首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of four horses (Equus caballus) to discriminate coloured (three shades of blue, green, red, and yellow) from grey (neutral density) stimuli, produced by back projected lighting filters, was investigated in a two response forced-choice procedure. Pushes of the lever in front of a coloured screen were occasionally reinforced, pushes of the lever in front of a grey screen were never reinforced. Each colour shade was randomly paired with a grey that was brighter, one that was dimmer, and one that approximately matched the colour in terms of brightness. Each horse experienced the colours in a different order, a new colour was started after 85% correct responses over five consecutive sessions or if accuracy showed no trend over sessions. All horses reached the 85% correct with blue versus grey, three horses did so with both yellow and green versus grey. All were above chance with red versus grey but none reached criterion. Further analysis showed the wavelengths of the green stimuli used overlapped with the yellow. The results are consistent with histological and behavioural studies that suggest that horses are dichromatic. They differ from some earlier data in that they indicate horses can discriminate yellow and blue, but that they may have deficiencies in discriminating red and green.  相似文献   

2.
We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring.  相似文献   

3.
The results of early studies on colour vision in dogs led to the conclusion that chromatic cues are unimportant for dogs during their normal activities. Nevertheless, the canine retina possesses two cone types which provide at least the potential for colour vision. Recently, experiments controlling for the brightness information in visual stimuli demonstrated that dogs have the ability to perform chromatic discrimination. Here, we show that for eight previously untrained dogs colour proved to be more informative than brightness when choosing between visual stimuli differing both in brightness and chromaticity. Although brightness could have been used by the dogs in our experiments (unlike previous studies), it was not. Our results demonstrate that under natural photopic lighting conditions colour information may be predominant even for animals that possess only two spectral types of cone photoreceptors.  相似文献   

4.
The colour discrimination of individual free-flying honeybees (Apis mellifera) was tested with simultaneous and successive viewing conditions for a variety of broadband reflectance stimuli. For simultaneous viewing bees used form vision to discriminate patterned target stimuli from homogeneous coloured distractor stimuli, and for successive discrimination bees were required to discriminate between homogeneously coloured stimuli. Bees were significantly better at a simultaneous discrimination task, and we suggest this is explained by the inefficiency with which the bees brain can code and retrieve colour information from memory when viewing stimuli successively. Using simultaneous viewing conditions bees discriminated between the test stimuli at a level equivalent to 1 just-noticeable-difference for human colour vision. Discrimination of colours by bees with simultaneous viewing conditions exceeded previous estimates of what is possible considering models of photoreceptor noise measured in bees, which suggests spatial and/or temporal summation of colour signals for fine discrimination tasks. The results show that when behavioural experiments are used to collect data about the mechanisms facilitating colour discrimination in animals, it is important to consider the effects of the stimulus viewing conditions on results.  相似文献   

5.
Much is known regarding the evolution of colour vision in nearly every vertebrate class, with the notable exception of the elasmobranchs. While multiple spectrally distinct cone types are found in some rays, sharks appear to possess only a single class of cone and, therefore, may be colour blind. In this study, the visual opsin genes of two wobbegong species, Orectolobus maculatus and Orectolobus ornatus, were isolated to verify the molecular basis of their monochromacy. In both species, only two opsin genes are present, RH1 (rod) and LWS (cone), which provide further evidence to support the concept that sharks possess only a single cone type. Examination of the coding sequences revealed substitutions that account for interspecific variation in the photopigment absorbance spectra, which may reflect the difference in visual ecology between these species.  相似文献   

6.
The dramatic colours of biological communication signals raise questions about how animals perceive suprathreshold colour differences, and there are long-standing questions about colour preferences and colour categorization by non-human species. This study investigates preferences of foraging poultry chicks (Gallus gallus) as they peck at coloured objects. Work on colour recognition often deals with responses to monochromatic lights and how animals divide the spectrum. We used complementary colours, where the intermediate is grey, and related the chicks' choices to three models of the factors that may affect the attractiveness. Two models assume that attractiveness is determined by a metric based on the colour discrimination threshold either (i) by chromatic contrast against the background or (ii) relative to an internal standard. An alternative third model is that categorization is important. We tested newly hatched and 9-day-old chicks with four pairs of (avian) complementary colours, which were orange, blue, red and green for humans. Chromatic contrast was more relevant to newly hatched chicks than to 9-day-old birds, but in neither case could contrast alone account for preferences; especially for orange over blue. For older chicks, there is evidence for categorization of complementary colours, with a boundary at grey.  相似文献   

