首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
A number of mycobacterial arabinosyltransferases, such as the Emb proteins, AftA, AftB, AftC, and AftD have been characterized and implicated to be involved in the cell wall arabinan assembly. These arabinosyltransferases are essential for the viability of the organism and are logically valid targets for developing new anti-tuberculosis agents. For instance, Ethambutol, a first line anti-tuberculosis drug, targets the Emb proteins involved in the formation of the arabinan of cell wall arabinogalactan. Among these arabinosyltransferases, the terminal β-(1→2) arabinosyltransferase activity has been associated with AftB. The predicted topology of AftB in Mycobacterium tuberculosis has 10 N terminal transmembrane domains and a C terminal hydrophilic domain similar to the Emb proteins. It has a conserved GT-C motif and is difficult to express. In a cell free assay, synthetic disaccharide, α-d-Araf-(1→5)-α-d-Araf-octyl, has been used as a substrate to explore the function of AftB. In our work, the disaccharide was synthesized in its pentenylated and biotinylated form, and the enzymatic product formed was identified as the β-(1→2) arabinofuranose adduct. When synthetic tri- and tetra-saccharides were used as substrates, a mixture of products containing both β-(1→2) and α-(1→5) linkages were formed. Therefore, the biotinylated disaccharide was selected to develop a scintillation proximity assay.  相似文献   

2.
Benzothiazinones (BTZs) are a new class of sulfur containing heterocyclic compounds that target DprE1, an oxidoreductase involved in the epimerization of decaprenyl-phosphoribose (DPR) to decaprenyl-phosphoarabinose (DPA) in the Corynebacterineae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. As a result, BTZ inhibition leads to inhibition of cell wall arabinan biosynthesis. Previous studies have demonstrated the essentiality of dprE1. In contrast, Cg-UbiA a ribosyltransferase, which catalyzes the first step of DPR biosynthesis prior to DprE1, when genetically disrupted, produced a viable mutant, suggesting that although BTZ biochemically targets DprE1, killing also occurs through chemical synthetic lethality, presumably through the lack of decaprenyl phosphate recycling. To test this hypothesis, a derivative of BTZ, BTZ043, was examined in detail against C. glutamicum and C. glutamicum::ubiA. The wild type strain was sensitive to BTZ043; however, C. glutamicum::ubiA was found to be resistant, despite possessing a functional DprE1. When the gene encoding C. glutamicum Z-decaprenyl-diphosphate synthase (NCgl2203) was overexpressed in wild type C. glutamicum, resistance to BTZ043 was further increased. This data demonstrates that in the presence of BTZ, the bacilli accumulate DPR and fail to recycle decaprenyl phosphate, which results in the depletion of decaprenyl phosphate and ultimately leads to cell death.  相似文献   

3.
The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG_6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG_6394, solved to 2.9 Å resolution, revealed an α/β hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG_6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.  相似文献   

4.
Arabinofuranosyltransferase enzymes, such as EmbA, EmbB, and AftA, play pivotal roles in the biosynthesis of arabinogalactan, and the anti-tuberculosis agent ethambutol (EMB) targets arabinogalactan biosynthesis through inhibition of Mt-EmbA and Mt-EmbB. Herein, we describe the identification and characterization of a novel arabinofuranosyltransferase, now termed AftB (Rv3805c), which is essential in Mycobacterium tuberculosis. Deletion of its orthologue NCgl2780 in the closely related species Corynebacterium glutamicum resulted in a viable mutant. Analysis of the cell wall-associated lipids from the deletion mutant revealed a decreased abundance of cell wall-bound mycolic acids, consistent with a partial loss of mycolylation sites. Subsequent glycosyl linkage analysis of arabinogalactan also revealed the complete absence of terminal beta(1 --> 2)-linked arabinofuranosyl residues. The deletion mutant biochemical phenotype was fully complemented by either Mt-AftB or Cg-AftB, but not with muteins of Mt-AftB, where the two adjacent aspartic acid residues, which have been suggested to be involved in glycosyltransferase activity, were replaced by alanine. In addition, the use of C. glutamicum and C. glutamicumDeltaaftB in an in vitro assay utilizing the sugar donor beta-D-arabinofuranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor alpha-D-Araf-(1 --> 5)-alpha-D-Araf-O-C(8) as a substrate confirmed AftB as a terminal beta(1 --> 2) arabinofuranosyltransferase, which was also insensitive to EMB. Altogether, these studies have shed further light on the complexities of Corynebacterianeae cell wall biosynthesis, and Mt-AftB represents a potential new drug target.  相似文献   

