首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of Wen-Pi-Tang extract on influenza virus infection in mice was investigated. The administration of Wen-Pi-Tang extract at a dose of 100 mg/kg body wt. for 8 consecutive days to influenza virus-infected mice reversed the lack of body wt. gain and prevented the increase in lung weight caused by the infection in comparison with uninfected mice, while allopurinol, a xanthine oxidase (XOD) inhibitor, did not show these effects. The serum levels of uric acid and allantoin in influenza virus-infected mice were reduced by Wen-Pi-Tang extract administration. Moreover, Wen-Pi-Tang extract reduced the uric acid level more as the dose increased, although it exerted lower activity than allopurinol. The XOD activity of the lungs was elevated by influenza virus infection, but Wen-Pi-Tang extract administration inhibited this activity, indicating prevention of lung damage by oxygen free radicals generated by XOD. After the administration of Wen-Pi-Tang extract to influenza virus-infected mice, the lung superoxide dismutase activity was not significantly different from that of uninfected mice, whereas lung catalase activity was lower in the former than the latter, but slightly higher than that of influenza virus-infected mice, suggesting that Wen-Pi-Tang extract may prevent the generation of highly toxic hydroxyl radicals in the lung. In addition, the administration of both Wen-Pi-Tang extract and allopurinol reduced the degree of lung consolidation caused by influenza virus infection. In particular, Wen-Pi-Tang extract reduced the consolidation score in a dose-dependent manner and more markedly than allopurinol did. This study suggests that Wen-Pi-Tang extract could improve pathological conditions of the lungs induced by influenza virus infection.  相似文献   

2.
Plasma uric acid levels were determined in ethanol-fed poults following administration of allopurinol. In young poults, allopurinol at a dose of 50 mg/kg significantly depressed plasma uric acid levels 6 hr post-dosing. At 11 hr post-dosing, plasma uric acid levels were significantly elevated in the allopurinol-treated poults when compared with control poults. During a period of ethanol abstinence, allopurinol at a dose of 40 mg/kg significantly depressed plasma uric acid levels up to 8 hr post-dosing. At a dose of 30 mg/kg, plasma uric acid levels were similar to control values at 4 and 6 hr post-dosing. Data suggest that plasma uric acid levels can be depressed in ethanol poults when allopurinol is administered every 8 hr at a dose of 40-50 mg/kg of body weight.  相似文献   

3.
Hyperuricemia is caused by hepatic overproduction of uric acid and/or underexcretion of urate from the kidneys and small intestine. Although increased intake of citrus fruits, a fructose-rich food, is associated with increased risk of gout in humans, hesperidin, a flavonoid naturally present in citrus fruits, reportedly reduces serum uric acid (SUA) levels by inhibiting xanthine oxidase (XOD) activity in rats. However, the effects of hesperidin on renal and intestinal urate excretion were previously unknown. In this study, we used glucosyl hesperidin (GH), which has greater bioavailability than hesperidin, to clarify comprehensive mechanisms underlying the hypouricemic effects of hesperidin in vivo. GH dose-dependently decreased SUA levels in mice with hyperuricemia induced by potassium oxonate and a fructose-rich diet, and inhibited XOD activity in the liver. GH decreased renal urate excretion without changes in kidney URAT1, ABCG2 or GLUT9 expressions, suggesting that reducing uric acid pool size by inhibiting XOD decreased renal urate excretion. We also found that GH had no effect on intestinal urate excretion or protein expression of ABCG2. Therefore, we concluded that GH exhibits a hypouricemic effect by inhibiting XOD activity in the liver without increasing renal or intestinal urate excretion. Of note, this is the first study to elucidate the effect of a flavonoid on intestinal urate excretion using a mice model, whose findings should prove useful in future food science research in the area of urate metabolism. Taking these findings together, GH may be useful for preventing hyperuricemia, especially in people with the overproduction type.  相似文献   

4.
The pharmacokinetics and pharmacodynamics of a novel xanthine oxidase (XO) inhibitor, Y‐700, were evaluated in rats and healthy male volunteers. In a rat model of hyperuricemia, oral Y‐700 (0.3–10 mg/kg) showed a more potent and a longer‐lasting hypouricemic action than allopurinol. A single oral dosing of Y‐700 (5, 20 or 80 mg) to volunteers caused a dose‐dependent reduction of serum uric acid levels indicating close relationship to plasma concentrations of the compound. In addition, Y‐700 was hardly excreted in urine but mainly excreted in feces in rats and volunteers. These results suggested that Y‐700 is a new effective inhibitor of XO in rats and humans with high oral bioavailability being predominantly eliminated via the liver unlikely to allopurinol.  相似文献   

