首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal conditions at the beginning of the year determine the timing of pollen seasons of early flowering trees. The aims of this study were to quantify the relationship between the tree pollen season start dates and the thermal conditions just before the beginning of the season and to construct models predicting the start of the pollen season in a given year. The study was performed in Krakow (Southern Poland); the pollen data of Alnus, Corylus and Betula were obtained in 1991–2012 using a volumetric method. The relationship between the tree pollen season start, calculated by the cumulated pollen grain sum method, and a 5-day running means of maximum (for Alnus and Corylus) and mean (for Betula) daily temperature was found and used in the logistic regression models. The estimation of model parameters indicated their statistically significance for all studied taxa; the odds ratio was higher in models for Betula, comparing to Alnus and Corylus. The proposed model makes the accuracy of prediction in 83.58 % of cases for Alnus, in 84.29 % of cases for Corylus and in 90.41 % of cases for Betula. In years of model verification (2011 and 2012), the season start of Alnus and Corylus was predicted more precisely in 2011, while in case of Betula, the model predictions achieved 100 % of accuracy in both years. The correctness of prediction indicated that the data used for the model arrangement fitted the models well and stressed the high efficacy of model prediction estimated using the pollen data in 1991–2010.  相似文献   

2.

Climate and weather directly impact plant phenology, affecting airborne pollen. The objective of this systematic review is to examine the impacts of meteorological variables on airborne pollen concentrations and pollen season timing. Using PRISMA methodology, we reviewed literature that assessed whether there was a relationship between local temperature and precipitation and measured airborne pollen. The search strategy included terms related to pollen, trends or measurements, and season timing. For inclusion, studies must have conducted a correlation analysis of at least 5 years of airborne pollen data to local meteorological data and report quantitative results. Data from peer-reviewed articles were extracted on the correlations between seven pollen indicators (main pollen season start date, end date, peak date, and length, annual pollen integral, average daily pollen concentration, and peak pollen concentration), and two meteorological variables (temperature and precipitation). Ninety-three articles were included in the analysis out of 9,679 articles screened. Overall, warmer temperatures correlated with earlier and longer pollen seasons and higher pollen concentrations. Precipitation had varying effects on pollen concentration and pollen season timing indicators. Increased precipitation may have a short-term effect causing low pollen concentrations potentially due to “wash out” effect. Long-term effects of precipitation varied for trees and weeds and had a positive correlation with grass pollen levels. With increases in temperature due to climate change, pollen seasons for some taxa in some regions may start earlier, last longer, and be more intense, which may be associated with adverse health impacts, as pollen exposure has well-known health effects in sensitized individuals.

  相似文献   

3.
We examined the long-term trends in airborne fungal-spore concentrations in Thessaloniki, Greece, over the period 1987–2005. We estimated trends in the spore levels for the 14 taxa that contribute at least 0.1 % to the total airborne spore concentration. We also tested for trends towards earlier, longer or more highly peaked spore seasons. There was decreasing concentration of spores for 11 of the 14 taxa, especially for Agrocybe, Botrytis, Cladosporium, and Nigrospora, where this trend was significant. Using ANCOVA, there was a highly significant negative trend overall (p < 0.001). Regarding the spore-season related attributes, there were very few significant trends. However, the main spore season tended to start later (for 12 of the 14 taxa) and become shorter (for 10 of the 14 taxa); later onset was more pronounced during the most recent part of the study period. Fungi seem to display a delayed and slower response to climate change than plants and in a direction opposite to that of pollen.  相似文献   