5.
A bioinformatics approach identified a putative integral membrane protein, NCgl0543, in Corynebacterium glutamicum, with 13 predicted transmembrane domains and a glycosyltransferase motif (RXXDE), features that are common to the glycosyltransferase C superfamily of glycosyltransferases. The deletion of C. glutamicum NCgl0543 resulted in a viable mutant. Further glycosyl linkage analyses of the mycolyl-arabinogalactan-peptidoglycan complex revealed a reduction of terminal rhamnopyranosyl-linked residues and, as a result, a corresponding loss of branched 2,5-linked arabinofuranosyl residues, which was fully restored upon the complementation of the deletion mutant by NCgl0543. As a result, we have now termed this previously uncharacterized open reading frame, rhamnopyranosyltransferase A (rptA). Furthermore, an analysis of base-stable extractable lipids from C. glutamicum revealed the presence of decaprenyl-monophosphorylrhamnose, a putative substrate for the cognate cell wall transferase.A common feature of members of the Corynebacterineae is that they possess an unusual cell wall dominated by a heteropolysaccharide termed an arabinogalactan (AG), which is linked to both mycolic acids and peptidoglycan, forming the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex (5, 10, 12, 15, 24, 25, 34). The formation of the arabinan domain in the mAGP complex, consisting mainly of α1→5, α1→3, and β1→2 glycosyl linkages, results from the subsequent addition of arabinofuranose (Araf) from the lipid-linked sugar donor β-d-arabinofuranosyl-1-monophosphoryldecaprenol (DPA) by a set of unique membrane-bound arabinofuranosyltransferases (5, 7, 12, 18, 34).The deletion of Corynebacterium glutamicum emb (embCg) (4) and a chemical analysis of the cell wall revealed a novel truncated AG structure possessing only terminal Araf residues with a corresponding loss of cell wall-bound mycolic acids (4). The presence of a novel enzyme responsible for “priming” the galactan domain for further elaboration by EmbCg proteins led to the identification of AftA, which belongs to the glycosyltransferase C (GT-C) superfamily (5). Recently, additional GT-C enzymes have been identified, termed AftB, which is responsible for the attachment of terminal β(1→2) Araf residues (34), and AftC, which is involved in AG branching (12) before decoration with mycolic acids, both of which are conserved within the Corynebacterineae (12, 34). It is clear that additional glycosyltransferases involved in both AG and lipoarabinomannan biosynthesis still remain to be identified. Indeed, Liu and Mushegian (22) identified 15 members of the GT-C superfamily residing in the Corynebacterineae, representing candidates involved in the biosynthesis of cell wall-related glycans and lipoglycans (22). We have continued our earlier studies (5, 12, 34) to identify genes required for the biosynthesis of the core structural elements of the mAGP complex by studying mutants of C. glutamicum and the orthologous genes and enzymes of Mycobacterium tuberculosis.A particularly interesting feature of C. glutamicum is the presence of terminal rhamnopyranose (t-Rhap) residues attached to the C2 position of α(1→5)-linked Araf residues in the arabinan domain of AG (4). The biological function of these residues remains to be clarified; nevertheless, they are a feature of the corynebacterial cell wall, and the biosynthesis of which needs to be addressed. The current paradigm of AG biosynthesis follows a linear pathway which is built upon a decaprenyl pyrophosphate lipid carrier. The unique disaccharide linker and galactan domain is synthesized by a variety of GT-A and GT-B family glycosyltransferases, all of which utilizing a nucleotide diphosphate-activated sugar substrate for transferase activity. It has been hypothesized by us (3, 5) and others (8) that a major shift in the biosynthetic machinery takes place upon the initiation of arabinan polymerization. AftA, Emb, AftC, and AftB all belong to the GT-C family of glycosyltransferases, all of which utilize DPA as the sole lipid-activated phosphosugar donor for arabinose transfer into the cell wall. Since t-Rhap residues are present in the arabinan component of the cell wall, the enzyme(s) responsible for its addition is likely to belong to the GT-C family of glycosyltransferases and, as determined through deduction, is one which utilizes a lipid-phosphate-derived rhamnose substrate similar to DPA. Herein, we present the putative protein NCgl0543 as a distinct t-Rhap of the GT-C superfamily, which is responsible for the transfer of t-Rhap residues to the arabinan domain to form the branched 2,5-linked Araf motifs of C. glutamicum. In addition, we have identified a novel decaprenyl-monophosphorylrhamnose and discuss its role in substrate presentation for AG biosynthesis in C. glutamicum.  相似文献   