5.
The purpose of this study was to evaluate the inhibitory effect of renierol, extracted from marine sponge Halicdona.SP., on xanthine oxidase (XO) and its hypouricemic effect in vivo. Renierol and a positive control, allopurinol, were tested for their effects on XO activity by measuring the formation of uric acid and superoxide radical from xanthine. Renierol inhibited XO in a concentration-dependent and competitive manner. IC(50) value was 1.85 microg.ml(-1) through the measuring of uric acid and was 1.36 microg.ml(- 1) through the measuring of superoxide radical. Renierol was found to have an in vivo hypouricemic activity against potassium oxonate-induced hyperuricaemia in mice. After oral administration of renierol at doses of 10, 20 and 30 mg.kg(- 1), there was a significant decrease in the serum urate level (4.08 +/- 0.09 mg.dl(- 1), P < 0.01), (3.47 +/- 0.11 mg.dl(- 1), P < 0.01) and (3.12 +/- 0.08 mg.dl(- 1), P < 0.01), when compared to the hyperuricaemic control (6.74 +/- 0.23 mg.dl(- 1)). Renierol was a potent XO inhibitor with hypouricemic activity in mice.  相似文献   

6.
The xanthine oxidoreductase (XOD) system, which consists of xanthine dehydrogenase (XDH) and xanthine oxidase (XO), is one of the major sources of free radicals in biological systems. The XOD system is present predominantly in the normal tissues as XDH. In damaged tissues, XDH is converted into XO, the form that generates free radicals. Therefore, the XO form of the XOD system is expected to be found mainly in radiolytically damaged tissue. In this case, XO may catalyze the generation of free radicals and potentiate the effect of radiation. Inhibition of the XOD system is likely to attenuate the detrimental effects of ionizing radiation. We have examined this possibility using allopurinol and folic acid, which are known inhibitors of the XOD system. Swiss albino mice (7-8 weeks old) were given single doses of allopurinol and folic acid (12.5-50 mg/kg) intraperitoneally and irradiated with different doses of gamma radiation at a dose rate of 0.023 Gy/s. The XO and XDH activities as well as peroxidative damage and lactate dehydrogenase (LDH) were determined in the liver. An enhancement of the activity of XO and a simultaneous decrease in the activity of XDH were observed at doses above 3 Gy. The decrease in the ratio XDH/XO and the unchanged total activity (XDH + XO) suggested the conversion of XDH into XO. The enhanced activity of XO may potentiate radiation damage. The increased levels of peroxidative damage and the specific activity of LDH in the livers of irradiated mice supported this possibility. Allopurinol and folic acid inhibited the activities of XDH and XO, decreased their ratio (XDH/XO), and lowered the levels of peroxidative damage and the specific activity of LDH. These results suggested that allopurinol and folic acid have the ability to inhibit the radiation-induced changes in the activities of XDH and XO and to attenuate the detrimental effect of this conversion, as is evident from the diminished levels of peroxidative damage and the decreased activity of LDH.  相似文献   

7.
8.
The purpose of this study was to evaluate the inhibitory effect of renierol, extracted from marine sponge Halicdona.SP., on xanthine oxidase (XO) and its hypouricemic effect in vivo. Renierol and a positive control, allopurinol, were tested for their effects on XO activity by measuring the formation of uric acid and superoxide radical from xanthine. Renierol inhibited XO in a concentration-dependent and competitive manner. IC50 value was 1.85 μg·ml? 1 through the measuring of uric acid and was 1.36 μg.ml? 1 through the measuring of superoxide radical. Renierol was found to have an in vivo hypouricemic activity against potassium oxonate-induced hyperuricaemia in mice. After oral administration of renierol at doses of 10, 20 and 30 mg.kg? 1, there was a significant decrease in the serum urate level (4.08 ± 0.09 mg.dl? 1, P < 0.01), (3.47 ± 0.11 mg.dl? 1, P < 0.01) and (3.12 ± 0.08 mg.dl? 1, P < 0.01), when compared to the hyperuricaemic control (6.74 ± 0.23 mg.dl? 1). Renierol was a potent XO inhibitor with hypouricemic activity in mice.  相似文献   

9.
The pharmacokinetics and pharmacodynamics of a novel xanthine oxidase (XO) inhibitor, Y-700, were evaluated in rats and healthy male volunteers. In a rat model of hyperuricemia, oral Y-700 (0.3-10 mg/kg) showed a more potent and a longer-lasting hypouricemic action than allopurinol. A single oral dosing of Y-700 (5, 20 or 80 mg) to volunteers caused a dose-dependent reduction of serum uric acid levels indicating close relationship to plasma concentrations of the compound. In addition, Y-700 was hardly excreted in urine but mainly excreted in feces in rats and volunteers. These results suggested that Y-700 is a new effective inhibitor of XO in rats and humans with high oral bioavailability being predominantly eliminated via the liver unlikely to allopurinol.  相似文献   

