首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments on unanesthetized, immobilized cats showed different effects of individual hypothalamic nuclei on spontaneous unit activity in the sensomotor cortex. Compared with the posterior hypothalamic nucleus (PHN) and its anteromedial region (AMH), in response to stimulation of the lateral hypothalamic nucleus (LHN) changes in spontaneous activity were more frequently found. The ratio between activation and inhibitory responses was 36 and 36% for AMH, 51 and 30% for LHN, and 47 and 28% for PHN. An approximately equal number of sensomotor neurons (27–34%) gave tonic responses. Phasic changes in spontaneous activity were observed more often in response to stimulation of LHN, less frequently to stimulation of AMH and PHN. Responses of "nonpyramidal" neurons to stimulation of AMH and LHN were identical. "Pyramidal" units were more sensitive to LHN stimulation. Variations in hypothalamic effects depending on the type of response of sensomotor neurons to sensory stimuli were detected. Cells with tonic responses were more susceptible to influences of LHN and AMH than cells which responded by phasic changes in spontaneous activity to sensory stimuli. Fewer still positive responses were recorded in areactive neurons.Medical Institute, Chita. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 115–122, March–April, 1972.  相似文献   

2.
Spontaneous and evoked unit activity of the superior colliculus was studied in cats immobilized with gallamine or with the spinal cord divided (encephalé isolé). Statistical parameters of unit activity were calculated in light and darkness and in the presence of a moving photic stimulus. Spontaneously active neurons were divided into four main groups: 1) with a mean interspike interval of about 300 msec, coefficient of variation 1.9, and with two modes in the autocorrelation histogram; 2) with similar statistical parameters but distinguished by correlation with saccadic eye movements; 3) histogram of interspike intervals exponential in type, autocorrelation histogram flat, mean interval and standard deviation about 100 msec; 4) with symmetrical distribution of interspike intervals, mean interval about 50 msec, coefficient of variation 0.4–0.5. Spontaneous activity in light and darkness differed only in the neurons of the second group. Comparison of the statistical parameters of the spontaneous and evoked activity shows that encoding of the stimulus could be carried out by neurons of groups 3 and 4. In some cases the mode of the histogram of interspike intervals and the standard deviation changed significantly and activity appeared regularly in the autocorrelation histogram.  相似文献   

3.
4.
5.
Unit response in the superior colliculus and underlying structures has been examined in the choralose-anaesthetized cat following passive movement of an occluded eye. One group of units was sensitive to small saccadic movements, responded regardless of the initial postion of the eye, and in most instances responded to movements in opposit directions. A second numerically smaller group also responded when they eye was moved at saccadic velocity but only when the eye passed a fixed point. Such units with fixed positional thresholds were found following movements in both nasal and temporal directions as well as to both upward and downward movement. Both types of unit response were found after transection of the optic nerve and were also recorded when individual extraocular muscles were subjected to controlled stretch. It is assumed that most unit activity seen after passive movement of the occluded eye is due to activity in extraocular muscle receptors. In the deep layers of the superior colliculus responses to small eye movements were found to be due to the activation of very low threshold receptors sensitive to vibration in the facial area.  相似文献   

6.
7.
Evoked potentials in the superior colliculus during monocular presentation of short flashes to the dark- and light-adapted eye were studied in experiments on cats anesthetized with pentobarbital. On insertion of the recording electrode deep into the superior colliculus simultaneous nonspecular inversion of the second and third components of the evoked potential was observed. The first component was not inverted. During stimulation of the retina by pairs of flashes the second response appeared when the interval between them was 70 msec. The amplitudes of the second and third components of the evoked potential decreased with an increase in the frequency of stimulation. Suggestions regarding the genesis of the various components of the evoked potential are put forward.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 21–27, January–February, 1973.  相似文献   

8.
The effect of release from masking in unit activity of the inferior colliculus was studied in anesthetized cats. When series of cophasic and antiphasic clicks with varied interaural delay were used as stimuli, sensitivity to changes in the interaural phase shift within a narrow band of the spectrum of the signal close to the characteristic frequency was discovered in neurons with low characteristic frequencies (up to 2.6 kHz). The masking effect with cophasic and antiphasic noise was found to depend on the phase sensitivity of the neurons. The neurophysiological mechanisms of the release from masking effect are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 463–468, July–August, 1985.  相似文献   

9.
Whereas the presence of neuropeptide-Y (NPY) in the superior colliculus (SC) has been established, its participation in the ultrastructural organisation of the neuronal networks in the SC has not been studied. Accordingly, in the present paper light and electron microscopic NPY immunohistochemical studies were performed on the SC of cat. NPY fibres were found to be present predominantly in the superficial grey layer (SGL) of the SC, though a few small NPY cells were found in both the deeper and the upper layers. Ultrastructural observations revealed that the NPY nerve endings establish almost exclusively axo-dendritic synaptic contacts in the SGL of the SC. Thus, the presumably inhibitory impact of the NPY terminals is exerted through the dendrites of the SGL neurons, and not directly to the retinal axons, as thought previously.  相似文献   

