首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low back pain is a major public health issue in the Western world, one main cause is believed to be intervertebral disc (IVD) degeneration. To halt/diminish IVD degeneration, cell therapy using different biomaterials e.g. hydrogels as cell carriers has been suggested. In this study, two different hydrogels were examined (in vitro) as potential cell carriers for human mesenchymal stem cells (hMSCs) intended for IVD transplantation. The aim was to investigate cell-survival and chondrogenic differentiation of hMSCs when cultured in hydrogels Puramatrix® or Hydromatrix® and potential effects of stimulation with growth hormone (GH). hMSCs/hydrogel cultures were investigated for cell-viability, attachment, gene expression of chondrogenic markers SOX9, COL2A1, ACAN and accumulation of extracellular matrix (ECM). In both hydrogel types, hMSCs were viable for 28 days, expressed integrin β1 which indicates adhesion of hMSCs. Differentiation was observed into chondrocyte-like cells, in a higher extent in hMSCs/Hydromatrix® cultures when compared to hMSCs/Puramatrix® hydrogel cultures. Gene expression analyses of chondrogenic markers verified results. hMSCs/hydrogel cultures stimulated with GH displayed no significant effects on chondrogenesis.In conclusion, both hydrogels, especially Hydromatrix® was demonstrated as a promising cell carrier in vitro for hMSCs, when directed into chondrogenesis. This knowledge could be useful in biological approaches for regeneration of degenerated human IVDs.  相似文献   

2.
A key early sign of degenerative disc disease (DDD) is the loss of nucleus pulposus (NP) cells (NPCs). Accordingly, NPC transplantation is a treatment strategy for intervertebral disc (IVD) degeneration. However, in advanced DDD, due to structural damage of the IVD and scaffold mechanical properties, the transplanted cells are less viable and secrete less extracellular matrix, and thus, are unable to efficiently promote NP regeneration. In this study, we evaluated the encapsulation of NPCs in a photosensitive hydrogel made of collagen hydrolysate gelatin and methacrylate (GelMA) to improve NP regeneration. By adjusting the concentration of GelMA, we prepared hydrogels with different mechanical properties. After examining the mechanical properties, cell compatibility and tissue engineering indices of the GelMA-based hydrogels, we determined the optimal hydrogel concentration of the NPC-encapsulating GelMA hydrogel for NP regeneration as 5%. NPCs effectively combined with GelMA and proliferated. As the concentration of the GelMA hydrogel increased, the survival, proliferation and matrix deposition of the encapsulated NPCs gradually decreased, which is the opposite of NPCs grown on the surface of the hydrogel. The controllability of the GelMA hydrogels suggests that these NPC-encapsulating hydrogels are promising candidates to aid in NP tissue engineering and repairing endogenous NPCs.  相似文献   

3.
A major challenge when designing cell scaffolds for chondrocyte delivery in vivo is creating scaffolds with sufficient mechanical properties to restore initial function while simultaneously controlling temporal changes in the gel structure to facilitate tissue formation. To address this design challenge, degradable photocrosslinked hydrogels based on poly(ethylene glycol) were investigated. To alter the gel's initial mechanical properties, hydrogels were fabricated by varying the initial macromer concentration from 10% to 15% to 20%. A twofold increase in macromer concentration resulted in an eightfold increase in the initial compressive modulus from 60 to 500 kPa. Gel degradation was tailored by incorporating fast-degrading crosslinks that enable maximal extracellular matrix (ECM) diffusion with time and a minimal number of nondegrading (or slowly degrading) crosslinks to maintain scaffold integrity and prevent complete gel erosion during tissue formation. Chondrocytes encapsulated in these gels produced cartilaginous tissue rich in glycosaminoglycans and collagen as seen biochemically and histologically. Interestingly, mass loss appeared to more closely match tissue secretion in gels fabricated from a 15% macromer concentration. However, the spatial ECM distribution was grossly similar in all three gels. By tailoring gel degradation and controlling network evolution during degradation, gels with optimal properties can be fabricated to support initially physiologic compressive loads while simultaneously supporting the formation of a neotissue.  相似文献   

