首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. To gain a better understanding of the heterotrophic nature of small headwater streams in forested landscapes we explored the spatial and temporal variability of in‐stream organic matter processes. Three methods were used to measure the benthic metabolism of different in‐stream habitats in seven streams throughout a calendar year. This allowed us to analyse the contribution of various metabolic habitats (i.e. sediment, leaf litter, cobbles) to in‐stream metabolism during a natural flow regime. Furthermore, it allowed us to define in‐stream patchiness based on functional rather than structural elements. 2. Bacterial growth, measured using a leucine assay, displayed a quadratic relationship over time with a peak in warmer months and consistently higher bacterial growth in fine depositional (3.00–710.64 mg C m?2 day?1) than coarse gravel (38.84–582.85 mg C m?2 day?1) sediments. 3. Community metabolism, measured using dissolved oxygen chambers, showed distinct diel patterns and consistently greater net daily metabolism in leaf packs (?261.76 to ?24.50 mg C m?2 day?1) than fine depositional sediments (?155.00 to ?15.56 mg C m?2 day?1). Coarse gravel sediments (?49.55 to ?16.88 mg C m?2 day?1) and cobble habitats (?151.98 to 55.38 mg C m?2 day?1) exhibited the lowest metabolic rates. Modelled whole‐stream metabolism was highly variable among streams and temporal patterns appeared driven by temperature and the relative contribution of patch configuration as a function of flow. 4. Cellulose decomposition potential showed higher rates of microbial activity in fine depositional compared to coarse gravel sediments (30.5 and 29.1 kg average cotton tensile strength loss respectively), though there were higher rates of thread loss indicative of macroinvertebrate activity in gravel compared to depositional sediment (21% and 13% average thread loss respectively), with a slight quadratic trend. The high variability among habitats, streams and over time in this integrative measure may be explained by variability in local microbial activity as well as the potential for macroinvertebrates to contribute across patches. 5. There were strong relationships among benthic processes and habitat structure, nutrient status, stream temperature and flow. Different habitats had distinct metabolic characteristics and these characteristics appear to influence stream food webs and biogeochemical cycling depending on the relative abundance of habitats. Generally, within habitat variability was less than among habitat variability and among stream variability was less than temporal variability. Hence, in terms of the spatial and temporal heterogeneity of benthic processes, these small headwater streams showed predictable metabolic patterns. However, there were few correlations between differing measures of benthic metabolism at the same patch and this suggests that caution should be taken when attempting to infer the rates of one level of metabolic activity (e.g. whole community metabolism) based on another (e.g. bacterial productivity).  相似文献   

2.
1. Macrobrachium hainanense is a predatory palaemonid shrimp (total length >7 cm) that can be abundant [density 3–5 m?2; biomass 484–606 mg ash‐free dry mass (AFDM) m?2] in forest streams in Hong Kong, China. This study investigated the growth and production of M. hainanense during 2001 and 2002 in pools of two forested streams (one third‐ and one fourth‐order). 2. The growth of tagged individuals was recorded in situ and compared with that of tagged and untagged shrimps in laboratory tanks. Field and laboratory estimates yielded similar growth rates of 0.7 mm carapace length (CL) per month, and instantaneous growth rate was 0.004 g AFDM g?1 day?1. Tagging did not affect growth in the laboratory. Cohort analysis of field populations produced similar estimates of growth to that of tagged individuals, and the growth of M. hainanense was generally slower than has been reported for other Macrobrachium species. Mass‐specific growth rate of M. hainanense in the field varied with size and was two to five times higher in small individuals (<10 mm CL). In addition, growth rate varied with season and was 40% lower in the dry season when temperature was at the annual minimum. 3. Males grew bigger than females (36 versus 25 mm CL). The minimum lifespan of M. hainanense in the field, calculated from size‐specific growth rates, ranged from 29.3 months (females) to 47.6 months (males). Male lifespan derived from cohort analysis was estimated as 48 and 46 months in the two streams. Females reached maturity in 17–18 months (at 15–17 mm CL) while males matured at 24–26 months (at 18–22 mm CL). Females bred twice (at 2 and 3 years of age) while males probably bred three times (at 2, 3 and 4 years) in both streams. 4. Macrobrachium hainanense production in the fourth‐order stream, calculated by the size‐frequency method, was 900 and 1096 mg AFDM m?2 year?1 (for 2001 and 2002, respectively) with a production/biomass (P/B) of 2.1–2.3 year?1. In the third‐order stream, production was 987 and 1304 mg AFDM m?2 year?1 (for 2001 and 2002, respectively) with a P/B of 1.7–2.1 year?1. Production estimates based on the instantaneous growth method were half of those obtained by the size‐frequency method. 5. Although M. hainanense production at the third‐order stream exceeded that in the fourth‐order, growth rates showed the opposite pattern and were 0.31–0.43 mm CL month?1 and 0.56–0.65 mm CL month?1 in the third‐ and fourth‐order streams, respectively. Greater mortality in the latter may account for low production at a site where growth rate was high. 6. Production of M. hainanense in both streams was lower during 2001 when rainfall was higher. This may reflect the influence of spates associated with monsoonal rains, which could have reduced M. hainanense production through spate‐induced mortality or by reducing the abundance of prey. This study provides the first in situ estimate of secondary production by a non‐commercial Macrobrachium species in Asia or elsewhere. It involved a whole‐pool approach to sampling that allowed the estimation of production and population parameters on a realistic scale.  相似文献   