6.
ABSTRACT

Different resistant strains of M. tuberculosis (Mtb) highlight the urgent need of novel anti-tubercular drugs. In mycobacteria, decaprenyl-phosphoryl-β-D-ribose 2’-oxidase (DprE1) is an appealing enzyme to target as it is involved in the biosynthesis of cell wall component arabinogalactan.1, 3-benzothiazin-4-ones (BTZs) based drugs are promising irreversible inhibitors of DprE1. However, a single point mutation of Cys387Ser in DprE1 results in the development of resistance to these drugs. Herein, we made an effort to decode the molecular mechanism of Cys387Ser DprE1 mutation associated resistance in Mtb against BTZs using different in silico techniques. Since the 3D crystal structure of mutant Cys387Ser protein is not yet been solved, thus the homology model was also developed using 4P8N as a template protein with 99.8% homology with the target protein. The computational results suggested that the factors like HOMO–LUMO energy gap, Burgi-Dunitz angle and distance support the covalent inhibition of wild DprE1 by 1, 3-benzothiazin-4-ones class of drugs, using BTZ043 as a reference drug and the same factors support the cause of resistance in case of Cys387Ser mutation. On the basis of these results, it was concluded that BTZ043 can efficiently inhibit the wild type DprE1 than mutant DprE1.  相似文献   

7.
The re-emergence of tuberculosis in recent years led the World Health Organization (WHO) to launch the Stop TB Strategy program. Beside repurposing the existing drugs and exploring novel molecular combinations, an essential step to face the burden of tuberculosis will be to develop new drugs by identifying vulnerable bacterial targets. Recent studies have focused on decaprenylphosphoryl-d-ribose oxidase (DprE1) of Mycobacterium tuberculosis, an essential enzyme involved in cell wall metabolism, for which new promising molecules have proved efficacy as antitubercular agents. This review summarizes the state of the art concerning DprE1 in terms of structure, enzymatic activity and inhibitors. This enzyme is emerging as one of the most vulnerable target in M. tuberculosis.  相似文献   

8.
Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose oxidase (MtbDprE1) acts in concert with decaprenylphosphoryl-β-d-ribose 2-epimerase (MtbDprE2) and catalyzes the epimerization of DPR into DPA. DPA is the sole precursor for synthesis of arabinogalactan and lipoarabinomannan in the mycobacterial cell wall. MtbDprE1 is a unique antimalarial drug target and many covalent and non-covalent inhibitors against MtbDprE1 have been studied for their antituberculosis activities. In the current study, we have purified MtbDprE1 enzyme and synthesized six sulfur-rich 2-mercaptobenzothiazole and 1, 2, 3-triazole conjugated ligands and performed binding analysis with MtbDprE1. All ligands have shown competitive binding, as observed for other covalently and noncovalently bound MtbDprE1 inhibitors. Molecular docking analysis of six ligands with MtbDprE1 shows that they occupy the substrate binding pocket of MtbDprE1 and are stabilized by hydrogen bonds and van der Waals interactions. Our study shows that sulfur-rich 2-mercaptobenzothiazole ligands act as specific inhibitors against MtbDprE1 and could be used as antituberculosis agents.  相似文献   

9.
The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.

Mycobacterial membrane protein Large 3 (MmpL3) is a transporter required for shuttling trehalose monomycolate. Structures of M. smegmatis MmpL3 with and without substrate reveal the mechanism by which MmpL3 transports this essential precursor of lipids for the mycobacterial cell wall.  相似文献   

10.