10.
Hyperuricemia is characterized by the high uric acid (UA) level in serum (or plasma) and has been considered to be an important risk factor for gout. In the present study, we have attempted to construct an assay system for UA production in vitro employing cultured AML12 hepatocytes. UA levels in balanced salt solution (BSS) in the presence of UA precursor nucleosides, adenosine, inosine, guanosine and xanthine, at 12.5, 25, and 100 µM were significantly higher than BSS alone and their effects were dose-dependent, while all the UA precursors did not significantly increase intracellular UA levels. Hence, UA levels in BSS were thereafter adopted as an index of UA production. UA production from nucleosides was significantly higher than that from nucleotides (GMP, IMP and AMP). UA production from guanosine and inosine in combination (GI mixture) as well as nucleosides increased time-dependently and almost linearly up to 2 h. Selecting GI mixture, effects of allopurinol, a widely used anti-hyperuricemic agent, and quercetin, a well-known polyphenol in onion and strawberry, on UA production were examined. Both allopurinol and quercetin dose-dependently (0.1, 0.3 and 1 μM for allopurinol and 10, 30, and 100 μM for quercetin) and significantly reduced UA production in the hepatocytes. They also significantly reduced hyperuricemia induced by intraperitoneal injection of UA precursor purine bodies to mice at a single oral dose of 10 (allopurinol) or 200 (quercetin) mg/kg body weight. This assay system for UA production in cultured hepatocytes is considered to be useful to search for novel anti-hyperuricemic compounds in foods and natural resources with possibility to have human health benefits.  相似文献   

11.
A series of curcumin derivatives as potent dual inhibitors of xanthine oxidase (XOD) and urate transporter 1 (URAT1) was discovered as anti-hyperuricemic agents. These compounds proved efficient effects on anti-hyperuricemic activity and uricosuric activity in vivo. More importantly, some of them exhibited proved efficient effects on inhibiting XOD activity and suppressing uptake of uric acid via URAT1 in vitro. Especially, the treatment of 4d was demonstrated to improve uric acid over-production and under-excretion in oxonate-induced hyperuricemic mice through regulating XOD activity and URAT1 expression. Docking study was performed to elucidate the potent XOD inhibition of 4d. Compound 4d may serve as a tool compound for further design of anti-hyperuricemic drugs targeting both XOD and URAT1.  相似文献   

12.
Arsenic has a long history as a potent human poison, chronic exposure over a period of time may result in the manifestation of toxicity in practically all systems of the body. In the present investigation the efficacy of naringenin (NRG), a naturally occurring citrus flavanone against arsenic-induced hepatotoxic and nephrotoxic manifestations have been studied in rats. Arsenic trioxide was administered orally at the dose of 2 mg/kg/day with or without combination of NRG (20 or 50 mg/kg/day) for 28 days. At the end of the experimental period the hepatic and renal dysfunction was evaluated by histological examination, serum biomarkers and markers of oxidative stress; lipid peroxidation (LPO), reduced glutathione (GSH) and antioxidant enzymes. Arsenic intoxication increased serum bilirubin, urea, uric acid and creatinine levels, additionally enhanced the activities of hepatic marker enzymes aspartate transaminase, alanine transaminase and alkaline phosphatase. Also, the hepatic and renal tissues showed a marked elevation in LPO levels with a decrease in GSH content and the activities of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase on arsenic treatment. Simultaneous treatment with NRG restored the activities of serum biomarkers and antioxidant enzymes in the tissues in a dose-dependent manner. Furthermore, the histopathological studies confirmed the protective effect of NRG co-treatment by reducing the pathological changes due to arsenic intoxication in both liver and kidney. Thus, our present study demonstrates that NRG has a potential to protect arsenic-induced oxidative hepatic and renal dysfunction.  相似文献   