4.
The ambient atmosphere is dominated with pollen and spores, which trigger allergic reactions and diseases and impact negatively on human health. A survey of pollen and fungal spores constituents of the atmosphere of Garki, Abuja (North-Central Nigeria) was carried out for 1 year (June 1, 2011–May 31, 2012). The aim of the study was to determine the prevalence and abundance of pollen and fungal spores in the atmosphere and their relationship with meteorological parameters. Airborne samples were trapped using modified Tauber-like pollen trap, and the recipient solutions were subjected to acetolysis. Results revealed the abundance of fungal spores, pollen, fern spores, algal cysts and diatoms in decreasing order of dominance. The atmosphere was qualitatively and quantitatively dominated by pollen during the period of late rainy/harmattan season than the rainy season. Numerous fungal spores were trapped throughout the sampling periods among which Alternaria spp., Fusarium spp., Cladosporium spp. and Curvularia spp. dominated. These fungi have been implicated in allergic diseases and are dermatophytic, causing diverse skin diseases. Other pathogenic fungi found in the studied aeroflora were Dreschlera spp., Helminthosporium spp., Torula spp., Pithomyces spp., Tetraploa spp., Nigrospora ssp., Spadicoides spp., Puccinia spp. and Erysiphe graminis. Total pollen and fungal spores counts do not show significant correlation with meteorological parameters.  相似文献   

5.
Interactions between diverse groups of organisms influence the functioning and diversity of ecosystems. Salient examples of such relationships are those among hypogeous fungi, trees and mycophagous mammals. To investigate the role of small mammals in transporting fungal spores within and outside forests as well as the influence of seasons, habitats and species on small mammal mycophagy, we set up a study in the Pieniny Mts, Western Carpathians (Southern Poland). The droppings of small mammals were collected during live trapping in July and September 2016 and 2017, to analyze richness, composition and frequency of fungal spores present in faeces. The yellow-necked mouse Apodemus flavicollis, the bank vole Myodes glareolus and the common vole Microtus arvalis were the most frequently trapped. Spores of 27 fungal taxa from 16 genera were retrieved from nearly 70% of faecal samples of rodents and shrews, with up to 9 spore taxa recorded per sample. Spore diversity in samples was higher in September than in July, although seasonal variation was year and animal dependent. The highest mean number of fungal taxa per sample was recorded for the bank vole and the yellow-necked mouse, with the former species showing a higher degree of mycophagy. The two rodents differed in the average frequencies of consumed fungi in samples, which could result from some degree of specialization in the choice of particular fungal species, as shown by the laboratory-based experiment. Within particular animal species, differences in the fungal diet were found between seasons. The spores of hypogeous fungi were transported from forests to meadows mostly by the yellow-necked mouse and, to a lesser extent, by the common vole. However, both, the diversity and the number of transported spores diminished with distance from the forest edge.  相似文献   

6.
In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.  相似文献   

7.
The aim of this study was to investigate aerobiological dynamics of pollen in the Mediterranean part of Croatia in the air of the city of Split. Pollen monitoring during the period from 2005 to 2013 was performed using a Hirst volumetric trap. Among the identified pollen of 50 taxa, 21 were allergenic. The average annual pollen index was 33,513. Three pollination seasons were established: early winter season dominated by tree pollen, spring–summer season dominated by herbaceous plants and summer–autumn season with lower amounts of Parietaria and Cupressaceae pollen. According to the abundance, the main taxa were: Cupressaceae, Parietaria/Urtica, Pinus, Quercus, Olea, Carpinus/Ostrya, Poaceae, Platanus and Ambrosia. The annual pollen index together with the daily maximum concentrations showed an upward trend for selected taxa during the study period. The highest monthly pollen index and the highest biodiversity were recorded in April and the lowest during the late autumn and winter months. The pollen calendar created for the city of Split confirmed Mediterranean features of the pollen spectrum. The longest pollen seasons were recorded for Cupressaceae, Parietaria/Urtica and Poaceae pollen types. The correlations between pollen concentrations and meteorological parameters were analyzed. The correlations between pollen concentrations and temperature were positive, while the humidity and the precipitation mostly showed negative influence.  相似文献   