Background

The unique cell wall of bacteria of the suborder Corynebacterineae is essential for the growth and survival of significant human pathogens including Mycobacterium tuberculosis and Mycobacterium leprae. Drug resistance in mycobacteria is an increasingly common development, making identification of new antimicrobials a priority. Recent studies have revealed potent anti-mycobacterial compounds, the benzothiazinones and dinitrobenzamides, active against DprE1, a subunit of decaprenylphosphoribose 2′ epimerase which forms decaprenylphosphoryl arabinose, the arabinose donor for mycobacterial cell wall biosynthesis. Despite the exploitation of Mycobacterium smegmatis in the identification of DprE1 as the target of these new antimicrobials and its use in the exploration of mechanisms of resistance, the essentiality of DprE1 in this species has never been examined. Indeed, direct experimental evidence of the essentiality of DprE1 has not been obtained in any species of mycobacterium.

Methodology/Principal Findings

In this study we constructed a conditional gene knockout strain targeting the ortholog of dprE1 in M. smegmatis, MSMEG_6382. Disruption of the chromosomal copy of MSMEG_6382 was only possible in the presence of a plasmid-encoded copy of MSMEG_6382. Curing of this “rescue” plasmid from the bacterial population resulted in a cessation of growth, demonstrating gene essentiality.

Conclusions/Significance

This study provides the first direct experimental evidence for the essentiality of DprE1 in mycobacteria. The essentiality of DprE1 in M. smegmatis, combined with its conservation in all sequenced mycobacterial genomes, suggests that decaprenylphosphoryl arabinose synthesis is essential in all mycobacteria. Our findings indicate a lack of redundancy in decaprenylphosphoryl arabinose synthesis in M. smegmatis, despite the relatively large coding capacity of this species, and suggest that no alternative arabinose donors for cell wall biosynthesis exist. Overall, this study further validates DprE1 as a promising target for new anti-mycobacterial drugs.  相似文献   