3.
4.
Leaf breakdown in streams differing in catchment land use   总被引:1,自引:0,他引:1  
1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south‐eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar‐sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day?1) and urban (0.0474 day?1) streams than in suburban (0.0173 day?1) and forested (0.0100 day?1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land‐use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff.  相似文献   

5.
1. Freshwater shrimps often dominate the biomass of tropical island streams and are known to have strong effects on stream ecosystem structure and function, but little effort has been dedicated toward quantifying basic energetic and life history attributes such as growth, production and longevity. Such information is critical for understanding both the role of shrimps in ecosystem dynamics and the gravity of threats to shrimp populations posed by human activities such as shrimp harvesting, dam construction and water withdrawal. 2. We quantified growth rates and secondary production of dominant freshwater shrimps for 3 years in two Puerto Rican headwater streams that differ in food web structure because of the presence or absence of predatory fishes that are excluded from reaches above waterfalls. Using growth data, we constructed a minimum longevity model to explore the likely minimum life spans of the two dominant taxa (Atya spp. and Xiphocaris elongata). Finally, we used a bioenergetics model to quantify annual consumption rates of major basal resources by the two taxa. 3. Daily growth rates ranged from ?0.001 to 0.011 day?1, were inversely related to body size, and were higher for small individuals of X. elongata than Atya spp. Mean annual shrimp biomass and secondary production were an order of magnitude higher in the stream that lacked predatory fishes (biomass: 4.34 g AFDM m?2; production: 0.89 g AFDM m?2 year?1) than in the stream with predatory fishes (biomass: 0.12 g AFDM m?2; production: 0.02 g AFDM m?2 year?1). Production : biomass ratios ranged from 0.01 to 0.38. 4. Our longevity model predicted a minimum life span of 8 years for Atya spp. and 5 years for X. elongata in the stream lacking predatory fishes. In contrast, due to a larger average size of X. elongata in the stream with predatory fishes, our model predicted a minimum life span of 11 years. Actual life spans of these taxa are likely to be much longer based on long‐term observations of marked individuals. 5. Estimated consumption rates from the bioenergetics model indicated that Atya spp. and X. elongata are important processors of organic matter resources in streams where they occur at high densities. Atya spp. and X. elongata appeared capable of consuming a large proportion of algal and insect production and the proportion of direct leaf litter inputs consumed was also appreciable (c. 40–60%). However, the consumption of suspended fine particulate organic matter (SFPOM) by Atya spp. is probably only a minor proportion of total SFPOM flux in these streams. 6. Our study suggests that geomorphic features such as waterfalls may play an important role in controlling the distribution and production of freshwater shrimps through their effects on predatory fish movement. Spatial differences in shrimp densities result in landscape‐scale variation in the significance to ecosystem processes of these long‐lived organisms, particularly as processors of major organic matter resources.  相似文献   

6.
Submarine groundwater discharge (SGD) into Cockburn Sound Western Australia was quantified by applying a distributed groundwater flow model to estimate the inshore aquifer water balance. Spatially averaged SGD along the coast was estimated to be 2.5–4.8?±?0.9?m3?day?1?m?1. The range in estimated average SGD reflected low and high estimates of average groundwater recharge, which ranged from 0.13 to 0.24?m?year?1 (15–28% of average annual rainfall). The error ±0.9?m3?day?1?m?1 was calculated by assuming arbitrary ±20% errors in groundwater pumping and inflow across boundaries. SGD varied spatially along the coastal boundary due to variation in hydraulic connection between the coastal aquifers and ocean, and spatial variability in recharge, transmissivity and pumping. Under assumptions of low and high groundwater recharge, SGD along the coastline varied in the ranges 1.4–4.6?m3?day?1?m?1 and 2.4–7.9?m3?day?1?m?1, respectively.  相似文献   