8.
First data from a pollen survey carried out in the city of Murcia (SE Spain) are given in this paper. Using a Burkard Volumetric Spore Trap, daily slides were prepared and 80 pollen types belonging to 51 families andAlternaria spores were identified and counted. Special attention was paid to 14 relevant taxa: Cupressaceae,Pinus, Genisteae,Olea, Morus, Acer, Platanus, Plantago, Quercus, Urticaceae, Poaceae, Chenopodiaceae,Artemisia andAlternaria. The main sources of airborne particles wereAlternaria (27.7%), Cupressaceae (13.5%),Olea (9.36%), Chenopodiaceae (8.31%) and Urticaceae (5.8%). Annual variations in pollen abundance and length of the flowering seasons are given for individual species and are related to environmental factors. Results indicate a main pollen season from March to June and a second minor season in September to October. The relatively high concentrations of Genisteae and the appearance of anArtemisia winter season were noted.  相似文献   

9.
Bernard Clot 《Aerobiologia》2003,19(3-4):227-234
Airborne pollen analysis has been carried outin Neuchâtel (Switzerland) since 1979. Inthe context of increasing prevalence of pollenallergies and global climate warming, thisstudy attempts to confirm whether airbornepollen may be responsible for the former orindicative of the latter, and presents somegeneral features of pollen flight in westernSwitzerland. The most common pollen types are Taxus/Cupressaceae, Quercus, Poaceae, Pinus,Betula, Urticaceae and Fraxinus. Duringthe 21 years studied, there was no major changein the abundance of pollen. Among thetwenty-five taxa studied only five presented asignificant trend: an increase of pollenquantities was observed for Alnus,Ambrosia, Artemisia and Taxus/Cupressaceae and a decrease for Ulmus. The plant species flowering in winterand in spring were influenced by the mildwinters of the 1990s: 71% of the dates of theonset or the end of the pollen seasons nowadaysoccur significantly earlier in the year. Theobserved advance reaches 0.84 days/year. Treesappear to react stronger to the climate changethan grass and weeds. No pollen type present aprolonged season, so the trend appears to betowards a shift in the timing of pollenpresence in the air. These observations show that the main cause ofthe spectacular increase of pollinosisprevalence in industrialised countries isprobably not to be found in the weak tendencytowards a rise of pollen abundance, except forsome particular pollen types which can broadenthe spectra and/or intensify the abundance ofmajor allergens present in an area. However,airborne pollen is confirmed to be a sensitiveindicator of climate change. The observedshifts in the pollen seasons make necessary theadequate information for people concerned withpollen allergies, in particular for preventionand therapy purposes.  相似文献   

10.
The objective of this study was to analyse the dynamics of the Alnus and Corylus pollen seasons in Poland with reference to spatial and seasonal differentiation. Aerobiological monitoring was performed in 10 cities, in 1994–2007. Five characteristics defining the pollen season were considered: 1. beginning and end dates of the season phases (5, 25, 50, 75, 95% of annual totals), 2. pollen season duration (90% method), 3. skewness and 4. kurtosis of airborne pollen curves, and 5. annual pollen totals. The beginning of the Corylus pollen season in Warsaw started on the 53rd day of a year. The Alnus pollen season started 9.5 days (SE = 1.4) later. The start of the season for both taxa was delayed by 3.3 (SE = 0.5) days for each 100 km towards the east. The Corylus pollen season lasted about 15 days longer than the Alnus season. Season duration for both taxa decreased towards the east by 3.5 days (SE = 0.7) and towards the north by 1.3 days (SE = 0.6) for each 100 km. Seasonal dynamics of both taxa are skewed to the right. In cities located west of Warsaw the dynamics are more skewed (except at Szczecin, Wroclaw). Asymmetry decreases towards the east by 0.16/100 km. Almost all kurtosis values of pollen-season dynamics were positive and higher for Alnus. Kurtosis values for both taxa increase together with delay of the pollen season beginning by 4% per day (p < 0.0001). Mean pollen total increases: for Corylus mainly towards the north (by 64%/100 km), for Alnus mainly towards the west (by 15%/100 km). Geographical location (longitude and latitude) determines: the start and duration of the pollen season, skewness of the pollen curve, and annual totals.  相似文献   

