首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry—a form of Batesian mimicry that involves multiple models and is more complex than a simple one model–one mimic system—operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant–animal interactions.  相似文献   

2.
The Mediterranean orchid Anacamptis papilionacea , despite showing a typical food-deceptive floral display, has also been reported to frequently attract male pollinators, suggesting a potentiality for sexual attraction. In a survey from a southern Italian population of A. papilionacea and their hybrids with Anacamptis morio , we collected 37 pollinators belonging to five bee species carrying 126 orchid pollinia. The main pollinator of A. papilionacea was Anthophora crinipes male (48.6%), but the number of females was not negligible (22.9%). We also found pollinator sharing between the hybrid and the parental species. Our findings confirm that, contrary to other food-deceptive species, A. papilionacea mainly attracts male insects, but also that, in contrast to sexually deceptive species, this attraction is not specific. We suggest that A. papilionacea adopts a complex mix of food and sexually deceptive pollination and could represent a helpful model for studying the transition between different pollination strategies.  相似文献   

3.
European food-deceptive orchids generally flower early in spring and rely on naïve pollinators for their reproduction. Some species however, flower later in the summer, when many other rewarding plants species are also in bloom. In dense flowering communities, deceptive orchids may suffer from competition for pollinator resources, or might alternatively benefit from higher community attractiveness. We investigated the pollination strategy of the deceptive species Traunsteinera globosa, and more specifically whether it benefited from the presence of coflowering rewarding species. We carried out a population survey to quantify the density and reproductive success of the orchid as well as the density of all coflowering species. Our results suggest that the deceptive orchid not only benefited from the presence of coflowering species, but that interestingly the density of the species Trifolium pratense was significantly positively correlated with the orchid's reproductive success. This species might simply act as a magnet species attracting pollinators near T. globosa, or could influence the orchid reproductive fitness through a more species-specific interaction. We propose that morphological or colour similarities between the two species should be investigated in more detail to decipher this pollination facilitation effect.  相似文献   

4.
Despite highly specialized pollination strategies, hybridization is a common phenomenon among Mediterranean deceptive orchids. Food-deceptive species sire a progeny of F1 unfertile plants, which work as a late post-zygotic barrier. Conversely, when pre-zygotic barriers of sexually deceptive (Ophrys) species are absent, the hybrids are fertile and an extensive introgression may occur. Here, we have performed molecular analysis and hand pollination treatments to characterize a hybrid zone of two food-deceptive species, O. mascula and O pauciflora. Hybrids (called O. × colemanii) have shown different amounts of parental nrDNA, strongly supporting that they are F2 and/or successive hybrid generations. Comparable high levels of reproductive success have been detected in natural conditions and in experimental crosses suggesting the absence of effective reproductive barriers either between hybrids, either between hybrids and parental species. In light of ecological and distributional features of O. × colemanii across its distribution range, we hypothesize that these populations have originated by secondary contact in the periglacial belt of Apennines. Moreover, the rare and localized O. pauciflora could benefit a genetic enrichment by hybridizing with a widespread related species. O. × colemanii is not a dead end population, but may have a role as potential reserve of adaptive variability and is an unusual stage along the speciation process.  相似文献   

5.
An outstanding feature of the orchid family is that approximately 30–40% of the species have non-rewarding flowers and deploy various modes of deception to attract pollinators, whereas the remaining species engage in pollination mutualisms based on provision of floral rewards. Here, we explore the direction, frequency and reversibility of transitions between deceptive and rewarding pollination systems in the radiation of the large African genus Disa, and test whether these transitions had consequences for diversification. By optimizing nectar production data for 111 species on a well-resolved phylogeny, we confirmed that floral deception was the ancestral condition and that nectar production evolved at least nine times and was lost at least once. Transitions to nectar production first occurred ca 17 million years ago but did not significantly affect either speciation or extinction rates. Nectar evolved independently of a spur, which was lost and gained multiple times. These results show that nectar production can be a highly labile trait and highlight the need for further studies of the genetic architecture of nectar production and the selective factors underlying transitions between deception and mutualism.  相似文献   

6.

