoglobin (HP) subtypes. AB0 blood grouping was done on the basis of the agglutination test with standard anti-sera. Haptoglobin subtyping only for the HP*1 allele was done by Polyacrylamide Gel Electrophoresis (PAGE). A significant association was found with a significantly lower HP*1S allele frequency in blood group 0 versus other AB0 blood groups. A comparatively higher allele frequency of HP*1S was found in this population sample. An inverse relationship between HP*1S and HP*2 has been revealed in each blood group. It appears that the major portion of HP*1 alleles in the A, B, and AB blood groups belongs to the HP*1S allele compared to that of the 0 blood group.  相似文献   

7.
Chronic beryllium disease (CBD) is associated with the allelic substitution of a Glu69 in the HLA-DPB1 gene. Although up to 97% of CBD patients may have the Glu69 marker, about 30-45% of beryllium-exposed, unaffected individuals carry the same marker. Because CBD occurs in only 1-6% of exposed workers, the presence of Glu69 does not appear to be the sole genetic factor underlying the disease development. Using two rounds of direct automated DNA sequencing to precisely assign HLA-DPB1 haplotypes, we have discovered highly significant Glu69-containing allele frequency differences between the CBD patients and a beryllium-exposed, nondiseased control group. Individuals with DPB1 Glu69 in both alleles were almost exclusively found in the CBD group (6/20) vs the control group (1/75). Whereas most Glu69 carriers from the control group had a DPB1 allele *0201 (68%), most Glu69 carriers from the CBD group had a non-*0201 DPB1 Glu69-carrying allele (84%). The DPB1 allele *0201 was almost exclusively (29/30) associated with DPA1 *01 alleles, while the non-*0201 Glu69-containing DPB1 alleles were closely associated with DPA1 *02 alleles (26/29). Relatively rare Glu69-containing alleles *1701, *0901, and *1001 had extremely high frequencies in the CBD group (50%), as compared with the control group (6.7%). Therefore, the most common Glu69-containing DPB1 allele, *0201, does not seem to be a major disease allele. The results suggest that it is not the mere presence of Glu69, per se, but specific Glu69-containing alleles and their copy number (homozygous or heterozygous) that confer the greatest susceptibility to CBD in exposed individuals.  相似文献   

8.
Comprehensive analysis of the contribution of genetic factors into predisposition to alcoholic toxic cirrhosis (TC) was performed. The ABO, RH, HP, TF, GC, PI, ACP1, PGM1, ESD, GLO1, and GST1 genetic polymorphisms were compared in 34- to 59-year-old male TC patients and control donors of the same sex and age. The phenotypic frequencies in the TC group deviated from the theoretically expected values; the main difference was the excess of rare homozygotes for the loci GC, ACP1, ESD, and GLO1. In the TC patients, the observed heterozygosity (Ho) was considerably lower than the theoretically expected value (H(e)). Wright's fixation index (F) in the TC patients was 30 times higher than in the control group (0.0888 and 0.0027, respectively). The frequencies of PI*Z and PI*S, the PI alleles that are responsible for lower concentrations of proteinase inhibitor, were 12 and 6 times higher in the TC than in the control group. The TC patients exhibited a significantly higher frequency of the liver glutathione-S-transferase GST1*0 allele, whereas the GST1*2 frequency was two times higher in the control subjects than in the TC patients (0.2522 and 0.0953, respectively). The TC and control groups showed statistically significant differences in the frequencies of the following alleles of six independent loci: ABO*0, TF*C1, TF*C2, PI*M1, PI*Z, ACP1*C, PGM1*1+, PGM1*1-, PGM1*2-, GST1*0, and GST1*2. The haptoglobin level was significantly higher and the serum transferrin level was drastically lower in all phenotypic groups of TC patients than in control subjects. The concentrations of IgM and IgG depended on the HP, GC, and PI phenotypes. The total and direct reacting bilirubin concentrations depended on the erythrocytic-enzyme phenotypes (ACP1, PGM1, and GLO1) in both TC and control groups.  相似文献   