7.
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hardwater stream [pH 8.0] and a softwater stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 μg liter−1) and phosphorus (<3 μg liter−1). The leaves of each species decomposed faster in the hardwater stream (decomposition rates, 0.010 and 0.007 day−1 for yellow poplar and oak, respectively) than in the softwater stream (decomposition rates, 0.005 and 0.004 day−1 for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [14C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hardwater stream but not in the softwater stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hardwater stream (5.8 mg g−1 day−1 on yellow poplar leaves and 3.1 mg g−1 day−1 on oak leaves) than in the softwater stream (1.6 mg g−1 day−1 on yellow poplar leaves and 0.9 mg g−1 day−1 on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the softwater stream (12.8% of detrital mass) than in the hardwater stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the softwater stream.  相似文献   

8.
1. Of the relatively few studies that have examined consequences of amphibian declines on stream ecosystems, virtually all have focused on changes in algae (or algal‐based food webs) and little is known about the potential effects of tadpoles on leaf decomposition. We compared leaf litter decomposition dynamics in two neotropical streams: one with an intact community of tadpoles (with frogs) and one where tadpoles were absent (frogless) as a result of a fungal pathogen that had driven amphibians locally extinct. The stream with tadpoles contained a diverse assemblage (23 species) of larval anurans, and we identified five species of glass frog (Centrolenidae) tadpoles that were patchily distributed but commonly associated with leaf detritus and organic sediments in pools. The latter reached total densities of 0–318 tadpoles m?2. 2. We experimentally excluded tadpoles from single‐species leaf packs incubated over a 40‐day period in streams with and without frogs. We predicted that decomposition rates would be higher in control (allowing access of tadpoles) treatments in the study stream with frogs than in the frogless stream and, in the stream with frogs, in the control than in the tadpole exclusion treatment. 3. In the stream with frogs, Centrolene prosoblepon and Cochranella albomaculata tadpoles were patchily distributed in leaf packs (0.0–33.3 m?2). In contrast to our predictions, leaf mass loss and temperature‐corrected leaf decomposition rates in control treatments were almost identical in our stream with frogs (41.01% AFDM lost, kdegree day = ?0.028 day?1) and in the frogless stream (41.81% AFDM lost, kdegree day = ?0.027 day?1) and between control and tadpole exclusion treatments within each stream. Similarly, there were no significant differences in leaf pack bacterial biomass, microbial respiration rates or macroinvertebrate abundance between treatments or streams. Invertebrate assemblages on leaf packs were similar between treatments (SIMI = 0.97) and streams (SIMI = 0.95) and were dominated by larval Chironomidae, Simuliidae (Diptera) and larval Anchytarsus spp. (Coleoptera). 4. In contrast to dramatic effects of grazing tadpoles on algal communities observed previously, tadpoles had no major effects on decomposition. While centrolenid tadpoles were common in the stream with frogs, their patchy distribution in both experimental and natural leaf packs suggests that their effects on detrital dynamics and microbes are probably more localised than those of grazing tadpoles on algae.  相似文献   

9.
We measured CO2 concentration and determined evasion rate and piston velocity across the water–air interface in flow-through chambers at eight stations along two 20 km long streams in agricultural landscapes in Zealand, Denmark. Both streams were 9–18-fold supersaturated in CO2 with daily means of 240 and 340 μM in January–March and 130 and 180 μM in June–August. Annual CO2 medians were 212 μM in six other streams and 460 μM in four groundwater wells, while seven lakes were weakly supersaturated (29 μM). Air concentrations immediately above stream surfaces were close to mean atmospheric conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h?1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m?2 day?1) where CO2-rich soil water entered fast stream flow, while rates were tenfold lower (25–100 mmol m?2 day?1) in slow-flowing lower reaches. CO2 evasion mainly derived from the input of CO2 in soil water. The variability of CO2 evasion along the two lowland streams covered much of the range in sub-Arctic and temperate streams reported previously. In budgets for the two stream catchments, loss of carbon from soils via the hydrological cycle was substantial (3.2–5.7 mmol m?2 day?1) and dominated by CO2 consumed to form HCO3 ? by mineral dissolution (69–76%) and export of organic carbon (15–23%) relative to dissolved CO2 export (7–9%).  相似文献   