Background and Aims

To date, current research involving pollen viability has been evaluated in a relatively low number of orchid species. In the present study, we focused on five related Mediterranean orchid genera (Anacamptis, Orchis, Dactylorhiza, Ophrys and Serapias) that are characterized by different types of deceptive pollination.

Methods

The in vitro germination ability of increasingly aged pollinaria of eight food-, seven sexually and two shelter-deceptive species was evaluated. Pollination experiments on two food-, one sexually and one shelter-deceptive species were also performed and the percentage of embryonate seeds derived from the increasingly aged pollinaria was checked.

Key Results

All of the examined species showed long-term viabilities (=50 % pollen tube growth) that ranged from 8 to 35 d. Species with the same deceptive pollination strategies exhibited the same pollen viability trends. Interestingly, pollen viabilities of species groups with different deception types have shown significant differences, with sexually and shelter- deceptive species exhibiting a shorter life span than food-deceptive species.

Conclusions

This study confirms the prolonged germination and fertilization capacities of orchid pollinaria, and to our knowledge is the first report demonstrating a clear relationship between pollen viability and pollination system. It is proposed that this relationship is attributed to the different types of reproductive barriers, pre- or post-zygotic, that characterixe Ophrys and Serapias and the food-deceptive species, respectively.  相似文献   

7.
  • The food‐deceptive species Anacamptis robusta is threatened in the Balearic Islands, and its habitat has recently been transformed through human disturbance. This study investigated how human disturbance affects the reproductive output of A. robusta and how its fitness is affected by competition with rewarding relatives, fungal infections and hybridization processes.
  • To evaluate the impact of habitat loss on plant fitness, data on reproductive measures were obtained in two well‐conserved subpopulations and the unique disturbed subpopulation. Photo‐trapping cameras were installed to determine the floral visitation rate. All flowering individuals in 2019 were georeferenced using differential GPS to examine the influence of geospatial patterns on the reproductive success of A. robusta. In addition, hand‐pollination treatments were performed to evaluate the hybridization between A. coriophora and A. robusta and the origin of A. × albuferensis.
  • The human‐disturbed subpopulation of A. robusta had a lower fruit set success than the subpopulations in well‐conserved areas. The presence of A. coriophora is negatively affecting the reproductive output of A. robusta. Moreover, A. robusta can only act as the pollen donor during hybridization.
  • The complexity of the ecological system, which is enhanced by the strong pollinator dependence of the threatened species, must be considered when making conservation decisions. Although human disturbance directly affects plant population stability, other ecological issues must be considered, such as pollinator interaction, interspecific competition for pollinators, fungal infection and hybridization events.
  相似文献   

8.
Aims Food-deceptive pollination, in which plants do not offer any food reward to their pollinators, is common within the Orchidaceae. As food-deceptive orchids are poorer competitors for pollinator visitation than rewarding orchids, their occurrence in a given habitat may be more constrained than that of rewarding orchids. In particular, the success of deceptive orchids strongly relies on several biotic factors such as interactions with co-flowering rewarding species and pollinators, which may vary with altitude and over time. Our study compares generalized food-deceptive (i.e. excluding sexually deceptive) and rewarding orchids to test whether (i) deceptive orchids flower earlier compared to their rewarding counterparts and whether (ii) the relative occurrence of deceptive orchids decreases with increasing altitude.Methods To compare the flowering phenology of rewarding and deceptive orchids, we analysed data compiled from the literature at the species level over the occidental Palaearctic area. Since flowering phenology can be constrained by the latitudinal distribution of the species and by their phylogenetic relationships, we accounted for these factors in our analysis. To compare the altitudinal distribution of rewarding and deceptive orchids, we used field observations made over the entire Swiss territory and over two Swiss mountain ranges.Important findings We found that deceptive orchid species start flowering earlier than rewarding orchids do, which is in accordance with the hypotheses of exploitation of naive pollinators and/or avoidance of competition with rewarding co-occurring species. Also, the relative frequency of deceptive orchids decreases with altitude, suggesting that deception may be less profitable at high compared to low altitude.  相似文献   

9.