11.
This study uses 6 years of atmospheric pollen data to examine temporal variability of airborne pollen concentrations at various scales. Airborne pollen was collected from 1985 to 1990 with a Burkard trap, located 18 m above ground at Scarborough College, Toronto, Canada. Pollen season parameters are defined and summarized for all taxa in preparation for developing forecasting models. Annual totals of pollen concentration show great interannual variability. The highest coefficient of variation occurs inTsuga, Fraxinus, Betula andFagus, while the lowest inQuercus andAmbrosia. Some taxa show periodic cycles consistent with mast reproductive behaviour. In many studies, the start of the pollen season is defined as an arbitrary percentage of the annual sum. As a result, the start of the season cannot be identified until the season has passed. As well, due to large fluctuations in annual sum, start dates are more variable. This is not practical for the purposes of forecasting. In this study, the start of the pollen season is defined by a critical concentration threshold which signals the onset of the main pollen season in all years. These critical levels ranged from 2 to 60 grains/m3 for the abundant taxa. Interannual variation in the start of the season is approximately 20 days for tree taxa, 5 days for Poaceae, and 2 days forAmbrosia. For many plants, dehiscence is triggered at a critical level of accumulated degree-days. Since annual rates of temperature increase show great variation, there is also interannual variability in the onset of pollen release. Multi-year average pollen curves incorporate these differences in onset and may give an inaccurate representation of the pollen season in a typical year. This paper presents a method of aligning yearly pollen curves to reduce seasonal variation and more accurately represent both the average timing and magnitude of the pollen season. For some types, such asBetula and Poaceae, the resulting curves are positively skewed. Tree taxa, in general, exhibit a more symmetric pollen concentration curve. Aligned average pollen concentration curves are presented for Toronto in the form of a pollen calendar. In addition, phenological data for all common taxa are summarized.  相似文献   

12.
Persistent allergies are common in workers in florist shops but little research has been done on the reasons for this. This paper reports an investigation of occupational exposure of florists to pollen and spores in three florist shops over a 2-week period in the autumn of 2000. In each shop three sampling methods were used: Burkard continuous volumetric samplers, deposition plates and low-tac tape for surface samples, including hands of the florists and leaves of a selection of the plants. The florists kept a record of the type of work they undertook each day and of the stock amounts of flowers in the shops. The volumetric traps collected 80 pollen and spore taxa. The average concentrations recorded through the working day were generally low but short-term peak (one hour mean) concentrations of some types were found to be relatively high or very high. For a few taxa these concentrations equalled or exceeded those typical for short-term peaks in wind dispersed pollen types in the ambient air. Fungal spore concentrations of several known allergenic types were also very high for peak periods. This was most notable for Aspergillus spp. which reached extremely high concentrations in one shop, compared with typical peak concentrations in the ambient atmosphere. Low-tac tape leaf samples demonstrated that the flowers' foliage is a major source of the fungal spores. Few pollen grains or fungal spores were found on the hands.  相似文献   

13.
To test models predicting biological reponse to future climate change, it is essential to find climatically-sensitive, easily monitored biological indicators that respond to climate change. Routine monitoring of airborne pollen, now undertaken on a near-global basis, could be adapted for this purpose. Analysis of spatial and seasonal variations in pollen levels in New Zealand suggests that the timing of onset and peak abundance of certain pollen taxa should be explored as possible bio-indicators of climate change. The onset of the airborne grass pollen season during the summer of 1988/89 varied consistently with latitude, and hence temperature, with the season in Southland commencing 8--9 days after Northland. However, these patterns were only apparent after sampling sites were separated into two groups reflecting predominantly urban or rural pollen sources. A less consistent north to south trend was apparent in the frequency of high (30 grains/m3) grass pollen levels, with high levels frequent in North Island localities in November, December and January and in southern localities during December and January. The successive onset of pollen seasons for the principal tree species during the spring-to-early summer warming interval may also be a useful bio-indicator of climate change. As well as assisting forecasts of the onset of the pollinosis season, these biogeographical patterns, reflecting climatic variation with latitude, suggest that routine aeropalynological monitoring might provide early signals of vegetation response to climate change. These conclusions are supported by recent investigations of long-term aeropalynological datasets in Europe that indicate earlier onset of pollen seasons in response to recent global warming.  相似文献   

14.