4.
Glycidylmethacrylate-modified dextran macromers (Dex-GMA) of different degrees of substitution (DS) were synthesized. The elastic modulus of the hydrogels produced using one-component and two-component macromer systems was measured using rheometry. When one macromer of DS 1/10 was used, a hydrogel modulus in the range of 0.2 Pa to 42 kPa was obtained by varying the Dex-GMA concentration from 80 to 200 mg/mL. When a mixture of two macromers of different DS (1/10 and 1/23) was used, a more uniform variation of modulus in the range of 0.4 Pa to 42 kPa was achieved by controlling the ratio of the two macromers. When dextran hydrogels were functionalized with fibronectin and immobilized onto glass substrates, the attachment, spreading, and growth of human aortic smooth muscle cells were modulated by the elastic properties of the dextran matrix. The dextran hydrogel system with tunable mechanical and biochemical properties appears promising for applications in cell culture and tissue engineering.  相似文献   

5.
A system was designed to utilize silk fibroin (SF) as a matrix for wound dressing. For this system, we prepared a sponge type of porous semi-interpenetrating networks (SIPNs) hydrogel composed of SF and poloxamer 407 macromer to enhance the mechanical and functional properties of SF. The thermal and mechanical properties of the hydrogels as well as their swelling behaviors were studied by means of differential scanning calorimetry, compressive modulus measurement, and gravimetric method, respectively. The morphology and crystalline structure of these SIPN hydrogels were also investigated by scanning electron microscopy (SEM) and wide-angle diffractometry, respectively. Conformational change of SF from random coil to beta-sheet structure was accelerated by formation of SIPNs with poloxamer. The melting temperature of poloxamer in the SIPNs decreased due to the prevention of crystallization by the incorporation of SF. The mechanical strength of SIPNs hydrogel was much higher than those of SF itself or SF/poloxamer blend and increased with the poloxamer content. The equilibrium water content of SF was remarkably increased by formation of SIPNs with poloxamer due to the hydrophilicity of poloxamer. The crystallinity and morphology of SIPNs hydrogel were affected by SIPNs hydrogel composition.  相似文献   

6.
Degeneration of the nucleus pulposus (NP) has been implicated as a major cause of low back pain. Tissue engineering strategies may provide a viable NP replacement therapy; however, culture conditions must be optimized to promote functional tissue development. In this study, a standard serum‐containing medium formulation was compared to a chemically defined, serum‐free medium to determine the effect on matrix elaboration and functional properties of NP cell‐laden carboxymethylcellulose (CMC) hydrogels. Additionally, both media were further supplemented with transforming growth factor‐beta 3 (TGF‐β3). Glycosaminoglycan (GAG) content increased in both TGF‐β3‐treated groups and was highest for treated, serum‐free constructs (9.46 ± 1.51 µg GAG/mg wet weight), while there were no quantifiable GAGs in untreated serum‐containing samples. Histology revealed uniform, interterritorial staining for chondroitin sulfate proteoglycan throughout the treated, serum‐free constructs. Type II collagen content was greater in both serum‐free groups and highest in treated, serum‐free constructs. The equilibrium Young's modulus was highest in serum‐free samples supplemented with TGF‐β3 (18.54 ± 1.92 kPa), and the equilibrium weight swelling ratio of these constructs approached that of the native NP tissue (22.19 ± 0.46 vs. 19.94 ± 3.09, respectively). Taken together, these results demonstrate enhanced functional matrix development by NP cells when cultured in CMC hydrogels maintained in serum‐free, TGF‐β3 supplemented medium, indicating the importance of medium formulation in NP construct development. Biotechnol. Bioeng. 2010; 105: 384–395. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10–12 hours in the more crosslinked regions to 4–6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.  相似文献   

8.
In present study, a series of environmentally friendly hydrogel films were prepared from dihydroxypropyl chitosan (DHP-chitosan) using irradiation technique without any bifunctional crosslinking compounds. DHP-chitosan irradiated at high concentrated solution state (more than 10%, paste-like state) was found to introduce crosslinking structure. Crosslinking behavior, mechanical property, morphology, and swelling behavior of the hydrogel films were studied. It has been found that a concentration of 40% solution is the most effective for crosslinking. The hydrogel films of DHP-chitosan exhibited controllable mechanical property and typically pH-sensitive character in their swelling behavior. A preliminary biodegradation study confirmed that DHP-chitosan hydrogels also undergo biodegradation by enzymatic degradation test.  相似文献   

9.