Background and Aims

In the sexually deceptive Ophrys genus, species isolation is generally considered ethological and occurs via different, specific pollinators, but there are cases in which Ophrys species can share a common pollinator and differ in pollen placement on the body of the insect. In that condition, species are expected to be reproductively isolated through a pre-mating mechanical barrier. Here, the relative contribution of pre- vs. post-mating barriers to gene flow among two Ophrys species that share a common pollinator and can occur in sympatry is studied.

Methods

A natural hybrid zone on Sardinia between O. iricolor and O. incubacea, sharing Andrena morio as pollinator, was investigated by analysing floral traits involved in pollinator attraction as odour extracts both for non-active and active compounds and for labellum morphology. The genetic architecture of the hybrid zone was also estimated with amplified fragment length polymorphism (AFLP) markers, and pollination fitness and seed set of both parental species and their hybrids in the sympatric zone were estimated by controlled crosses.

Key Results

Although hybrids were intermediate between parental species in labellum morphology and non-active odour compounds, both parental species and hybrids produced a similar odour bouquet for active compounds. However, hybrids produced significantly lower fruit and seed set than parental species, and the genetic architecture of the hybrid zone suggests that they were mostly first-generation hybrids.

Conclusions

The two parental species hybridize in sympatry as a consequence of pollinator overlap and weak mechanical isolation, but post-zygotic barriers reduce hybrid frequency and fitness, and prevent extensive introgression. These results highlight a significant contribution of late post-mating barriers, such as chromosomal divergence, for maintaining reproductive isolation, in an orchid group for which pre-mating barriers are often considered predominant.Key words: AFLP markers, floral scent variation, hybrid zone, hybrid fitness, Ophrys iricolor, Ophrys incubacea, reproductive isolation, sexual deception  相似文献   

10.
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.  相似文献   

11.
Protoplasts isolated from cell cultures of chlorophyll-deficient Nicotiana rustica cv. chlorotica and wild-type N. sylvestris were fused. The scheme for selection of somatic hybrids was based on the inability of the protoplast-derived colonies of the parental species to turn green; N. sylvestris protoplasts also had a very low plating efficiency in the medium employed. A total of 777 green colonies which were presumptive hybrids were isolated within four weeks of the fusion experiments. One hundred and eight green colonies formed shoots in vitro and 16 lines were rooted and grown in the greenhouse. Each of these hybrid plants displayed vegetative and floral traits intermediate to those of the parental species, except for plant height which in almost all cases was greater in the hybrids. Isozyme analyses by gel electrophoresis and isoelectric focussing of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBPCase) demonstrated that the nuclear genomes of both parents were expressed by the hybrids. Each of the eight somatic hybrid plants analyzed expressed only the N. rustica chloroplast genome as shown by isoelectric focussing of the large subunit of RUBPCase. This study demonstrated the value of N. rustica cv. chlorotica as a parental line in somatic hybridization with N. sylvestris and it might have widespread use with wild-type lines of other species.  相似文献   