7.
Colour categorization by domestic chicks   总被引:4,自引:0,他引:4  
Spectral stimuli form a physical continuum, which humans divide into discrete non-overlapping regions or categories that are designated by colour names. Little is known about whether non-verbal animals form categories on stimulus continua, but work in psychology and artificial intelligence provides models for stimulus generalization and categorization. We compare predictions of such models to the way poultry chicks (Gallus gallus) generalize to novel stimuli following appetitive training to either one or two colours. If the two training colours are (to human eyes) red and greenish-yellow or green and blue, chicks prefer intermediates, i.e. orange rather than red or yellow and turquoise rather than green or blue. The level of preference for intermediate colours implies that the chicks interpolate between the training stimuli. However, they do not extrapolate beyond the limits set by the training stimuli, at least for red and yellow training colours. Similarly, chicks trained to red and blue generalize to purple, but they do not generalize across grey after training to the complementary colours yellow and blue. These results are consistent with a modified version of a Bayesian model of generalization from multiple examples that was proposed by Shepard and show similarities to human colour categorization.  相似文献   

8.
9.

Reef sharks may be ecologically redundant, such that other mesopredatory fishes compensate for their functions when they decline in number, preventing trophic cascades. Oral jaw gape, hereafter referred to as gape, determines maximum prey size in many piscivores and therefore affects the size structure of prey assemblages. Here, we examine whether gape and maximum prey size differ between five species of reef shark and 21 species of teleost (n?=?754) using data collected from 38 reefs in the Indo-Pacific. Sharks displayed relatively small gape dimensions compared to most teleost species and, at smaller sizes, the giant trevally Caranx ignobilis and other teleosts may be able to consume larger prey than similar-sized sharks. However, ecological redundancy between reef sharks and teleosts appears to decline at larger sizes, such that the grey reef shark Carcharhinus amblyrhynchos, for example, may be capable of consuming larger prey than any other reef predator at its largest sizes, regardless of prey body shape. Moreover, sharks may be able to consume proportionally larger prey as they grow, in contrast to reef teleosts, which may largely be limited by their gapes to ever-smaller prey as a proportion of their body size. Our results also suggest that reef sharks may be unable to swallow whole prey that are >?36% of their length, consistent with gut-content studies. Conservation of reef ecological function may therefore depend not only on the protection of sharks but also particular size classes and key components of the mesopredatory guild.

  相似文献   

10.
Summary A new training and testing paradigm for walking sheep blowflies, Lucilia cuprina, is described. A fly is trained by presenting it with a droplet of sugar solution on a patch of coloured paper. After having consumed the sugar droplet, the fly starts a systematic search. While searching, it is confronted with an array of colour marks consisting of four colours displayed on the test cardboard (Fig. 1). Colours used for training and test include blue, green, yellow, orange, red, white and black.Before training, naive flies are tested for their spontaneous colour preferences on the test array. Yellow is visited most frequently, green least frequently (Table 2). Spontaneous colour preferences do not simply depend on subjective brightness (Table 1).The flies trained to one of the colours prefer this colour significantly (Figs. 5 and 9–11). This behaviour reflects true learning rather than sensitisation (Figs. 6–7). The blue and yellow marks are learned easily and discriminated well (Figs. 5, 9, 11). White is also discriminated well, although the response frequencies are lower than to blue and yellow (Fig. 11). Green is discriminated from blue but weakly from yellow and orange (Figs. 5, 9, 10). Red is a stimulus as weak as black (Figs. 8, 9). These features of colour discrimination reflect the spectral loci of colours in the colour triangle (Fig. 14).The coloured papers seem to be discriminated mainly by the hue of colours (Fig. 12), but brightness may also be used to discriminate colour stimuli (Fig. 13).  相似文献   

