首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A novel two-step procedure to expand cardiac Sca-1+ cells clonally   总被引:1,自引:0,他引:1  
Resident cardiac stem cells (CSCs) are characterized by their capacity to self-renew in culture, and are multipotent for forming normal cell types in hearts. CSCs were originally isolated directly from enzymatically digested hearts using stem cell markers. However, long exposure to enzymatic digestion can affect the integrity of stem cell markers on the cell surface, and also compromise stem cell function. Alternatively resident CSCs can migrate from tissue explant and form cardiospheres in culture. However, fibroblast contamination can easily occur during CSC culture. To avoid these problems, we developed a two-step procedure by growing the cells before selecting the Sca-1+ cells and culturing in cardiac fibroblast conditioned medium, they avoid fibroblast overgrowth.  相似文献   

3.
Huang C  Gu H  Yu Q  Manukyan MC  Poynter JA  Wang M 《PloS one》2011,6(12):e29246

Background

Cardiac stem cells (CSCs) promote myocardial recovery following ischemia through their regenerative properties. However, little is known regarding the implication of paracrine action by CSCs in the setting of myocardial ischemia/reperfusion (I/R) injury although it is well documented that non-cardiac stem cells mediate cardioprotection via the production of paracrine protective factors. Here, we studied whether CSCs could initiate acute protection following global myocardial I/R via paracrine effect and what component from CSCs is critical to this protection.

Methodology/Principal Findings

A murine model of global myocardial I/R was utilized to investigate paracrine effect of Sca-1+ CSCs on cardiac function. Intracoronary delivery of CSCs or CSC conditioned medium (CSC CM) prior to ischemia significantly improved myocardial function following I/R. siRNA targeting of VEGF in CSCs did not affect CSC-preserved myocardial function in response to I/R injury. However, differentiation of CSCs to cardiomyocytes (DCSCs) abolished this protection. Through direct comparison of the protein expression profiles of CSCs and DCSCs, SDF-1 was identified as one of the dominant paracrine factors secreted by CSCs. Blockade of the SDF-1 receptor by AMD3100 or downregulated SDF-1 expression in CSCs by specific SDF-1 siRNA dramatically impaired CSC-induced improvement in cardiac function and increased myocardial damage following I/R. Of note, CSC treatment increased myocardial STAT3 activation after I/R, whereas downregulation of SDF-1 action by blockade of the SDF-1 receptor or SDF-1 siRNA transfection abolished CSC-induced STAT3 activation. In addition, inhibition of STAT3 activation attenuated CSC-mediated cardioprotection following I/R. Finally, post-ischemic infusion of CSC CM was shown to significantly protect I/R-caused myocardial dysfunction.

Conclusions/Significance

This study suggests that CSCs acutely improve post-ischemic myocardial function through paracrine factor SDF-1 and up-regulated myocardial STAT3 activation.  相似文献   

4.
5.
Stem cell Ag 1 and 2 (Sca-1 and Sca-2), so named due to their expression by mouse bone marrow stem cells, were evaluated for expression by populations of cells within the thymus. Immunohistochemical analysis demonstrated that Sca-1 was expressed by cells in the thymic medulla and by some subcapsular blast cells, as well as by the thymic blood vessels and capsule. Sca-2 expression, which was limited to the thymic cortex, could be associated with large cycling thymic blast cells. Both Sca-1 and Sca-2 were expressed on a sub-population of CD4-CD8- thymocytes, and this subpopulation was entirely contained within the Ly-1lo progenitor fraction of cells. Sca-1 expression by a phenotypically mature subset of CD4+CD8- thymocytes was also noted. Conversely, Sca-2 expression was observed on a phenotypically immature or nonmature subpopulation of CD4-CD8- thymocytes. MEL-14, an antibody that defines functional expression of a lymphocyte homing molecule, identified a small population of thymocytes that contained all four major thymic subsets. Sca-2 split the MEL-14hi thymocyte subset into two Sca-2+ non-mature/immature phenotype fractions and two Sca-2- mature phenotype fractions. In peripheral lymphoid organs, Sca-1 identified a sub-population of mature T lymphocytes that is predominantly CD4+CD8-, in agreement with the thymic distribution of Sca-1. Peripheral T cells of the CD4-CD8+ phenotype were predominantly Sca-1-. In contrast, Sca-2 did not appear to stain peripheral T lymphocytes, but recognized only a subset of B lymphocytes which could be localized by immunohistochemistry to germinal centers. Thus, expression of Sca-1 is observed throughout T cell ontogeny, whereas Sca-2 is expressed by some subsets of thymocytes, including at least one half of thymic blasts, but not by mature peripheral T lymphocytes.  相似文献   

6.
7.
8.