13.
The in vivo potential toxicity of SPB1 lipopeptide biosurfactant towards male mice was evaluated. An LD50 value (defined as the dose required to kill half the members of a tested population) was determined to be about 475 mg/kg. Results show that daily administration of SPB1 biosurfactant did not show any death cases at any dose. Also, no unusual changes in behavior and no intoxication were observed during the 28 days period of treatment. Analysis proved that there were no significant differences in the serum glucose concentration levels, plasma total cholesterol, aspartate aminotransferase activity and bilirubin concentration among the control and experimental groups. In contrast, a little enhancement of alanine aminotransferase activities was observed for mice treated by the highest dose of the biosurfactant corresponding to 47.5 mg/kg of body weight which indicated the necrosis of hepatocyte. A daily intake of doses lower than 47.5 mg/kg of body weight had no significant adverse effect on hematological parameters and serum biochemical data. These results proved that SPB1 biosurfactant could be of a great interest as an additive in food, cosmetic and pharmaceuticals fields.  相似文献   

14.
Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.  相似文献   

15.
Uric acid has been hypothesized as being one of the more important antioxidants in limiting the accumulation of glycosylated endproducts in birds. Study 1 was designed to quantitatively manipulate the plasma concentrations of uric acid using hemin and allopurinol while study 2 determined their effects on skin pentosidine, the shear force value of Pectoralismajor muscle, plasma glucose, body weight and chemiluminescence monitored oxidative stress in broiler chickens. Hemin was hypothesized to raise uric acid concentrations thereby lowering oxidative stress whereas allopurinol was hypothesized to lower uric acid concentrations and raise measures of oxidative stress. In study 1 feeding allopurinol (10 mg/kg body weight) to 8-week-old broiler chicks (n=50) for 10 days decreased plasma uric acid by 57%. However, hemin (10 mg/kg body weight) increased uric acid concentrations 20%. In study 2, 12-week-old broiler chicks (n=90) were randomly assigned to either an ad libitum (AL) diet or a diet restricted (DR) group. Each group was further divided into three treatments (control, allopurinol or hemin fed). Unexpectedly, hemin did not significantly effect uric acid concentrations but increased (P<0.05) measures of chemiluminescence dependent oxidative stress in both the DR and AL birds probably due to the ability of iron to generate oxygen radicals. Allopurinol lowered concentrations of uric acid and increased (P<0.05) the oxidative stress in the AL birds at week 22, reduced (P<0.05) body weight in both the AL and DR fed birds at 16 and 22 weeks of age, and markedly increased (P<0.001) shear force values of the pectoralismajor muscle. Skin pentosidine levels increased (P<0.05) in AL birds fed allopurinol or hemin fed birds, but not in the diet restricted birds at 22 weeks. The significance of these studies is that concentrations of plasma uric acid can be related to measures of oxidative stress, which can be linked to tissue aging.  相似文献   

16.
In the present study, the nephroprotective effect of gallic acid isolated from Peltiphyllum peltatum was examined in sodium fluoride (NaF) treated rats. Nephrotoxicity was induced by 1-week intoxication of NaF at 600 ppm through drinking water. The levels of thiobarbituric acid reactive substances, reduced glutathione as well as activities of superoxide dismutase and catalase in renal tissues homogenates were determined. The serum biochemical markers of renal injuries including creatinine, serum urea, blood urea nitrogen, uric acid levels as well as the levels of phosphate and calcium were also assessed. Intoxication with NaF caused a significant increase in the levels of thiobarbituric acid reactive substances (46 % versus to control) and reduced the glutathione concentration (47 %) and the activities of superoxide dismutase (46 %) and catalase (41 %) in renal tissues homogenates. NaF intoxication also induced significant alterations in the kidney biochemical markers increasing the levels of urea, uric acid, blood urea nitrogen, creatinine, and phosphate and decreasing the levels of calcium. Daily administration of gallic acid (20 mg/kg) for 1 week before NaF intoxication brought the antioxidant–oxidant balance similar to the NaF-untreated group. Silymarin, used a standard antioxidant agent, also showed a nephroprotective activity. We concluded that NaF caused nephrotoxicity and oxidative stress in renal tissues and daily administration of gallic acid for 1 week prior to intoxication inhibited toxicity and oxidative stress.  相似文献   

17.
《Phytomedicine》2014,21(10):1196-1201
The roots and rhizomes of Smilax riparia (SR), called “Niu-Wei-Cai” in traditional Chinese medicine (TCM), are believed to be effective in treating gout symptoms. However, it is not clear if the active constituents and uricosuric mechanisms of S. riparia support its therapeutic activities. In this study, we isolated two steroidal glycosides named riparoside B and timosaponin J from the total saponins of S. riparia. We then examined if these two compounds were effective in reducing serum uric acid levels in a hyperuricemic mouse model induced by potassium oxonate. We found that the two steroidal glycosides possess potent uricosuric effect in hyperuricemic mice through decreasing renal mURAT1 mainly and inhibiting XOD activity in a certain extent, which contribute to the enhancement of uric acid excretion and attenuate hyperuricemia-induced renal dysfunction. Riparoside B and timosaponin J may have a clinical utility in treating gout and other medical conditions caused by hyperuricemia.  相似文献   