10.
We examined the decomposition of watercress in the laboratory at 10° and 20 °C, and in the field. Rates varied from 0.058 g g?1 day?1 in the laboratory to 0.115 g g?1 day?1 in the field. There was a rapid generation of particles of size <500 µm. It is thought that washout of these from the litterbags in the field accounted for high field decomposition rate. Formation of dissolved nitrogen compounds during decomposition followed a time series from NH inf4 sup+ to NO in2 sup? to NO inf3 sup? withdissolved organic nitrogen accumulating at the end of decomposition. Ammonification rates were 480 and 657 g NH4-N g?1 (dry wt) day?1 and nitrification rates on the decomposing tissue were 640 and 571 µg NO3-N g?1 (dry wt) day?1 at 10° and 20 °C respectively. Fifty-six per cent of the initial plant N was regenerated as NO3-N 21% as DON and 25% remained as refractory particulate N.  相似文献   

11.
《新西兰生态学杂志》2011,33(2):208-215
Large trees are a significant structural component of old-growth forests and are important as habitat for epiphytic biodiversity; as substantial stores of biomass, carbon and nutrient; as seed trees; and as engineers of large gap sites for regeneration. Their low density across the landscape is an impediment to accurately measuring growth and mortality, especially as infrequent tree deaths are rarely captured without long periods of monitoring. Here we present large-tree (≥ 30 cm in diameter at breast height) growth and mortality rates for six common New Zealand tree species over a 42-year period from 28 large permanent plots (0.4?0.8?ha) in the central North Island. Our goal was to examine how rates of growth and mortality varied with tree size and species. In total we sampled 1933 large trees across 11.6 ha, corresponding to a large-tree density of 167 trees?ha?1, of which we used 1542 as our six study species. Mean annual mortality rates varied more than 10-fold among species being least in Dacrydium cupressinum (0.16%) and greatest in Weinmannia racemosa (2.21%). Diameter growth rates were less variable among species and ranged from 1.8 mm?yr?1 in Ixerba brexioides to 3.3?mm?yr?1 in D.?cupressinum. Tree size influenced the rate of mortality in Beilschmiedia tawa, I. brexioides and W.?racemosa but there was no support for including tree size in models of the remaining three species. Likewise, tree size influenced growth rates in I.?brexioides and Nothofagus menziesii but not the remaining four species. These data provide robust size- and species-specific estimates of large-tree demographic rates that can be used as baselines for monitoring the impacts of management and global change in old-growth forests.  相似文献   

12.
1. Headwater streams are a significant feature of the southern Appalachian landscape, comprising more than 70% of the total stream length in the region. Salamanders are the dominant vertebrate within headwater‐riparian forest ecosystems, but their ecological role is not clearly understood. 2. We studied a population of black‐bellied salamanders (Desmognathus quadramaculatus) at a headwater stream in the southern Appalachian Mountains using radio‐telemetry and mark‐recapture methods. The length and area of headwater streams in the region were estimated using GIS. 3. Home ranges of radio‐tracked salamanders were relatively small (mean = 1.06 m2). Adult salamanders in our telemetry study inhabited edge microhabitats significantly more often than either stream or riparian microhabitats, and the same trend was observed in the mark‐recapture study. 4. We estimated the population density at this site to be 11 294 salamanders ha?1, amounting to 99.30 kg ha?1 of biomass, an estimate that is six times greater than reported in previous studies. The majority of this biomass was found within the stream, but 22% was found in the surrounding riparian habitat more than 1 m from the stream. Using headwater stream length and area estimates, we extrapolated biomass estimates for black‐bellied salamanders inhabiting stream and riparian microhabitats across the study region. 5. We report one of the largest estimates of secondary consumer biomass for a headwater ecosystem, attesting to the overall productivity of headwater streams. Headwaters are known to be important for ecological and ecosystem processes and our biomass estimates suggest that salamanders are a critical component to these systems.  相似文献   