12.
In most pollination systems, animals transfer pollen among plants of a given species. Pollinator visitations do not come without cost, so plants usually offer a reward. However, the flowers of some plant species, mostly orchids, lack rewards and deceive animals into visiting their flowers. Deceptive species are thought to have high levels of variation in traits associated with advertisement and pollinator attraction, which have been attributed to genetic drift, or disruptive selection due to pollinator behavior. Rewarding species are assumed to have less variation due to stabilizing selection. We compared variability in floral morphology and fragrance composition between deceptive and rewarding species. Because both suites of traits are often linked with floral advertisement and pollinator attraction, we expected variation to be greater in species with deceptive pollination systems than in those offering rewards. We obtained floral morphology metrics for 20 deceptive species and 41 rewarding species native or naturalized in Puerto Rico, Venezuela, and Ecuador. Floral fragrances were sampled from eight deceptive species and four rewarding species. We found that the amplitude of variation in floral morphology and fragrance composition covaries significantly. Comparison of coefficients of variation for morphology indicated that, overall, deceptive species show significantly higher variation than rewarding species, and this pattern was also found among just orchids or just nonorchids. There were no statistical differences in morphological variation between orchids and nonorchids within a functional pollination group. Fragrance variation, measured by Jaccard distance, tended to be greater for deceptive species than for rewarding species. Although overlap in measures of variation occurs between the two groups, the data support the hypothesis that populations of deception-pollinated species are more variable than rewarding species in traits associated with pollinator attraction.  相似文献   

13.

Background and Aims

The study of specialized interactions between species is crucial to our understanding of processes in evolutionary ecology due to their profound effect on life cycles and diversification. Obligate pollination by a single wasp species is rare in Orchidaceae except in species with sexually deceptive flowers that are pollinated exclusively by male insects. The object of this study was to document pollination of the food-deceptive flowers of Coelogyne fimbriata, a species pollinated exclusively by female wasps.

Methods

Field observations and experiments were conducted in two populations of C. fimbriata. Floral phenology was recorded, and functional floral architecture was measured. Insect visitors to flowers were observed from 2005 to 2007. Bioassay experiments were conducted to check whether the floral odour attracted pollinators. Natural (insect-mediated) rates of pollinarium removal, pollinium deposition on stigmas, and fruit set were recorded. To determine the importance of cross-pollination, the breeding system was assessed via controlled, hand-pollination experiments.

Key Results

Two populations of C. fimbriata with fragrant, nectarless flowers are pollinated by females of the same Vespula species (Vespidae, Hymenoptera). Experiments on wasps show that they crawl towards the source of the odour. The flowering period appears to coincide with an annual peak in Vespula colony expansion when additional workers forage for carbohydrates. Rates of pollinarium removal (0·069–0·918) and pollinium deposition on stigmas (0·025–0·695) are extremely variable. However, fruit set in C. fimbriata is always low (0·014–0·069) and appears to be based on self-incompatibility coupled with intraclonal (geitonogamous) deposition of pollinia.

Conclusions

Coelogyne fimbriata and Steveniella satyrioides are now the only orchid species known to have food-deceptive flowers that are pollinated exclusively by eusocial, worker wasps. In C. fimbriata, floral odour appears to be the major attractant. Sub-populations may go through flowering seasons when pollinators are abundant or infrequent, but fruit set always remains low because the obligate pollinator does not often appear to transfer pollinaria between intercompatible genets.Key words: Coelogyne fimbriata, Vespula wasps, food deception, floral odour, pollinarium removal, pollinium deposition, self-incompatibility  相似文献   

14.
Sun HQ  Huang BQ  Yu XH  Kou Y  An DJ  Luo YB  Ge S 《Annals of botany》2011,107(1):39-47

Background and Aims

Increasing evidence challenges the conventional perception that orchids are the most distinct example of floral diversification due to floral or prezygotic isolation. Regarding the relationship between co-flowering plants, rewarding and non-rewarding orchids in particular, few studies have investigated whether non-rewarding plants affect the pollination success of rewarding plants. Here, floral isolation and mutual effects between the rewarding orchid Galearis diantha and the non-rewarding orchid Ponerorchis chusua were investigated.