Background

Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI). However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs) have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear.

Methodology/Principal Finding

Using “middle aged” mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1+CD45- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1) in Sca-1+CD45- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1+CD45- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts.

Conclusions/Significance

These studies demonstrate that cloned Sca-1+CD45- cells derived from CSs from infarcted “middle aged” hearts are enriched for second heart field (i.e., Isl-1+) precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.  相似文献   

9.
In this report, we investigate the C. elegans CBFbeta homologue, BRO-1. bro-1 mutants have a similar male-specific sensory ray loss phenotype to rnt-1 (the C. elegans homologue of the mammalian CBFbeta-interacting Runx factors), caused by failed cell divisions in the seam lineages. Our studies indicate that BRO-1 and RNT-1 form a cell proliferation-promoting complex, and that BRO-1 increases both the affinity and specificity of RNT-1-DNA interactions. Overexpression of bro-1, like rnt-1, leads to an expansion of seam cell number and co-overexpression of bro-1 and rnt-1 results in massive seam cell hyperplasia. Finally, we find that BRO-1 appears to act independently of RNT-1 in certain situations. These studies provide new insights into the function and regulation of this important cancer-associated DNA-binding complex in stem cells and support the view that Runx/CBFbeta factors have oncogenic potential.  相似文献   

10.
Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.  相似文献   

11.
Objectives: This study aims to explore the effect of bone marrow mesenchymal stem cells (BMSCs) on multiple myeloma (MM) development and the underlying mechanism.

Materials and Methods: BMSCs from C57BL/6 J mice were isolated and the third passage was used for subsequent experiments. Additionally, a series of in vitro transwell coculture assays were performed to explore the effects of BMSCs on the proliferation of MM cells 5TGM1 and CD4+ T cells. Furthermore, a 5TGM1-induced MM mice model was established. Moreover, PD-L1 shRNA was transfected into BMSCs to investigate whether PD-1/PD-L1 pathway involved in BMSCs-mediated regulation of T cells and MM growth.

Results: Data revealed that BMSCs significantly promoted 5TGM1 proliferation in a dose-dependent manner. Furthermore, BMSCs administration exerted stimulatory effects on MM development in terms of shortening the mouse survival rate, promoting tumor growth, and enhancing inflammatory infiltration in the MM model mice. Moreover, BMSCs decreased the percentage of Th1 and Th17 cells, whereas increased that of Th2 and Treg cells. Their corresponding cytokines of these T cell subsets showed similar alteration in the presence of BMSCs. Additionally, BMSCs significantly suppressed CD4+ T cell proliferation. We also found that PD-L1 shRNA inhibited 5TGM1 proliferation likely through activation of CD4+ T cells. Further in vivo experiments confirmed that PD-L1 inhibition attenuated BMSCs-induced MM growth, inflammation infiltration and imbalance of Th1/Th2 and Th17/Treg.

Conclusion: In summary, our findings demonstrated that BMSCs promoted cell proliferation of MM through inhibiting T cell immune responses via PD-1/PD-L1 pathway.  相似文献   


12.
G-CSF was among the first cytokines to be identified and rapidly transitioned into clinical medicine. Initially used to promote the production of neutrophils in patients with chemotherapy-induced neutropenia it helped to revolutionize the delivery of cancer therapy. Its ability to mobilize hematopoietic stem cells from the bone marrow into the blood was subsequently exploited, changing the face of hematopoietic stem cell transplantation. Today the knowledge gained in unraveling the mechanisms of stem cell mobilization by G-CSF is being explored as a means to increase chemosensitivity in hematological malignancies. This review provides a brief history of G-CSF and then focuses on recent advances in our understanding of G-CSF-induced stem cell mobilization and the potential clinical application of this knowledge in chemo-sensitization.  相似文献   