11.
Arrhythmic mammals are active both during day and night if they are allowed. The arrhythmic horses are in possession of one of the largest terrestrial animal eyes and the purpose of this study is to reveal whether their eye is sensitive enough to see colours at night. During the day horses are known to have dichromatic colour vision. To disclose whether they can discriminate colours in dim light a behavioural dual choice experiment was performed. We started the training and testing at daylight intensities and the horses continued to choose correctly at a high frequency down to light intensities corresponding to moonlight. One Shetland pony mare, was able to discriminate colours at 0.08 cd/m2, while a half blood gelding, still discriminated colours at 0.02 cd/m2. For comparison, the colour vision limit for several human subjects tested in the very same experiment was also 0.02 cd/m2. Hence, the threshold of colour vision for the horse that performed best was similar to that of the humans. The behavioural results are in line with calculations of the sensitivity of cone vision where the horse eye and human eye again are similar. The advantage of the large eye of the horse lies not in colour vision at night, but probably instead in achromatic tasks where presumably signal summation enhances sensitivity.  相似文献   

12.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Freshly emerged flower visitors exhibit colour preferences prior to individual experience with flowers. The understanding of innate colour preferences in flower visitors requires a detailed analysis, as, on the one hand, colour is a multiple-signal stimulus, and, on the other hand, flower visits include a sequence of behavioural reactions each of which can be driven by a preferential behaviour. Behavioural reactions, such as the distant approach, the close-range orientation, the landing, and the extension of mouthparts can be triggered by colour stimuli. The physiological limitations of spectral sensitivity, the neuro-sensory filters, and the animals' different abilities to make use of visual information such as brightness perception, wavelength-specific behaviour and colour vision shape colour preferences. Besides these receiverbased factors, there are restrictions of flower colouration due to sender-based factors such as the absorption properties of floral pigments and the dual function of flower colours triggering both innate and learned behaviour. Recordings of the spectral reflection of coloured objects, which trigger innate colour preferences, provide an objective measure of the colour stimuli. Weighting the spectral reflection of coloured objects by the spectral composition of the ambient light and the spectral sensitivity of the flower visitors' photoreceptors allows the calculation of the effective stimuli. Perceptual dimensions are known for only a few taxa of flower visitors.  相似文献   

14.
The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices) were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities.  相似文献   

15.
Conspicuousness is an important feature of warning coloration. One hypothesis for its function is that it increases signal efficacy by facilitating avoidance learning. An alternative, based on the handicap hypothesis, suggests that the degree of conspicuousness holds information directly about the quality of the prey, and that predators associate and learn about the conspicuousness of the coloration, and not the actual colour pattern. We studied the relative importance of signal contrast and the colours of signals for predator attention during discrimination. We used young chicks, Gallus gallus domesticus, as predators and small blue or red paper cones on either matching or contrasting paper backgrounds as stimuli associated with palatable or unpalatable chick crumbs. In four treatment groups, birds could use either cone and/or background colour, cone colour only, background colour only or cone-to-background contrast as cues for discrimination. Only birds in the contrast treatment failed to learn their discrimination task. Birds that had a choice between cone and background colour as cues used the cone colour and they learned the task faster than did birds that had to use background colour as a cue. The results suggest that birds primarily attend to the colours of signals and disregard contrast in discrimination tasks; they thus fail to support a handicap function of conspicuous aposematic coloration. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

16.
Chromaticity diagrams for tri- and tetrachromatic animals (with three and four cone classes in their retina, respectively, contributing to colour perception) are widely used in studies of animal colour vision. These diagrams not only allow the graphical representation of perceived colours, but the coordinates of colours plotted within these diagrams can be used to extract colour metrics, such as hue and chroma, or can be used directly in statistical analyses, and therefore aid our understanding of vision-mediated behaviour. However, many invertebrate species have more than four cone classes in their retina, and may therefore have pentachromatic or hexachromatic (or greater) vision. This paper describes an extension to the triangular and tetrahedral chromaticity diagrams commonly used for tri- and tetrachromats, respectively, that allows colour coordinates (and hence colour metrics) to be calculated for animals with more than four cone classes. Because the resulting chromaticity diagrams have more than three dimensions, meaningful ways to visualise the spatial position of plotted colours are discussed.  相似文献   