9.
Glucuronidation is one of the most important phase II metabolic pathways. It is catalyzed by a family of UDP-glucuronosyltransferase enzymes (UGTs). One of the subfamilies is UGT1A. Allele frequencies in UGT1A4 differ among ethnic groups. The aim of this study was to determine the allelic frequency of two most common defective alleles: UGT1A4*2 and UGT1A4*3 in a Jordanian population. A total of 216 healthy Jordanian Volunteers (165 males and 51 females) were included in this study. Genotyping for UGT1A4*1, UGT1A4*2 and UGT1A4*3 was done using a well established polymerase chain reaction-restriction fragment length polymorphism test. Among 216 random individuals studied for UGT1A4*2 mutation there were 26 individuals who were heterozygous, giving a prevalence of 12% and an allele frequency of 6.5%. Only one individual was homozygous for UGT1A4*2. The UGT1A4*3 mutation was detected as heterozygous in 9 of 216 individuals indicating a prevalence of 4.2% and allele frequency of 3.5%. Three individuals were homozygous for the UGT1A4*3 indicating a prevalence of 1.4%. The prevalence of UGT1A4*2 is similar to the Caucasians but different from other populations whilst the UGT1A4*3 prevalence in the Jordanian population is distinct from other populations. Our results provide useful information for the Jordanian population and for future genotyping of Arab populations in general.  相似文献   

10.
Phenotyping of plasma plasminogen (PLG) was carried out by the method of agarose gel isoelectric focusing followed by immunofixation or immunoblotting. The allele frequencies calculated from healthy Japanese individuals (n = 795) were as follows: PLG*1 = 0.9440, PLG*2 = 0.0189, PLG*A = 0.0076, PLG*A2 = 0.0006, PLG*B = 0.0138, PLG*B2 = 0.0013, and PLG*C = 0.0138. The PLG phenotype distribution in a group of patients with cerebral infarction (n = 125) was also studied. The allele frequencies were PLG*1 = 0.960, PLG*2 = 0.016, PLG*A = 0.012, and PLG*B = 0.012. No statistically significant association was found between PLG types and cerebral infarction.  相似文献   

11.
N Komatsu  A Kido  M Oya 《Human heredity》1989,39(1):49-51
The polymorphism of C7 was investigated in neuraminidase-treated sera from 513 unrelated Japanese individuals using isoelectric focusing followed by an electroimmunoblotting technique. Besides the common phenotypes 5 rare variants including 2 types of new variants were detected. The family analysis suggested the hereditary occurrence of a new allele C7*8. The allele frequencies were: C7*1 = 0.8314, C7*2 = 0.0926, C7*3 = 0.0380, C7*4 = 0.0331, C7*6 = 0.0010, and C7*8 = 0.0039.  相似文献   

12.
The acid phosphatase locus (ACP1) is a classical polymorphism that has been surveyed in hundreds of human populations worldwide. Among individuals of European ancestry, the ACP1*C allele occurs with an average frequency of approximately 0.05, whereas it is nearly absent in all other human populations. It has been hypothesized that this allele is maintained by overdominant selection among European populations. Here, we analyze ACP1 protein polymorphism data from more than 50,000 individuals previously surveyed in 67 populations across Europe as well as inheritance data from more than 6,000 European parent-offspring pairs to assess the signature of natural selection currently acting on this allele. Although we see a significant excess of ACP1*C heterozygotes relative to Hardy-Weinberg expectations, we find no evidence that natural selection favors ACP1*C heterozygotes. Instead, ACP1*C appears to have a strongly deleterious and recessive fitness effect. We observed only 48.9% of expected homozygous offspring from heterozygous parents and significantly fewer homozygotes than expected within populations. Because parent-offspring pairs indicate a significant deficiency of ACP1*C homozygotes, we infer that viability selection is acting on ACP1*C homozygotes very early in life, perhaps before birth. We estimate that approximately 1.2% of all couples of European ancestry are composed of individuals who both carry the APC1*C allele. As such, selection against ACP1*C homozygotes may represent a nonnegligible contribution to the overall number of spontaneous abortions among women of European ancestry and may cause substantial fertility reductions among some combinations of parental genotypes.  相似文献   