18.
To determine the effects of allopurinol on beer-induced increases in plasma and urinary excretion of purine bases (hypoxanthine, xanthine, and uric acid), we performed three experiments on five healthy study participants. In the first experiment (combination study), the participants ingested beer (10 ml/kg body weight) eleven hours after taking allopurinol (300 mg). In the second experiment (beer-only study), the same participants ingested beer (10 ml/kg body weight) alone, while in the third experiment (allopurinol-only study), they took allopurinol (300 mg) alone. There was a two-week interval between each of the studies. Beer-induced increases in plasma concentration and urinary excretion of hypoxanthine in the combination study were markedly higher than those in the beer-only study. On the other hand, the sum of increases in plasma concentrations of purine bases in the beer-only study was greater than in the combination study, whereas the increase in plasma uridine concentration in the combination study did not differ from the beer-only study. In addition, allopurinol administration inhibited the beer-induced increase in plasma concentration of uric acid. These results suggest that abrupt adenine nucleotide degradation may increase plasma concentration and urinary excretion of hypoxanthine under conditions of low xanthine dehydrogenase activity, which is mostly ascribable to allopurinol. Further, the difference in the sum of increases in plasma concentrations of purine bases between the combination study and beer-only study was largely ascribable to a greater increase in urinary excretion of hypoxanthine in the combination study. In addition, allopurinol intake seems to be effective in controlling the rapid increase in plasma uric acid caused by ingestion of alcoholic beverages.  相似文献   

19.
Oral administration of trichloroethylene (TCE; 0, 500, 1000 and 2000 mg/kg/day) to male mice once daily, 5 days a week for a period of 28 days, caused a significant increase in liver weight, degeneration/necrosis of hepatocytes and characteristics proliferation of endothelial cells of hepatic sinusoids. Increase in kidney weight, glomerular nephrosis, degeneration/desquamation of tubular epithelium and characteristic amyloid deposition in glomeruli were observed only in the group of mice treated with 2000 mg/kg TCE. These changes occurred concurrently with a significant increase in total protein and free sulphydryl contents, elevated activities of acid phosphatase and catalase and decreased activity of delta-aminolevulinic acid dehydratase (delta-ALAD) indicating the sensitivity of liver and kidney as target tissues in TCE-toxicity. Hematological studies showed a significant increase in RBC counts and a reduction in WBC counts without any statistically significant change in the hemoglobin, urea nitrogen, creatinine and uric acid levels in the blood of TCE-exposed mice. A dose-related increase in cell density and acid phosphatase activity with a parallel significant decrease in the activity of delta-ALAD were observed in the bone marrow, which appear to be responsible for hematological alterations in TCE-exposed mice. The results suggest that early metabolic, pathological and hematological perturbations following a short-term exposure of TCE in mice, can provide the basis for its documented potential for chronic effects like blood dyscrasia and cancer.  相似文献   

20.
目的:探讨筋骨草的抗运动性疲劳作用。方法:将120只雄性昆明种小鼠随机平均分成安静组、运动组、阳性对照组和筋骨草低、中、高剂量组(n=10)。其中低、中、高剂量组小鼠分别按100 mg/kg、200 mg/kg、400 mg/kg体重连续灌胃筋骨草提取物30 d,阳性对照组小鼠按200 mg/kg体重灌胃西洋参胶囊颗粒,安静组和运动组小鼠以等体积生理盐水灌胃。动物试验结束后,分析各组小鼠运动力竭时间、血清生理生化指标(包括血乳酸、血尿素氮、血糖、总胆固醇、甘油三酯含量)、肝糖原与肌糖原含量,以及股四头肌、肝脏和心脏组织的抗氧化指标(包括谷胱甘肽过氧化物酶、超氧化物歧化酶、过氧化氢酶和丙二醛)。结果:中、高剂量组小鼠的运动力竭时间、红细胞数量、血红蛋白含量、血糖浓度、肝糖原与肌糖原含量,以及器官组织中谷胱甘肽过氧化物酶、超氧化物歧化酶和过氧化氢酶活力均明显高于运动对照组,而血清乳酸含量、血清尿素氮、血清甘油三酯与总胆固醇含量,以及器官组织中丙二醛含量明显低于运动对照组,中剂量的筋骨草提取物的作用效果优于同剂量的西洋参胶囊颗粒。结论:筋骨草通过提高机体的抗氧化功能而达到抗运动性疲劳作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号