Background

Carcinoma associated fibroblasts (CAFs or myofibroblasts) are activated fibroblasts which participate in breast tumor growth, angiogenesis, invasion, metastasis and therapy resistance. As such, recent efforts have been directed toward understanding the factors responsible for activation of the phenotype. In this study, we have investigated how changes in the mechanical stiffness of a 3D hydrogel alter the behavior and myofibroblast-like properties of human mammary fibroblasts (HMFs).

Results

Here, we utilized microbial transglutaminase (mTG) to mechanically tune the stiffness of gelatin hydrogels and used rheology to show that increasing concentrations mTG resulted in hydrogels with greater elastic moduli (G’). Upon encapsulation of HMFs in 200 (compliant), 300 (moderate) and 1100 Pa (stiff) mTG hydrogels, it was found that the HMFs remained viable and proliferated over the 7 day culture period. Specifically, rates of proliferation were greatest for HMFs in moderate hydrogels. Regarding morphology, HMFs in compliant and moderate hydrogels exhibited a spindle-like morphology while HMFs in stiff hydrogels exhibited a rounded morphology with several large cellular protrusions. Quantification of cell morphology revealed that HMFs cultured in all mTG hydrogels overall assumed a more elongated phenotype over time in culture; however, few significant differences in morphology were observed between HMFs in each of the hydrogel conditions. To determine whether matrix stiffness upregulated expression of ECM and myofibroblast markers, western blot was performed on HMFs in compliant, moderate and stiff hydrogels. It was found that ECM and myofibroblast proteins varied in expression during both the culture period and according to matrix stiffness with no clear correlation between matrix stiffness and a myofibroblast phenotype. Finally, TGF-β levels were quantified in the conditioned media from HMFs in compliant, moderate and stiff hydrogels. TGF-β was significantly greater for HMFs encapsulated in stiff hydrogels.

Conclusions

Overall, these results show that while HMFs are viable and proliferate in mTG hydrogels, increasing matrix stiffness of mTG gelatin hydrogels doesn’t support a robust myofibroblast phenotype from HMFs. These results have important implications for further understanding how modulating 3D matrix stiffness affects fibroblast morphology and activation into a myofibroblast phenotype.
  相似文献   

10.
Enzymes can be used as crosslinking agents to modify the physicochemical properties of food dispersions. However, little is known about the influence of complex interfacial structures on the enzymatic crosslinking rate, particularly in gelled network systems. In the current study, emulsions stabilized by different interfacial membranes (single protein vs. complex coacervates) were incorporated into a hydrogel matrix and then mixed with microbial transglutaminase (mTG) to assess the crosslinking capability. Emulsions stabilized by solely caseinate or coacervates composed of caseinate and beet pectin were fabricated by high shear blending and subsequently embedded into alginate beads. Various alginate (0.5–1.5 %) and CaCl2 levels (50–500 mM) were used to modulate the hydrogel pore size and number of junction zones. Bradford assay revealed that mTG diffused into the beads, whereas ammonia (NH3) measurements showed a decrease in NH3 concentration with increasing alginate and CaCl2 levels. Theoretical considerations demonstrated that the enzyme-promoted crosslinking is mainly influenced by both the pore size and the number of crosslinks within the network, whereas the interfacial structure had a minor impact on its substrate accessibility.  相似文献   