Over the period 2002–2019, air temperature and precipitation significantly increased regionally for Bratislava, which could lead to phenological changes in some plant species. This study aimed to analyse the changes in the intensity, timing, and duration of pollen seasons of three allergological important plant taxa (Alnus, Poaceae, Artemisia) in the study area over 18 years. The pollen sampling was performed using a Hirst-type sampler. Mann–Kendall tau test was used to determine trends in pollen season characteristics, while Spearman’s correlation analysis was used to identify the relationships between the characteristics of pollen seasons and both air temperature and precipitation trends. The notable changes in the pollen-season-related features were observed for all analysed taxa. The Alnus pollen season now reaches the peak earlier and its intensity is rising in line with the summer-autumn temperature increasing trend, while unexpectedly intensity and duration of the Artemisia pollen season are declining in line with the increased precipitation and/or temperature trends. On the other hand, the intensity of the Poaceae pollen season is also declining, however, without statistically significant correlations with recorded increases in meteorological parameters considered. This phenomenon is probably related to both the reduction of the area of grasslands due to urbanization and the implementation of effective maintenance of urban green areas (e.g., timely mowing preventing the repeatedly flowering of grasses).

  相似文献   

15.
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a “dry season” and a “rainy season”. A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."  相似文献   

16.
Stein Johansen 《Grana》2013,52(2):373-379
A survey of airspora collected on Jan Mayen, an isolated North Atlantic island (71°N, 8°30′W), using a Burkard seven-day volumetric trap from 24th April to 31th August, 1988, revealed only very small concentrations. A total of 10 different pollen types were recorded, constituting a seasonal sum of 29 pollen grains. The local pollen season was confined to July, with Oxyria digna and Salix as the most numerous pollen types recorded. Exotic pollen grains, namely Betula, Pinus and Castanea type, were recorded in three periods during June and July. Studies of back trajectories indicate North America and/or Iceland and Greenland as possible source areas for the Betula pollen. There were more diatoms than pollen in the local airspora. Fungal spores mainly occurred in late July and August. Cladosporium constituted less than 5% of the total seasonal sum of fungal spores, while basidiospores contributed nearly 12%. The highest diurnal average of Cladosporium was 27 spores m?3 air. The seasonal maximum of unidentified fungal spores reached a diurnal average of 639 spores m?1 air on 27th August.  相似文献   

17.
This study has been focused on airborne pollen concentration in Northern Tunis. Pollen has been detected by a volumetric Hirst-type spore trap. This suction sampler was placed for two hydrologic years in the area of Mornag, northeastof Tunisia (36°40N; 10°17E). Fifty-two taxa were identified with heterogeneous daily pollen concentrations and a dominance of anemophilous plants. The main pollen types detected in the atmosphere were Olea europaea (38.7 and 20.75%), Cupressus (33.57 and 55.4%), Urticaceae (9.22 and 12.24%), Poaceae (3.55 and 3.32%), Mercurialis annua (2.96 and 1.6%) and Amaranthaceae (2.49 and 1.55%). The monthly pollen spectrum indicated a seasonal periodicity of airborne pollen with the main pollen season during spring. Two pollen seasons have been observed during these hydrologic years, due to both Cupressus and Amaranthaceae airborne pollen is represented during winter or spring, and also during autumn and late summer, respectively. Other pollen types represent a long pollen season, i.e., Urticaceae, starting in autumn and following until late spring. Daily pollen concentration showed a different behavior during the flowering season between both years, observing differences related to pollen index. Correlation between daily pollen concentrations of the dominant taxa showed a positive and significant correlation between airborne pollen concentrations of spring-pollinated taxa and mean temperature, but negative with maximum temperature, humidity and rainfall. In the case of minimum temperature, a different response, positive for trees and negative for herbaceous plants, has been observed.  相似文献   