Methods

Flowering phenological traits were monitored by noting the opening and wilting dates of the chosen individual plants. The pollinator pool and pollinator behaviour were assessed from field observations. Key morphological traits of the flowers and pollinators were measured directly in the field. Pollinator limitation and interspecific compatibility were evaluated by hand-pollination experiments. Fruit set was surveyed in monospecific and heterospecific plots.

Key Results

The species had overlapping peak flowering periods. Pollinators of both species displayed a certain degree of constancy in visiting each species, but they also visited other flowers before landing on the focal orchids. A substantial difference in spur size between the species resulted in the deposition of pollen on different regions of the body of the shared pollinator. Hand-pollination experiments revealed that fruit set was strongly pollinator-limited in both species. No significant difference in fruit set was found between monospecific plots and heterospecific plots.

Conclusions

A combination of mechanical isolation and incomplete ethological isolation eliminates the possibility of pollen transfer between the species. These results do not support either the facilitation or competition hypothesis regarding the effect of nearby rewarding flowers on non-rewarding plants. The absence of a significant effect of non-rewarding P. chusua on rewarding G. diantha can be ascribed to low levels of overlap between the pollinator pools of two species.  相似文献   

15.

Background and Aims

Floral traits, such as floral volatiles, can contribute to pre-zygotic reproductive isolation by promoting species-specific pollinator foraging. When hybrid zones form, floral traits could also influence post-zygotic isolation. This study examined floral volatiles in parental species and natural hybrids in order to explore potential scent mediation of pre-zygotic and post-zygotic isolation.

Methods

Floral bouquets were analysed for the sister species Ipomopsis aggregata and I. tenuituba and their natural hybrids at two contact sites differing in both hybridization rate and temporal foraging pattern of hawkmoth pollinators. Floral volatiles were quantified in diurnal and nocturnal scent samples using gas chromatography–mass spectrometry.

Key Results

The bouquets of parental species and hybrids showed qualitative overlap. All flowers emitted similar sets of monoterpenoid, sesquiterpenoid, aliphatic and benzenoid compounds, but separated into groups defined by multivariate analysis of quantitative emissions. The parental species differed most strikingly in the nitrogenous compound indole, which was found almost exclusively in nocturnal bouquets of I. tenuituba. Natural hybrid bouquets were highly variable, and showed emission rates of several compounds that appeared transgressive. However, indole emission rates were intermediate in the hybrids compared with rates in the parents. Volatile bouquets at the contact site with lower hybridization did not show greater species specificity in overall scent emission, but I. tenuituba presented a stronger indole signal during peak hawkmoth activity at that site.

Conclusions

The two species of Ipomopsis differed in patterns of floral bouquets, with indole emitted in nocturnal I. tenuituba, but not in I. aggregata. Natural hybrid bouquets were not consistently intermediate between the parents, although hybrids were intermediate in indole emission. The indole signal could potentially serve as a hawkmoth attractant that mediates reproductive isolation both before and after hybrid formation.  相似文献   

16.
BACKGROUND AND AIMS: A comparative investigation was made of floral scent variation in the closely related, food-rewarding Anacamptis coriophora and the food-deceptive Anacamptis morio in order to identify patterns of variability of odour compounds in the two species and their role in pollinator attraction/avoidance learning. METHODS: Scent was collected from plants in natural populations and samples were analysed via quantitative gas chromatography and mass spectrometry. Combined gas chromatography and electroantennographic detection was used to identify compounds that are detected by the pollinators. Experimental reduction of scent variability was performed in the field with plots of A. morio plants supplemented with a uniform amount of anisaldehyde. KEY RESULTS: Both orchid species emitted complex odour bouquets. In A. coriophora the two main benzenoid compounds, hydroquinone dimethyl ether (1,4-dimethoxybenzene) and anisaldehyde (methoxybenzaldehyde), triggered electrophysiological responses in olfactory neurons of honey-bee and bumble-bee workers. The scent of A. morio, however, was too weak to elicit any electrophysiological responses. The overall variation in scent was significantly lower in the rewarding A. coriophora than in the deceptive A. morio, suggesting pollinator avoidance-learning selecting for high variation in the deceptive species. A. morio flowers supplemented with non-variable scent in plot experiments, however, did not show significantly reduced pollination success. CONCLUSIONS: Whereas in the rewarding A. coriophora stabilizing selection imposed by floral constancy of the pollinators may reduce scent variability, in the deceptive A. morio the emitted scent seems to be too weak to be detected by pollinators and thus its high variability may result from relaxed selection on this floral trait.  相似文献   