11.
He X  Jabbari E 《Biomacromolecules》2007,8(3):780-792
Injectable in situ crosslinkable biomaterials seeded with multipotent progenitor cells and coupled with minimally invasive arthroscopic techniques are an attractive alternative for treating irregularly shaped osteochondral defects. An in situ crosslinkable poly(lactide-co-ethylene oxide-co-fumarate) (PLEOF) macromer has been developed with ultralow molecular weight poly(L-lactide) and poly(ethylene glycol) (PEG) units linked by fumaryl unit. The PLEOF macromer was crosslinked with the MMP-13 degradable peptide sequence QPQGLAK with acrylate end-groups or the methylene bisacrylamide (BISAM) crosslinker to form enzymatically or hydrolytically degradable hydrogels, respectively. Cell viability of the peptide crosslinker was significantly higher than that of BISAM. The relatively higher molecular weight peptide crosslinker significantly affected the water content and the rate of crosslinking (e.g., sol vs gel fraction). The addition of a small fraction of a highly reactive BISAM crosslinker to the PLEOF/peptide mixture reduced the gelation time and increased the elastic modulus while retaining enzymatic degradability of the hydrogel. Bone marrow stromal (BMS) cells were encapsulated in the peptide crosslinked PLEOF hydrogel; 84% of the encapsulated cells was viable after 1 week of incubation in osteogenic media. The encapsulated BMS cells differentiated to osteoblasts and produced a mineralized matrix, as measured by ALPase activity and calcium content. The degradation rate of the hydrogel depended on the ratio of the peptide to the BISAM crosslinker, MMP-13 concentration, and incubation time. The results demonstrate that the peptide crosslinked PLEOF hydrogel with tunable degradation characteristics is potentially useful as an injectable in situ crosslinkable carrier for bone marrow stromal cells.  相似文献   

12.
Crosslinked poly(ethylene glycol) (PEG) hydrogels are attractive scaffolds for cartilage tissue engineering because of their ability to mimic the aqueous environment and mechanical properties of native cartilage. In this study, hydrogel crosslinking density was varied to study the influence of gel structure and the application of dynamic loading (continuous, 1 Hz, 15% amplitude strain) on chondrocyte gene expression over 1 week culture. Gene expression was quantified using real-time RT-PCR for collagen II and aggrecan, the major cartilage extracellular matrix (ECM) components, and collagen I, an indicator of chondrocyte de-differentiation. When chondrocytes were encapsulated in PEG gels with low or high crosslinking, a high collagen II expression compared to collagen I expression (1000 or 100,000:1, respectively) indicated the native chondrocyte phenotype was retained. In the absence of loading, relative gene expression for collagen II and aggrecan was significantly higher (e.g., 2-fold and 4-fold, respectively, day 7) in the low crosslinked gels compared to gels with higher crosslinking. Dynamic loading, however, showed little effect on ECM gene expression in both crosslinked systems. To better understand the cellular environment, ECM production was qualitatively assessed using an in situ immunofluorescent technique and standard histology. A pericellular matrix (PCM) was observed as early as day 3 post-encapsulation and the degree of formation was dependent on gel crosslinking. These results suggest the PCM may protect the cells from sensing the applied loads. This study demonstrates that gel structure has a profound effect on chondrocyte gene expression, while dynamic loading has much less of an effect at early culture times.  相似文献   

13.
The cartilage tissue has a limited self-regenerative capacity. Tissue-engineering represents a promising trend for cartilage repair. The present study was aimed to develop a biomaterial formulation by combining fragments of chitosan hydrogel with isolated rabbit or human chondrocytes. We first reported the properties of the constructs elaborated with rabbit chondrocytes and pure chitosan physical hydrogels with defined molecular weight, acetylation degree and polymer concentration. Morphological data showed that chondrocytes were not penetrating the hydrogels but tightly bound to the surface of the fragments and spontaneously formed aggregates of combined cell/chitosan. A significant amount of neo-formed cartilage-like extracellular matrix (ECM) was first accumulated in-between cells and hydrogel fragments and furthermore was widely distributed within the neo-construct. The optimal biological response was obtained with hydrogel fragments concentrated at 1.5% (w/w) of polymer made from a chitosan with a degree of acetylation between 30 and 40%. Such hydrogels were then mixed with human chondrocytes. The phenotype of the cells was analyzed by using chondrocytic (mRNA expression of mature type II collagen and aggrecan as well as secretion of proteoglycans of high molecular weight) and non chondrocytic (mRNA expression of immature type II collagen and type I collagen) molecular markers. As compared with human chondrocytes cultured without chitosan hydrogel which rapidly dedifferentiated in primary culture, cells mixed with chitosan rapidly loose the expression of type I and immature type II collagen while they expressed mature type II collagen and aggrecan. In these conditions, chondrocytes maintained their phenotype for as long as 45 days, thus forming cartilage-like nodules. Taken together, these data suggest that a chitosan hydrogel does not work as a scaffold, but could be considered as a decoy of cartilage ECM components, thus favoring the binding of chondrocytes to chitosan. Such a biological response could be described by the concept of reverse encapsulation.  相似文献   