18.
A small assemblage of macro- and micro floral remains comprising fossil leaf impressions, silicified wood, spores, and pollen grains is reported from the Paleocene–lower Eocene Vagadkhol Formation (=Olpad Formation) exposed around Vagadkhol village in the Bharuch District of Gujarat, western India. The fossil leaves are represented by five genera and six species, namely, Polyalthia palaeosimiarum (Annonaceae), Acronychia siwalica (Rutaceae), Terminalia palaeocatapa and T. panandhroensis (Combretaceae), Lagerstroemia patelii (Lythraceae), and a new species, Gardenia vagadkholia (Rubiaceae). The lone fossil wood has been attributed to a new species, Schleicheroxylon bharuchense (Sapindaceae). The palynological assemblage, consisting of pollen grains and spores, comprises eleven taxa with more or less equal representation of pteridophytes, gymnosperms, and angiosperms. Angiospermous pollen grains include a new species Palmidites magnus. Spores are mostly pteridophytic but some fungal spores were also recovered. All the fossil species have been identified in the extant genera. The present day distribution of modern taxa comparable to the fossil assemblage recorded from the Vagadkhol area mostly indicate terrestrial lowland environment. Low frequency of pollen of two highland temperate taxa (Pinaceae) in the assemblage suggests that they may have been transported from a distant source. The wood and leaf taxa in the fossil assemblage are suggestive of tropical moist or wet forest with some deciduousness during the Paleocene–early Eocene. The presence of many fungal taxa further suggests the prevalence of enough humidity at the time of sedimentation.  相似文献   

19.
Fleshy hypogeous fungi produce scents that enable mycophagous mammals and invertebrates to locate them and disperse their spores. The European wild boar (Sus scrofa) was introduced in central Argentina in 1900s and later expanded into Patagonia. Here, we determined the diversity and abundance of fungal taxa, and the frequency of hypogeous fungal spores in wild boar feces in Patagonia. We collected fecal samples on Isla Victoria, Nahuel Huapi National Park, and identified fungi using microscope and DNA metabarcoding of ITS2 rDNA. Hypogeous fungal spores occurred in almost all fecal samples. The most abundant species belonged to the genera Hysterangium, Melanogaster, Radiigera and Gautieria. In addition to the symbiotrophic hypogeous taxa, we also identified numerous pathotrophic and saprotrophic taxa. Not only diverse native hypogeous fungi, but also introduced ones are part of the diet of the wild boar in forests of Patagonia. If viable, introduced fungi are being dispersed as far as 2.5 km from the nearest plantation, highlighting how the introduced wild boar might alter the local distribution and composition of fungal communities.  相似文献   

20.
Analysis of numerous air samples has indicated that dormant, viable fungal spores are highly present, which suggests that aerial dispersion is important for fungi. Whereas the majority of the spores may travel only very short distances, there is indication that a notable number of them cover much longer distances. Harmomegathy is a terminology coined by Wodehouse (1935) describing the natural folding of pollen to accommodate controlled and reversible water loss. Here, we discuss evidence that this concept may also apply to airborne fungal spores that face similar challenges and have to survive periods of drought and low temperatures while retaining viability to germinate after deposition upon a suitable moist substrate. In fact, (air)dried conidia, appear collapsed, survive for much longer times compared to spores in liquid, that deteriorate in time. This indicates that for some types of fungal spores, true dormancy is reached in the desiccated state. For these airborne spores this might be regarded as a pre-adaptation that supports long-distance transport of viable cells through air. We state that spores are naturally folded during transport in air if the humidity is low enough. We hypothesize that this is a pre-adaptation supporting release, dispersal and survival of airborne spores. Moreover, the smaller size of dry naturally-folded spores may also be relevant, e.g. for the opportunistic pathogenic fungus Aspergillus fumigatus reduced spore size supports deposition within the alveoli in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号