13.
SUMMARY. Larvae of Baetis alpinus, B. lutheri and B. rhodani were reared in a stream channel (water temperature range 4.2–11.4°C) in the laboratory. The larval growth was exponential and the mean specific growth rate varied from 1.93 to 2.24% day?1 for B. alpinus, 1.49 to 3.41% day?1 for B. lutheri and 0.79 to 3.11% day?1 for B. rhodani. These variations in growth rate were related to variations in mean temperature and this was the major factor affecting growth in the laboratory. Non-quantitative samples of the benthos in the Seebach and Unterseebach, two stony streams near Lunz, Austria, were taken at approximately monthly intervals from November 1965 to May 1968. In each year, there were two winter and three summer cohorts for B. alpinus from Seebach and two or three winter and one to three summer cohorts for B. lutheri and B. rhodani from Unterseebach. Over the study period of 30 months, eleven cohorts were recorded for B. alpinus and B. lutheri, and ten cohorts for B. rhodani. The life cycle of a cohort varied from 3 to 8 months in B. alpinus, from 2.5 to 9 months in B. lutheri and from 2.5 to 8 months in B. rhodani. Mean specific growth rate in length varied from 0.82 to 2.97% day?1 for B. alpinus, 0.96 to 3.33% day?1 for B. lutheri and 0.65 to 3.01% day?1 for B. rhodani. The percentage of the variability in growth rate accounted for by variations in mean temperature was 63% for B. alpinus, 91% for B. lutheri and 82% for B. rhodani. Therefore mean temperature was clearly the major factor affecting the growth rates in the field. An agreement was found between the growth rates of B. alpinus in the field and the laboratory. The growth rates of B. lutheri and B. rhodani were slower in the field than in the laboratory at higher temperatures. The possible reasons for this latter discrepancy are discussed, and the growth rates of the three Baetis spp. are compared with those of other species of Ephemeroptera.  相似文献   

14.
15.
The study explored the combined effects of density, physical habitat and different discharge levels on the growth of juvenile Atlantic salmon Salmo salar in artificial streams, by manipulating flow during both summer and winter conditions. Growth was high during all four summer trials and increased linearly with discharge and mean velocity. Differences in fish densities (fish m?3) due to differences in stream volume explained a similar proportion of the variation in mean growth among discharge treatments. Within streams, the fish aggregated in areas of larger sediment size, where shelters were probably abundant, while growth decreased with increasing densities. Fish appeared to favour the availability of shelter over maximization of growth. Mean growth was negative during all winter trials and did not vary among discharge treatments. These results suggest that increased fish densities are a major cause of reduced summer growth at low discharge, and that habitat‐mediated density differences explain the majority of the growth variation across habitat conditions both during summer and winter.  相似文献   

16.
1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478–492 g m?2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m?2; mean ± SE) than Payne Creek (39 ± 9 g m?2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g?1) than those from Payne Creek (54 ± 8 mg g?1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day?1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m?2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m?2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter‐year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m?2 in Payne Creek and 7–27 g m?2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%.  相似文献   

17.
1. A tracer release study was conducted in a macrophyte‐rich stream, the River Lilleaa in Denmark. The objectives of the study were to compare uptake rates per unit area of by primary producers and consumers in macrophyte and non‐macrophyte habitats, estimate whole‐stream uptake rates of and compare this to other stream types, and identify the pathways and estimate the rate at which enters the food web in macrophyte and non‐macrophyte habitats. 2. Macrophyte habitats had four times higher primary uptake rates and an equal uptake rate by primary consumers per unit habitat area as compared to non‐macrophyte habitats. These rates represent the lower limit of potential macrophyte effects because the rates will be highly dependent on macrophyte bed height and mean bed height in the River Lilleaa was low compared to typical bed heights in many lowland streams. Epiphytes accounted for 30% of primary uptake in macrophyte habitats, illustrating a strong indirect effect of macrophytes as habitat for epiphytes. N flux per unit habitat area from primary uptake compartments to primary consumers was four times lower in macrophyte habitats compared to non‐macrophyte habitats, reflecting much greater biomass accrual in macrophyte habitats. Thus, we did not find higher N flux from macrophyte habitats to primary consumers compared to non‐macrophyte habitats. 3. Whole‐stream uptake rate was 447 mgN m?2 day?1. On a habitat‐weighted basis, fine benthic organic matter (FBOM) accounted for 72% of the whole‐stream uptake rate, and macrophytes and epiphytes accounted for 19 and 8%, respectively. 4. We had expected a priori relatively high whole‐stream N uptake in our study stream compared to other stream types mainly due to generally high biomass and the macrophyte’s role as habitat for autotrophic and heterotrophic organisms, but our results did not confirm this. In comparison with other release study streams, we conclude that nutrient concentration is the overall controlling factor for N uptake rates across streams, mostly as a result of high biomass of primary uptake compartments in streams with high nutrient concentrations in general and not in macrophyte streams in particular. 5. Our results indicate that macrophytes play an important role in the longer‐term retention of N and thus a decrease in net downstream transport during the growing season compared to streams without macrophytes, through direct and indirect effects on the stream reach. Direct effects are high uptake efficiency, low turnover rate (partly due to no direct feeding on macrophytes) and high longevity. An indirect effect is increased sedimentation of FBOM in macrophytes compared to non‐macrophyte habitats and streams which possibly also increase denitrification. Increased retention with macrophyte presence would decrease downstream transport during the growing season and thus the N loading on downstream ecosystems.  相似文献   