10.
The present paper examines developmental and organizational parallels between visual and nonvisual cells in the cat superior colliculus (SC). An attempt is made to relate these developmental and organizational features to the role the SC plays in orientation behavior. In young kittens visually guided behavior is virtually nonexistent and requires many weeks to develop. Similarly, kitten SC cells are unresponsive to visual stimuli until at least 7 days after birth, and it is only after many weeks that SC cells behave as do those of the adult. In contrast to the development of visual cells, however, some neurons responsive to somatic stimuli are present in the SC on the day of birth, and cells responsive to acoustic stimuli appear several days later. Thus, the sequence in which modality represenstation appears in the cat SC parallels the developmental chronology of the use of different sensory cues for orientation. These data indicate that the functional roles of the visual, somatic, and acoustic representations may be similar. The finding that the organization of the somatic representation in the SC is similar to, and in register with, the visual representation is consistent with this possibility. It is suggested that the SC can utilize cues from a variety of modalities in order to facilitate appropriate orientation behavior.  相似文献   

11.
Postsynaptic potentials produced by stimulating three sites of the midbrain superior colliculus were examined in motoneurons innervating the sternocleidomastoid, the trapezius, and the platysma cervical muscles in anesthetized cats. Stimulating the ipsilateral colliculus produced EPSP in the motoneurons as well as action potentials with a latency of 1.5–3.5 msec, averaging 2.6 ± 0.1 msec. Stimulation of the contralateral colliculus evoked EPSP with a latency of 1.5–3.2 msec and averaging 2.1 ± 0.1 msec together with IPSP with latency ranging from 2.6 to 5.0 msec. It is postulated that these postsynaptic responses are both monosynpatic and bisynaptic in nature. This type of synaptic action is assumed to be one of the mechanisms responsible for coordinated head movements produced by tectofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 197–202, March–April, 1986.  相似文献   

12.
The superior colliculus (SC) in primates plays an important role in orienting gaze and arms toward novel stimuli. Here we ask whether neurons in the intermediate and deep layers of the SC are also involved in the interaction with objects. In two trained monkeys we found a large number of SC units that were specifically activated when the monkeys contacted and pushed a target that had been reached with either hand. These neurons, however, were silent when the monkeys simply looked at or reached for the target but did not touch it. The activity related to interacting with objects was spatially tuned and increased with push strength. Neurons in the SC with this type of activity may be involved in a somatosensory-motor feedback loop that monitors the force of the active muscles together with the spatial position of the limb required for proper interaction with an object.  相似文献   

13.
During binocular stimulation of different sectors of the retina the amplitude of the two first postsynaptic components of the evoked potential in the superior colliculus to the second stimulus varies with the time delay between the testing and conditioning stimuli. Correlation is shown between the form of the evoked potential arising in response to the conditioning stimulus and the character of convergence of visual impluses in the superior colliculus. Qualitative differences are found in binocular interaction between sensory impulses depending on the way in which the conditioning impulses reach the region of the superior colliculus tested. An attempt is made to assess interaction between sensory volleys in the superior colliculus quantitatively.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 133–137, March–April, 1973.  相似文献   

14.
The electrical activity of single units located in the parvicellular part of the red nucleus (pRP) was recorded extracellularly in nitrous oxide anesthetized and C1-transected adult cats. In this area, neurons were found to respond to electrical stimulation applied to intermediate and deep layers of the right superior colliculus (SC). Forty neurons located in the pRN of both sides were studied. Three neurons out of 18 (16.6%) located in the contralateral pRN and six neurons out of 22 (27.3%) located in the ipsilateral pRN were driven by the right SC stimulation. The pRN neurons were separated into four groups according to the latency response to the SC stimulation: 1) 0.6-1.9 ms, 2) 2-4 ms, 3) 4-6 ms, 4) variable latency responses. Each of these four groups of neurons showed a particular pattern of discharge, even though their discharge frequency showed a strong consistency. Four pRN neurons, which responded to SC stimulation, showed a significant correlation with spontaneous horizontal eye movements of saccadic type. It is known that the SC represents one of the main outputs of the striato-nigral motor system. The relation between the SC and the pRN described in the present study suggest that connections exist between the cortico-rubral and the striato-nigral systems, since both have the SC as a common output structure. It is likely, therefore, that the cortico-rubral-SC system is involved in the control of oculomotor functions, and that the SC may serve to establish interactions between systems concerned with eye movements.  相似文献   