11.
Hua Li  Gerwald Jogl 《Proteins》2013,81(3):538-543
Decaprenylphosphoryl‐β‐D ‐ribose 2'‐epimerase (DprE1) is an essential enzyme in the biosynthesis of cell wall components and a target for development of anti‐tuberculosis drugs. We determined the crystal structure of a truncated form of DprE1 from Mycobacterium smegmatis in two crystal forms to up to 2.35 Å resolution. The structure extends from residue 75 to the C‐terminus and shares homology with FAD‐dependent oxidoreductases of the vanillyl‐alcohol oxidase family including the DprE1 homologue from M. tuberculosis. The M. smegmatis DprE1 structure reported here provides further insights into the active site geometry of this tuberculosis drug target. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum.Corynebacterineae is a specific suborder of Gram-positive bacteria that includes medically and economically important species, such as Mycobacterium tuberculosis, Mycobacterium leprae, and Corynebacterium glutamicum. The ultrastructure of cell envelopes in the Corynebacterineae has been intensively studied during recent decades and has revealed a completely unexpected scheme. Indeed, they are composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. This outer membrane is made up of mycolic acids that either esterify trehalose (free mycolates) or are terminal Araf residues of AG skeleton (bound mycolates) (38-40). The disclosure of this very atypical structure initially came from functional studies in which pore-forming proteins were identified in almost all members of the Corynebacterineae (41, 62), pointing out the presence of an unexpected additional hydrophobic barrier in the cell envelope of these Gram-positive bacteria. Its presence was recently clearly visualized by cryo-electron microscopy of vitreous sections (CEMOVIS) (29, 67), but the exact physiological properties of this barrier are poorly documented because only a few integral outer membrane proteins (OMPs) are yet characterized. In mycobacteria, two examples of integral OMPs are well documented: OmpA of M. tuberculosis and MspA of Mycobacterium smegmatis. MspA is a major porin involved in mycolate outer membrane permeability (58, 64) and has a very specific structure based on a β-barrel core reminiscent of that found in Gram-negative porins (25). In C. glutamicum, four different porins of very low molecular mass (PorA [36, 42], PorH [30], and PorB and PorC [18]) have been identified. Very recently it was shown that a heterooligomeric structure composed of PorA and PorH is needed to form the major cell wall channel of C. glutamicum (6). Although these proteins have been extensively characterized in vitro, their physiological importance remains elusive. Surprisingly, preliminary structural studies of PorB suggested that it could be organized in an α-helical structure, in contrast to all the “canonical” porins, and thus could represent a new class of outer membrane proteins (66).Because Gram-negative outer membrane proteins and MspA from M. smegmatis are organized in β-barrel structures, two studies aimed to identify M. tuberculosis OMPs by a bioinformatic approach using β-barrel prediction algorithms (43, 57). Although very attractive, this approach has several limitations. Indeed, these algorithms generally produce a high number of false-positive proteins and are not able to predict amphipathic α-helical structures such as those expected for PorB. Nevertheless, this approach led to the identification of a new channel-forming outer membrane protein of M. tuberculosis, Rv1698, which is conserved among all members of the Corynebacterineae (55). This protein increases the susceptibility of bacteria to hydrophilic antibiotics and increases the rate of glucose uptake. Its structure has not yet been characterized.Isolation of the outer membrane of mycobacteria or corynebacteria using standard biochemical methods is difficult due to the covalent links between mycolic acids and the underlying heteropolymer hampering the identification of new OMPs. In order to overcome this problem, an alternative approach could come from outer membrane-derived vesicles (OMVs), whose release in the medium is a conserved mechanism among Gram-negative bacteria and has been observed in many environments (34). Increased OMV release has been reported for mutants lacking either components of the Tol-Pal system (8, 63) or Lpp, the major lipoprotein involved in noncovalent interactions between the outer membrane and the peptidoglycan (8, 14, 15, 22, 31). This suggested that OMV production in Gram-negative bacteria is controlled through specific domains that promote outer membrane protein-peptidoglycan and outer membrane protein-inner membrane interactions (22). OMVs from Gram-negative bacteria are composed of lipopolysaccharide (LPS), phospholipids, and outer membrane proteins but lack inner membrane proteins. In some cases, elementary units of peptidoglycan and periplasmic proteins are also recovered in these vesicles (35, 37).C. glutamicum is the prototype of amino acid producers and has been widely used in biotechnology for several decades. More recently it was also shown to be a very attractive model for depicting cell wall biosynthesis of the Corynebacterineae (45). Indeed, an extensive library of mutants involved in the different steps of mycolic acid and arabinogalactan synthesis is available for C. glutamicum but not for mycobacteria, where these components are strictly essential for viability. In this work, we wanted to screen different C. glutamicum cell wall mutants for their ability to release outer membrane-derived vesicles in the external medium. More particularly, we focused on mutants with altered covalent linkage between the mycolate outer membrane and the arabinogalactan. Accordingly, we constructed an arabinosyltransferase mutant unable to catalyze the transfer of Araf onto the arabinan domain of AG to form terminal β(1 → 2)-linked Araf residues. This abnormal AG structure results in both a decrease in mycoloylation sites on arabinogalactan and a concomitant appearance of outer membrane-derived fragments in the external medium.  相似文献   

13.
A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials.  相似文献   

14.
The cell wall of Mycobacterium tuberculosis has a complex ultrastructure that consists of mycolic acids connected to peptidoglycan via arabinogalactan (AG) and abbreviated as the mAGP complex. The mAGP complex is crucial for the survival and pathogenicity of M. tuberculosis and is the target of several anti-tubercular agents. Apart from sharing a similar mAGP and the availability of the complete genome sequence, Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes essential for viability. Here we examined the effects of particular genes involved in AG polymerization by gene deletion in C. glutamicum. The anti-tuberculosis drug ethambutol is thought to target a set of arabinofuranosyltransferases (Emb) that are involved in arabinan polymerization. Deletion of emb in C. glutamicum results in a slow growing mutant with profound morphological changes. Chemical analysis revealed a dramatic reduction of arabinose resulting in a novel truncated AG structure possessing only terminal arabinofuranoside (t-Araf) residues with a corresponding loss of cell wall bound mycolic acids. Treatment of wild-type C. glutamicum with ethambutol and subsequent cell wall analyses resulted in an identical phenotype comparable to the C. glutamicum emb deletion mutant. Additionally, disruption of ubiA in C. glutamicum, the first enzyme involved in the biosynthesis of the sugar donor decaprenol phosphoarabinose (DPA), resulted in a complete loss of cell wall arabinan. Herein, we establish for the first time, (i) that in contrast to M. tuberculosis embA and embB mutants, deletion of C. glutamicum emb leads to a highly truncated AG possessing t-Araf residues, (ii) the exact site of attachment of arabinan chains in AG, and (iii) DPA is the only Araf sugar donor in AG biosynthesis suggesting the presence of a novel enzyme responsible for "priming" the galactan domain for further elaboration by Emb, resulting in the final maturation of the native AG polysaccharide.  相似文献   