13.
Chau TK  Marakami S  Kawai B  Nasu K  Kubota T  Ohnishi A 《Life sciences》2000,67(14):1719-1724
This study was conducted to assess whether the genotypic frequency of Smephenytoin 4'-hydroxylase CYP2C19 gene differs in Japanese cirrhotic patients who developed hepatocellular carcinoma. Thirty-eight patients with cirrhosis were studied. The wild-type allele CYP2C19*1 and the two mutated alleles, CYP2C19*2 and CYP2C19*3, were identified by PCR-RFLP method. Individuals with homozygous CYP2C19*2 or CYP2C19*3 mutation and those with CYP2C19*2 and CYP2C19*3 heterozygous mutation were predicted to be the poor metabolizer (PM) phenotype. The overall frequency of PM predicted from the genotyping analysis was 29% (11 of the 38 patients), consisting of 5 patients homozygous for CYP2C19*2, two homozygous for CYP2C19*3 and four heterozygous for the two defects. Among 24 HCV-seropositive patients with cirrhosis and hepatocellular carcinoma, the frequency of PM was 41.7% and significantly higher than that observed in 186 healthy controls. We postulate that the PM phenotype caused by the mutation of CYP2C19 gene in cirrhotic patients with HCV infection is associated with a high risk for developing hepatocellular carcinoma.  相似文献   

14.
K Akiyama 《Human heredity》1989,39(5):302-304
Genetic variants of human apolipoprotein A-IV (ApoA-IV) were investigated in 614 healthy Japanese individuals. The allele frequencies were estimated as ApoA-IV*1 = 0.9984 and ApoA-IV*2 = 0.0016. In addition, a new variant ApoA-IV*Tokyo was observed in a paternity material.  相似文献   

15.
The distribution of plasma alpha 1B-glycoprotein (alpha 1B) phenotypes was determined by a simple method of two-dimensional electrophoresis followed by protein staining in a group of 1,154 individuals from 8 Mongoloid populations of East Asia. The sample comprised 581 Chinese from different localities (Singapore: 204; Taiwan: 150; Fujien and Hopeh provinces of eastern China: 146 and 81), 155 Koreans, 155 Filipinos, 152 Thais and 111 Malays. Altogether, 6 different alpha 1B phenotypes (1-1, 1-2, 2-2, 1-3, 2-3, and 1-6) were observed. The alpha 1B allele frequencies were very similar in all of the populations. The frequency of A1B*1 varied from 0.89 to 0.91 and that of A1B*2 from 0.08 to 0.10. The A1B*3 allele, reported previously only in American blacks, was observed with a frequency range of 0.003-0.01 in 3 of the Chinese populations, in Koreans and in Malays. A new alpha 1B allele (A1B*6) was observed in 2 Chinese individuals.  相似文献   

16.

Background

Human gut microbiota plays an important role in the pathogenesis of cirrhosis complications. Although the phylogenetic diversity of intestinal microbiota in patients with liver cirrhosis has been examined in several studies, little is known about their functional composition and structure.

Results

To characterize the functional gene diversity of the gut microbiome in cirrhotic patients, we recruited a total of 42 individuals, 12 alcoholic cirrhosis patients, 18 hepatitis B virus (HBV)-related cirrhosis patients, and 12 normal controls. We determined the functional structure of these samples using a specific functional gene array, which is a combination of GeoChip for monitoring biogeochemical processes and HuMiChip specifically designed for analyzing human microbiomes. Our experimental data showed that the microbial community functional composition and structure were dramatically distinctive in the alcoholic cirrhosis. Various microbial functional genes involved in organic remediation, stress response, antibiotic resistance, metal resistance, and virulence were highly enriched in the alcoholic cirrhosis group compared to the control group and HBV-related cirrhosis group. Cirrhosis may have distinct influences on metabolic potential of fecal microbial communities. The abundance of functional genes relevant to nutrient metabolism, including amino acid metabolism, lipid metabolism, nucleotide metabolism, and isoprenoid biosynthesis, were significantly decreased in both alcoholic cirrhosis group and HBV-related cirrhosis group. Significant correlations were observed between functional gene abundances and Child-Pugh scores, such as those encoding aspartate-ammonia ligase, transaldolase, adenylosuccinate synthetase and IMP dehydrogenase.