14.
Urease was entrapped in thermally responsive poly(N-isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate), p[NIPAM-p(PEG)-MA], copolymer hydrogels. The copolymer membrane shows temperature-responsive properties similar to conventional p(NIPAM) hydrogels, which reversibly swell below and de-swell above the lower critical solution temperature of p(NIPAM) hydrogel at around 32 °C. The retained activities of the entrapped urease (in p[NIPAM-p(PEG)-MA]-4 hydrogels) were between 83 and 53 % compared to that of the same quantity of free enzyme. Due to the thermo-responsive character of the hydrogel matrix, the maximum activity was achieved at around 25 °C with the immobilized urease. Optimum pH was the same for both free and entrapped enzyme. Operational, thermal and storage stabilities of the enzyme were found to increase with entrapment of urease in the thermoresponsive hydrogel matrixes. As for reusability, the immobilized urease retained 89 % of its activity after ten repeated uses.  相似文献   

15.
Polysaccharides are being processed into biomaterials for numerous biological applications due to their native source in numerous tissues and biological functions. For instance, hyaluronic acid (HA) is found abundantly in the body, interacts with cells through surface receptors, and can regulate cellular behavior (e.g., proliferation, migration). HA was previously modified with reactive groups to form hydrogels that are degraded by hyaluronidases, either added exogenously or produced by cells. However, these hydrogels may be inhibitory and their applications are limited if the appropriate enzymes are not present. Here, for the first time, we synthesized HA macromers and hydrogels that are both hydrolytically (via ester group hydrolysis) and enzymatically degradable. The hydrogel degradation and growth factor release was tailored through the hydrogel cross-linking density (i.e., macromer concentration) and copolymerization with purely enzymatically degradable macromers. When mesenchymal stem cells (MSCs) were encapsulated in the hydrogels, cellular organization and tissue distribution was influenced by the copolymer concentration. Importantly, the distribution of released extracellular matrix molecules (e.g., chondroitin sulfate) was improved with increasing amounts of the hydrolytically degradable component. Overall, this new macromer allows for enhanced control over the structural evolution of the HA hydrogels toward applications as biomaterials.  相似文献   

16.
The exceptional tunability of poly(ethylene glycol) (PEG) hydrogel chemical, mechanical, and biological properties enables their successful use in a wide range of biomedical applications. Although PEG diacrylate (PEGDA) hydrogels are often used as nondegradable controls in short-term in vitro studies, it is widely acknowledged that the hydrolytically labile esters formed upon acrylation of the PEG diol make them susceptible to slow degradation in vivo. A PEG hydrogel system that maintains the desirable properties of PEGDA while improving biostability would be valuable in preventing degradation-related failure of gel-based devices in long-term in vivo applications. To this end, PEG diacrylamide (PEGDAA) hydrogels were synthesized and characterized in quantitative comparison to traditional PEGDA hydrogels. It was found that PEGDAA hydrogel modulus and swelling can be tuned over a similar range and to comparable degrees as PEGDA hydrogels with changes in macromer molecular weight and concentration. Additionally, PEGDAA cytocompatibility, low cell adhesion, and capacity for incorporation of bioactivity were analogous to that of PEGDA. In vitro hydrolytic degradation studies showed that the amide-based PEGDAA had significantly increased biostability relative to PEGDA. Overall, these findings indicate that PEGDAA hydrogels are a suitable replacement for PEGDA hydrogels with enhanced hydrolytic resistance. In addition, these studies provide a quantitative measure of the hydrolytic degradation rate of PEGDA hydrogels which was previously lacking in the literature.  相似文献   