15.
Based on quantitative analyses of the response characteristics of visual neurons in the superior colliculus to moving optical bar stimuli, it is demonstrated for the first time that the visual neurons in superior colliculus of the cat have, to some extent, orientational selectivity. The significance of this selectivity is discussed in reference to its morphological substrate and physiological functions. In addition, both the directional and orientational selectivities in the superior colliculus are relatively weak when compared with those in the primary visual cortex, and the majority of the neurons prefer upward or downward motion in the visual field.  相似文献   

16.
Detailed morphometrical and corresponding electrotonic characteristics on three classes of cat superior colliculus (SC) neurons have been derived. The sample of cells selected for analysis comprised ascending projection neurons (APNs), inter-layer neurons (ILNs) and tecto-reticulo-spinal neurons (TRSNs) recorded intracellularly and stained with HRP. Superficial SC neurons (APNs, ILNs) could be attached to the allo- and idiodendritic type while deep layer neurons (TRSNs) belong to the isodendritic type. For each neuron, the branching pattern, lengths and diameters of the dendritic trees were determined. These data served as input to the computer program "DENDRIT" from which electrotonic membrane and transfer properties were calculated. Both the morphometrical data and the electronic properties underline the contrasting features of superficial vs deep layer neurons in the SC. Our results support the hypothesis that on the neuron level a close relationship between dendritic pattern and neuron function might exist.  相似文献   

17.
Unit responses of the nuclei pontis (NP) and reticular pontine nuclei (RPN) to stimulation of the frontobasal cortex (proreal, orbital, and basal temporal regions) and of the dorsal hippocampus were studied in cats. Stimulation of the various cortical structures was found to induce phasic and (less frequently) tonic responses in neurons of NP and RPN. The main type of unit response in RPN was primary excitation, whereas in NP it was primary inhibition. The largest number of responding neurons in the pontine nuclei was observed to stimulation of the proreal gyrus. In the cerebro-cerebellar relay system neurons of the reticular tegmental nucleus and ventromedial portion of NP showed the highest ability to respond. In the oral and caudal reticular pontine nuclei the regions of predominant influence of cortical structures were located in zones of these nuclei where neurons with rostral and (to a lesser degree) caudal projections were situated.M. Gorkii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 358–367, July–August, 1980.  相似文献   

18.
Specific changes occur in the cells of the upper layers of the cat's superior colliculus when a two dimensional noise (background) is superimposed onto a deterministic signal (spot of light). Some of the measurements can be interpreted as meaning that some cells only react to certain relative movements of object (spot) and background (noise). The movement of the visual background is interpreted as environmental movement occurring due to the animal's own movement. The results of the measurements provide all the necessary presuppositions for a distinction between the animal's own velocity and that of the object (Part I). The experimental results can be interpreted with a model. The essential factor for the interpretation is the direction specific behavior of the cells which is bound up with an asymmetrical spatial coupling of the neurons with each other. The decisive advantage of asymmetrical systems for the pattern recognition of moving objects is that they can work without distortion and spatial displacement over large ranges of velocity (Part II).This research was supported by DFG Grant Se 251/7. Prof. Dr.-Ing. W. v. Seelen was in charge of the project  相似文献   

19.
Specific changes occur in the cells of the upper layers of the cat's supperior collicules when a two dimensional noise (background) is superimposed onto a deterministic signal (spot of light). Some of the measurements can be interpreted as meaning that some cells only react to certain relative movements of object (spot) and background (noise). The movement of the visual background is interpreted as environmental movement occurring due to the animal's own movement. The results of the measurements provide all the necessary presuppositions for a distinction between the animal's own velocity and that of the object (Part I). The experimental results can be interpreted with a model. The essential factor for the interpretation is the direction specific behavior of the cells which is bound up with an asymmetrical spatial coupling of the neurons with each other. The decisive advantage of asymmetrical systems for the pattern recognition of moving objects is that they can work without distortion and spatial displacement over large ranges of velocity (Part II).This research was supported by DFG Grant Se 251/7. Prof. Dr.-Ing. W.v. Seelen was in charge of the project  相似文献   

20.
Changes in spontaneous and evoked unit activity in the superior colliculus of the cat were studied after unilateral blocking of corticofugal connections. Functional characteristics of the cells were compared in the intact and disconnected colliculus. In neurons on the side of the operation the spontaneous firing rate was reduced and responses to photic stimulation were virtually completely abolished: only 7.1% of collicular cells on the side of the operation responded to adequate stimulation. Effective mechanisms of corticofugal control, modulating the relaying of the efferent volley in the tectal neurons, evidently function in the superior colliculus.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 54–61, January–February, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号