17.
This study assessed complex spatial learning and memory in two species of shark, the grey bamboo shark (Chiloscyllium griseum) and the coral cat shark (Atelomycterus marmoratus). It was hypothesized that sharks can learn and apply an allocentric orientation strategy. Eight out of ten sharks successfully completed the initial training phase (by locating a fixed goal position in a diamond maze from two possible start points) within 14.9 ± 7.6 sessions and proceeded to seven sets of transfer tests, in which sharks had to perform under altered environmental conditions. Transfer tests revealed that sharks had oriented and solved the tasks visually, using all of the provided environmental cues. Unintentional cueing did not occur. Results correspond to earlier studies on spatial memory and cognitive mapping in other vertebrates. Future experiments should investigate whether sharks possess a cognitive spatial mapping system as has already been found in several teleosts and stingrays. Following the completion of transfer tests, sharks were subjected to ablation of most of the pallium, which compromised their previously acquired place learning abilities. These results indicate that the telencephalon plays a crucial role in the processing of information on place learning and allocentric orientation strategies.  相似文献   

18.
Evoked potentials to the primary colours red, green, yellow and blue were recorded and compared with those evoked by white. The unpatterned 10° × 13° stimuli were generated with the aid of a colour monitor. Activity was depicted with 5 electrodes, the central electrode 5 cm above the inion and two on each side 5 and 10 cm apart from the central electrode.With equally bright colour stimuli a previously described early negative colour-dominated component N87 was localized in all subjects at the central occipital electrode while the following positivity P100 was clearly more lateralized to the peripheral electrodes. With half-field stimulation N87 showed a similar — paradoxical — lateralization to the ipsilateral electrodes as has been demonstrated for pattern reversal.The existence and localization of N87 could be confirmed also for blue colours, its amplitude independent of the blue luminance, its latency decreasing for definite additional brightness increments and decrements. The N87 to blue was of the same latency as the N87 components to other colours.N87 is mainly generated foveally and parafoveally, its amplitude saturates with stimuli larger than 6–8° in diameter.  相似文献   

19.
We designed visual evoked potentials experiments to study the differential aspects of colour and brightness coding in man. The substitution of equally bright red and green stimuli for a background yellow was investigated and compared with different luminance increments and decrements of red and green. A dominant N87 component was found for a colour change from yellow to brighter red colours, which was less pronounced for green and absent for yellow luminance changes. It is also absent for pure red luminance increments and green luminance changes, but reappears with red luminance decrements or red-offset. The data are discussed within the framework of a new concept of how the visual system fuses red-green information and black-white border information. Retinal X-cells can transmit colour and high spatial frequency achromatic information simultaneously by encoding only the presence of edges (a.c.) for the black-white stimuli and the presence of both edges (a.c.) and uniform areas of colour (d.c.) for red-green stimuli. Phylogenetically this kind of information transmission enables colour vision to be implemented in a retina such as the cat's by adding only a second class of cones. Barlow's economy principle will be violated for colour in the periphery, but restored early in the striate cortex where there is an early decoding of the combined chromatic and achromatic information by the concentric double opponent cells. The N87 behaviour correlates with the proposed discharge of peripheral X-type cells, but not with the discharge of cortical double opponent concentric or simple cells, which no longer respond to homogeneous colour stimuli. It is suggested that N87 may be generated by geniculate afferents in the dendritic arborization of cortical cells, reflecting the behaviour of peripheral units, and thus the violation of the economy principle, rather than the next step in cortical processing. The early cortical restoration of the economy principle is supported by the absence of any further dissociated behaviour for colour and brightness in later components.  相似文献   

20.
Individual bumblebees were trained to choose between rewarded target flowers and non-rewarded distractor flowers in a controlled illumination laboratory. Bees learnt to discriminate similar colours, but with smaller colour distances the frequency of errors increased. This indicates that pollen transfer might occur between flowers with similar colours, even if these colours are distinguishable. The effect of similar colours on reducing foraging accuracy of bees is evident for colour distances high above discrimination threshold, which explains previous field observations showing that bees do not exhibit complete flower constancy unless flower colour between species is distinct. Bees tested in spectrally different illumination conditions experienced a significant decrease in their ability to discriminate between similar colours. The extent to which this happens differs in different areas of colour space, which is consistent with a von Kries-type model of colour constancy. We find that it would be beneficial for plant species to have highly distinctive colour signals to overcome limitations on the bees performance in reliably judging differences between similar colours. An exception to this finding was flowers that varied in shape, in which case bees used this cue to compensate for inaccuracies of colour vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号