17.
Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose (c-NFC) powder were prepared by UV polymerization of N-vinyl-2-pyrrolidone with Tween 20 trimethacrylate as a cross-linking agent for replacement of the native, human nucleus pulposus (NP) in intervertebral disks. The swelling ratios and the moduli of elasticity in compression of neat and biocomposite hydrogels were evaluated in dependence of c-NFC concentration (ranging from 0 to 1.6% v/v) and degree of substitution (DS, ranging from 0 to 0.23). The viscoelastic properties in shear and the material relaxation behavior in compression were measured for neat and biocomposite hydrogels containing 0.4% v/v of fibrils (DS ranging from 0 to 0.23), and their morphologies were characterized by cryo-scanning electron microscopy (cryo-SEM). The obtained results show that the biocomposite hydrogels can successfully mimic the mechanical and swelling behavior of the NP. In addition, the presence of the c-NFC shows lower strain values after cyclic compression tests and consequently creates improved material relaxation properties compared with neat hydrogels. Among the tested samples, the biocomposite hydrogel containing 0.4% v/v of c-NFC with a DS of 0.17 shows the closest behavior to native NP. Further investigation should focus on evaluation and improvement of the long-term relaxation behavior.  相似文献   

18.
为探究明胶(G)、海藻酸钠(SA),沙蒿胶(ASKG)对复合水凝胶的力学性能、溶胀和保湿性能的影响,采用共混-离子交联法制备海藻酸钠/明胶/沙蒿胶复合水凝胶,并对制得的水凝胶进行结构表征和溶血率测试。结果表明:当G质量分数为2.5%,SA为1.5%,ASKG为0.7%时,复合水凝胶压缩强度达到427.2 kPa,拉伸强度达到563.449 kPa,断裂伸长率为117%,溶胀率为744%,且具有较好的保湿性能。红外光谱表明,由于沙蒿胶中存在大量羟基,因此加入沙蒿胶后在3 300 cm-1~3 600 cm-1羟基峰形变宽。G/SA/ASKG复合水凝胶溶血率低于5%,具有较好的网络孔结构和血液相容性,为复合水凝胶在医用敷料方面的应用提供一定的参考价值。  相似文献   

19.
It is now well established that many cellular functions are regulated by interactions of cells with physicochemical and mechanical cues of their extracellular matrix (ECM) environment. Eukaryotic cells constantly sense their local microenvironment through surface mechanosensors to transduce physical changes of ECM into biochemical signals, and integrate these signals to achieve specific changes in gene expression. Interestingly, physicochemical and mechanical parameters of the ECM can couple with each other to regulate cell fate. Therefore, a key to understanding mechanotransduction is to decouple the relative contribution of ECM cues on cellular functions.Here we present a detailed experimental protocol to rapidly and easily generate biologically relevant hydrogels for the independent tuning of mechanotransduction cues in vitro. We chemically modified polyacrylamide hydrogels (PAAm) to surmount their intrinsically non-adhesive properties by incorporating hydroxyl-functionalized acrylamide monomers during the polymerization. We obtained a novel PAAm hydrogel, called hydroxy-PAAm, which permits immobilization of any desired nature of ECM proteins. The combination of hydroxy-PAAm hydrogels with microcontact printing allows to independently control the morphology of single-cells, the matrix stiffness, the nature and the density of ECM proteins. We provide a simple and rapid method that can be set up in every biology lab to study in vitro cell mechanotransduction processes. We validate this novel two-dimensional platform by conducting experiments on endothelial cells that demonstrate a mechanical coupling between ECM stiffness and the nucleus.  相似文献   

20.
Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号