15.
The cell wall of Mycobacterium tuberculosis interacts with the host counterpart during the pathogenesis of tuberculosis. L-rhamnosyl (L-Rha) residue, a linker connects the arabinogalactan and peptidoglycan moieties in the bacterial cell wall. The biosynthesis of L-rhamnose utilizes four successive enzymes RmlA, RmlB, RmlC and RmlD. Neither rhamnose nor the genes responsible for its synthesis are observed in humans. Thus, drugs inhibiting enzymes of this pathway are unlikely to interfere with metabolic pathways in humans. The adverse drug effects of first and second line drugs along with the development of multi-drug resistance tuberculosis have stimulated the research in search of new therapeutic drugs. Thus, it is attractive to hypothesize that inhibition of the biosynthesis of L-Rha would be lethal to the mycobacteria. Nature provides innumerable secondary metabolites with novel structural architectures with reported activity against M. tuberculosis. Combination of structure based virtual screening with physicochemical and pharmacokinetic studies against rhamnose pathway enzymes identified potential leads. The crucial screening studies recognized four phytocompounds butein, diospyrin, indicanine, and rumexneposide A with good binding affinity towards the rhamnose pathway proteins. Furthermore, the high throughput screening methods recognized butein, a secondary metabolite from Butea monosperma with strong anti-tubercular bioactive spectrum. Butein displayed promising anti-mycobacterial activity which is validated by Microplate alamar blue assay (MABA). The focus on novel agents like these phytocompounds which exhibit preference toward the successive enzymes of a single pathway can prevent the development of bacterial resistance.  相似文献   

16.
Despite the increasing need of new antituberculosis drugs, the number of agents approved for the market has fallen to an all-time low. In response to the emerging drug resistance followed, structurally unique chemical entities will be highlighted. decaprenylphosphoryl-β-d-ribose oxidase (DprE1) participating in the biosynthesis of mycobacterium cell wall is a highly vulnerable and validated antituberculosis target. On the basis of it, a systematic strategy was applied to identify a high-quality lead compound (compound 50) that inhibits the essential enzyme DprE1, thus blocking the synthesis of the mycobacterial cell wall to kill M. tuberculosis in vitro and in vivo. Correspondingly, the rational design and synthetic strategy for compound 50 was reported. Notably, the compound 50 has been confirmed to be no toxicity. Altogether, our data suggest the compound 50 targeting DprE1 is a promising candidate for the tuberculosis (TB) therapy.  相似文献   

17.
Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases. In addition to the CESA proteins, cellulose biosynthesis almost certainly requires the action of other proteins, although few have been identified and little is known about the biochemical role of those that have been identified. One of these proteins is KORRIGAN (KOR1). Mutant analysis of this protein in Arabidopsis thaliana showed altered cellulose content in both the primary and secondary cell wall. KOR1 is thought to be required for cellulose synthesis acting as a cellulase at the plasma membrane–cell wall interface. KOR1 has recently been shown to interact with the primary cellulose synthase rosette complex however direct interaction with that of the secondary cell wall has never been demonstrated. Using various methods, both in vitro and in planta, it was shown that KOR1 interacts specifically with only two of the secondary CESA proteins. The KOR1 protein domain(s) involved in the interaction with the CESA proteins were also identified by analyzing the interaction of truncated forms of KOR1 with CESA proteins. The KOR1 transmembrane domain has shown to be required for the interaction between KOR1 and the different CESAs, as well as for higher oligomer formation of KOR1.  相似文献   