Conclusions

Functional gene array was utilized to study the gut microbiome in alcoholic and HBV-related cirrhosis patients and controls in this study. Our array data indicated that the functional composition of fecal microbiomes was heavily influenced by cirrhosis, especially by alcoholic cirrhosis. This study provides new insights into the functional potentials and activity of gut microbiota in cirrhotic patients with different etiologies.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-753) contains supplementary material, which is available to authorized users.  相似文献   

17.
The beta1 adrenergic receptor genotypes (Ser49Gly and Arg389Gly) were determined in 190 individuals from 3 Mexican populations. Mestizos and Teenek present the highest frequencies for the *Arg allele and the lowest frequencies for the *Gly allele (Arg389Gly) compared to European, Asian, and African populations. Mayos present the highest frequency for the *Gly allele. The knowledge of the distribution of these alleles could help define the significance of these polymorphisms as genetic susceptibility markers in Amerindian populations.  相似文献   

18.
The CYP2C9 enzyme metabolizes a wide range of relevant drugs, among which are oral anticoagulants. VKORC1 is the pharmacodynamic target of the oral anticoagulants. The genetic polymorphisms CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A are the major determinants of the inter‐individual variability in the dosage requirements of oral anticoagulants. This study provides a first evaluation of these 3 polymorphisms in a Romanian population. A total of 332 Romanian individuals were genotyped for the CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A polymorphisms using the PCR‐RFLP technique. Sixty‐two individuals (18.7%) were heterozygous for CYP2C9*2, whereas 47 individuals (14.1%) were heterozygous for CYP2C9*3. Fourteen individuals (4.2%) had a CYP2C9*2 homozygous, CYP2C9*3 homozygous or CYP2C9*2/CYP2C9*3 compound heterozygous genotype. These individuals are predicted to have the lowest CYP2C9 enzymatic activity. The allele frequencies of the CYP2C9*2 and CYP2C9*3 polymorphisms were 11.3% and 9.3% respectively. For the VKORC1 ‐1639 G>A polymorphism, there were 170 heterozygotes (51.2%) and 55 (16.6%) homozygotes for the A allele. The frequency of the A allele was 42.2%. Overall, the distribution of the CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A polymorphisms observed in our cohort is in accordance with other Caucasian populations. A large number of Romanians are expected to harbour at least one CYP2C9 variant allele and/or one VKORC1 ‐1639 G>A allele. This frequency has major implications in the pharmacogenomics of oral anticoagulants in Romanians.  相似文献   

19.

Background

Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.

Methods

The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.

Results

High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67–2.94] and 1.39 [0.99–1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28–0.49] and 0.51 [0.37–0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45–0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl).

Conclusions

The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL-C levels.  相似文献   

20.
Interleukin-1 receptor antagonist (IL-1ra) gene polymorphisms in 83 human immunodeficiency virus (HIV)-seropositive women were evaluated. Fourteen of the subjects (16.9%) were homozygous for IL-1ra allele 2 (IL-1RN*2). These women had a lower median level of HIV RNA than did women homozygous for allele 1 (IL-1RN*1) (P = 0.01) or heterozygous for both alleles (P = 0.04). Among 46 subjects not receiving antiretroviral treatment, HIV levels were also reduced in IL-1RN*2 homozygous individuals (P < 0.05). There was no relation between IL-1ra alleles and CD4 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号