17.
18.
Reproductive success of plants may be affected by interactions with co-flowering species either negatively, through competition for pollinators, or positively, by means of a magnet species effect and floral mimicry. In this study, potential interactions between Iris tuberosa, a rewarding species, and Ophrys fusca, a sexually deceptive orchid, were explored in four populations in southern Italy. In each population plots showing different ratios of the examined species were arranged in the field, and in each plot the number of pollinators and fruit set were assessed. In addition, flower size and floral hydrocarbons produced by the two species were analysed. Morphological and scent data pointed out that flower size and aliphatic compounds did not differ significantly between the two species. Interestingly, both species shared tricosane and 11-nonacosene, electrophysiologically active compounds in the shared dominant pollinator Adrena. We have found that fruit production and number of pollinators in I. tuberosa varied significantly among plots, while percentage of capsules and number of pollinators of O. fusca captured showed no significant differences across plots. These results suggested, that the presence of O. fusca contributes differentially to pollinator attraction, and thus, to total reproductive success of I. tuberosa, according to a different ratio of aggregation. These findings suggest that I. tuberosa profits from the greater abundance of insects attracted by the presence of orchid specimens, and that a sexually deceptive orchid may be a magnet species in pollination strategy.  相似文献   

19.
Almost one-third of all species in the familyOrchidaceae offer no reward to insect pollinators. In the absence of a reward, floral display (number of flowers), may be the most important component of insect attraction but the role of floral display in capsule production of both deceptive (nectarless) and rewarding (nectariferous) orchids has not yet been satisfactorily explored. Based on our theoretical considerations, we propose and test here the following hypotheses: (i) deceptive species flower earlier than rewarding ones, (ii) reproductive success in deceptive species is lower than that in rewarding ones, (iii) reproductive success is independent of the number of flowers in the inflorescence in both deceptive and rewarding orchids. Our data supported hypotheses (i) and (ii). In 9 out of our 12 populations of deceptive species and in 10 out of 12 populations of rewarding species we found support for our hypothesis (iii).  相似文献   

20.
Pollination systems in orchids tend to be specialized as a consequence of restrictive floral morphology and specific advertising signals. Here we document a notable exception: Disa fragrans subsp. fragrans, a taxon from the Drakensberg Mountains of South Africa, which is pollinated by insects belonging to at least four orders (flies, beetles, bees, and moths). Pollinaria of D. fragrans are attached to the feet of these visitors and pollination thus occurs in a rather haphazard fashion. Nevertheless, its pollination success and pollen transfer efficiency are comparable to those of its close relative, Disa sankeyi, which is pollinated by a single genus of wasps. D. fragrans has an exceptionally strong floral scent: volatile emission is 19–86 μg per inflorescence per hour, which is up to 100 fold greater than in D. sankeyi. The scent bouquet is comprised of at least 46 compounds, mostly benzenoids and phenylpropanoids, which are known to be general attractants to a wide range of insects. In contrast to D. sankeyi, the flowers of D. fragrans have a high level of spectral purity (chroma) as is typical of many generalist insect-pollinated plants. At a site where D. fragrans co-occurs with D. sankeyi we found a plant with intermediate characteristics that may be a hybrid between the two taxa. The novel case of generalist pollination in D. fragrans documented here serves as an example of how floral advertising traits might evolve during an evolutionary shift from specialized to generalized pollination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号