18.
RamA plays a regulatory role for acetate utilization and S-layer biosynthesis in Corynebacterium glutamicum. Looking for any additional role, the function of RamA was analyzed in Corynebacterium ammoniagenes, which is closely related to C. glutamicum. In this study, we showed that the ΔramA mutant constructed by a markerless knockout strategy possessed increased cell surface hydrophobicity, leading to the formation of aggregated cell masses in liquid media. In addition, the mutant exhibited an elongated cell shape as observed by SEM, suggesting that cell wall-associated proteins might be influenced. Furthermore, cell surface proteome analysis revealed that the expression of cmytA gene encoding corynomycoloyl transferase required for cell wall biosynthesis was down-regulated in the mutant, supporting the regulatory role of RamA in cell wall assembly. These studies support a novel regulatory role of RamA in inducing the expression of proteins required for cell wall assembly.  相似文献   

19.
The cell wall of M. tuberculosis is central to its success as a pathogen. Mycolic acids are key components of this cell wall. The genes involved in joining the α and mero mycolates are located in a cluster, beginning with Rv3799c and extending at least until Rv3804c. The role of each enzyme encoded by these five genes is fairly well understood, except for Rv3802c. Rv3802 is one of seven putative cutinases encoded by the genome of M. tuberculosis. In phytopathogens, cutinases hydrolyze the waxy layer of plants, cutin. In a strictly mammalian pathogen, such as M. tuberculosis, it is likely that these proteins perform a different function. Of the seven, we chose to focus on Rv3802c because of its location in a mycolic acid synthesis gene cluster, its putative essentiality, its ubiquitous presence in actinomycetes, and its conservation in the minimal genome of Mycobacterium leprae. We expressed Rv3802 in Escherichia coli and purified the enzymatically active form. We probed its activities and inhibitors characterizing those relevant to its possible role in mycolic acid biosynthesis. In addition to its reported phospholipase A activity, Rv3802 has significant thioesterase activity, and it is inhibited by tetrahydrolipstatin (THL). THL is a described anti-tuberculous compound with an unknown mechanism, but it reportedly targets cell wall synthesis. Taken together, these data circumstantially support a role for Rv3802 in mycolic acid synthesis and, as the cell wall is integral to M. tuberculosis pathogenesis, identification of a novel cell wall enzyme and its inhibition has therapeutic and diagnostic implications.  相似文献   

20.
The arabinogalactan (AG) component of the mycobacterial cell wall is an essential branched polysaccharide which tethers mycolic acids (m) to peptidoglycan (P), forming the mAGP complex. Much interest has been focused on the biosynthetic machinery involved in the production of this highly impermeable shield, which is the target for numerous anti-tuberculosis agents. The galactan domain of AG is synthesised via a bifunctional galactofuranosyltransferase (GlfT), which utilises UDP-Galf as its high-energy substrate. However, it has proven difficult to study the protein in its recombinant form due to difficulties in recovering pure soluble protein using standard expression systems. Herein, we describe the effects of glfT co-induction with a range of chaperone proteins, which resulted in an appreciable yield of soluble protein at 5 mg/L after a one-step purification procedure. We have shown that this purified enzyme transfers [14C]Galf to a range of both β(1 → 5) and β(1 → 6) linked digalactofuranosyl neoglycolipid acceptors with a distinct preference for the latter. Ligand binding studies using intrinsic tryptophan fluorescence have provided supporting evidence for the apparent preference of this enzyme to bind the β(1 → 6) disaccharide acceptor. However, we could not detect binding or galactofuranosyltransferase activity with an n-octyl β-d-Gal-(1 → 4)-α-l-Rha acceptor, which mimics the reducing terminus of galactan in the mycobacterial cell wall. Conversely, after an extensive bioinformatics analysis of the H37Rv genome, further cloning, expression and functional analysis of the Rv3792 open reading frame indicates that this protein affords galactofuranosyltransferase activity against such an acceptor and paves the way for a better understanding of galactan biosynthesis in Mycobacterium tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号