13.
14.
15.
Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal cancer (CRC). Here, we use the adult Drosophila midgut and the mouse small intestine to directly address the role of Rac1 in ISC proliferation and tissue regeneration in response to damage. Our results demonstrate that Rac1 is necessary and sufficient to drive ISC proliferation and regeneration in an ROS-dependent manner. Our data point to an evolutionarily conserved role of Rac1 in intestinal homeostasis and highlight the value of combining work in the mammalian and Drosophila intestine as paradigms to study stem cell biology.  相似文献   

16.
17.
Granulocyte colony-stimulating factor (G-CSF), the major cytokine regulator of neutrophilic granulopoiesis, stimulates both the proliferation and differentiation of myeloid precursors. A variety of signaling proteins have been identified as mediators of G-CSF signaling, but understanding of their specific interactions and organization into signaling pathways for particular cellular effects is incomplete. The present study examined the role of the scaffolding protein Grb2-associated binding protein-2 (Gab2) in G-CSF signaling. We found that a chemical inhibitor of Janus kinases inhibited G-CSF-stimulated Gab2 phosphorylation. Transfection with Jak2 antisense and dominant negative constructs also inhibited Gab2 phosphorylation in response to G-CSF. In addition, G-CSF enhanced the association of Jak2 with Gab2. In vitro, activated Jak2 directly phosphorylated specific Gab2 tyrosine residues. Mutagenesis studies revealed that Gab2 tyrosine 643 (Y643) was a major target of Jak2 in vitro, and a key residue for Jak2-dependent phosphorylation in intact cells. Mutation of Gab2 Y643 inhibited G-CSF-stimulated Erk1/2 activation and Shp2 binding to Gab2. Loss of Y643 also inhibited Gab2-mediated G-CSF-stimulated cell proliferation. Together, these results identify a novel signaling pathway involving Jak2-dependent Gab2 phosphorylation leading to Erk1/2 activation and cell proliferation in response to G-CSF.  相似文献   

18.
Here, we aimed to investigate the carcinogenic effects of apolipoprotein C1 (APOC1) in prostate cancer (PCa). APOC1 expression was evaluated in PCa and normal prostate specimens, and lentivirus‐mediated RNA interference was used to knockdown APOC1 in DU145 cells. The effects of APOC1 silencing on cell proliferation, cell cycle arrest, and apoptosis were assessed. APOC1 expression was much higher in PCa tissues than in normal tissues. Moreover, APOC1 silencing inhibited cell proliferation and colony formation, arrested cell cycle progression, and enhanced apoptosis in DU145 cells. Additionally, APOC1 silencing decreased survivin, phospho‐Rb, and p21 levels and increased cleaved caspase‐3 expression. These data supported the procarcinogenic effects of APOC1 in the pathogenesis of PCa and suggested that targeting APOC1 may have applications in the treatment of PCa.  相似文献   

19.
The incidence and mortality rate of colorectal cancer (CRC) have been significantly increasing. However, mechanisms involved in CRC progression are still unclear. LncRNA ZFAS1 has been verified as oncogenic molecular in a series of tumors, including CRC. However, the underlying mechanism of ZFAS1 in CRC carcinogenesis remains unclear. In the present study, our data showed that ZFAS1 expression was significantly upregulated in CRC tissues and cell lines. Correlation analysis showed that high ZFAS1 expression was significantly associated with Helicobacter pylori infection, lymph nodes metastasis, advanced TNM stage and poor overall survival of CRC patients. Loss-of-function experiments revealed that ZFAS1 inhibition could markedly suppress CRC cells proliferation and invasion both in vitro and in vivo. Bioinformatics analysis and luciferase reporter assay revealed that ZFAS1 directly interacted with miR-484. Rescue experiments showed that miR-484 inhibitor reversed the tumor suppressing roles of ZFAS1 knockdown on CRC cells. Therefore, our study suggested that ZFAS1 could act as an oncogene in CRC tumorigenesis, and discovered the functional regulatory pathway of ZFAS1 sponging miR-484.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号