18.
The research performed in August 2004 within the framework of the Russian-American Long-term Census of the Arctic (RUSALCA) resulted in the first data concerning the rates of the key microbial processes in the water column and bottom sediments of the Bering strait and the Chukchi Sea. The total bacterial counts in the water column varied from 30 × 103 cells ml?1 in the northern and eastern parts to 245 × 103 cells ml?1 in the southern part. The methane content in the water column of the Chukchi sea varied from 8 nmol CH4l?1 in the eastern part of the sea to 31 nmol CH4l?1 in the northern part of the Herald Canyon. Microbial activity occurred in the upper 0–3 cm of the bottom sediments; the methane formation rate varied from 0.25 to 16 nmol CH4dm?3 day?1. The rates of methane oxidation varied from 1.61 to 14.7 nmol CH4dm?3 day?1. The rates of sulfate reduction varied from 1.35 to 16.2 μmol SO 4 2? dm?1 day?1. The rate of methane formation in the sediments increased with depth, while sulfate reduction rates decreased (less than 1 μmol SO 4 2? dm?3 day?1). These high concentrations of biogenic elements and high rates of microbial processes in the upper sediment layers suggest a specific type of trophic chain in the Chukchi Sea. The approximate calculated balance of methane emission from the water column into the atmosphere is from 5.4 to 57.3 μmol CH4m?2 day?1.  相似文献   

19.
To date, no direct measurements of primary production were taken in the Amundsen Sea, which is one of the highest primary productivity regions in the Antarctic. Phytoplankton carbon and nitrogen uptake experiments were conducted at 16 selected stations using a 13C–15N dual isotope tracer technique. We found no statistically significant depletions of major inorganic nutrients (nitrate?+?nitrite, ammonium, and silicate) although the concentrations of these nutrients were markedly reduced in the surface layer of the polynya stations where large celled phytoplankton (>20?μm) predominated (ca. 64?%). The average chl-a concentration was significantly higher at polynya stations than at non-polynya stations (p?<?0.01). Average daily carbon and nitrogen uptake rates by phytoplankton at polynya stations were 2.2?g?C?m?2?day?1 (SD?=?±1.4?g?C?m?2?day?1) and 0.9?g?N?m?2?day?1 (SD?=?±0.2?g?N?m?2?day?1), respectively, about 5–10 times higher than those at non-polynya stations. These ranges are as high as those in the Ross Sea, which has the highest productivity among polynyas in the Antarctic Ocean. The unique productivity patterns in the Amundsen Sea are likely due to differences in iron limitation, phytoplankton productivity, the timing of phytoplankton growing season, or a combination of these factors.  相似文献   

20.
1. The light : nutrient hypothesis (LNH) states that algal nutrient content is determined by the balance of light and dissolved nutrients available to algae during growth. Light and phosphorus gradients in both laboratory and natural streams were used to examine the relevance of the LNH to stream periphyton. Controlled gradients of light (12–426 μmol photons m?2 s?1) and dissolved reactive phosphorus (DRP, 3–344 μg L?1) were applied experimentally to large flow‐through laboratory streams, and natural variability in canopy cover and discharge from a wastewater treatment facility created gradients of light (0.4–35 mol photons m?2 day?1) and DRP (10–1766 μg L?1) in a natural stream. 2. Periphyton phosphorus content was strongly influenced by the light and DRP gradients, ranging from 1.8 to 10.7 μg mg AFDM?1 in the laboratory streams and from 2.3 to 36.9 μg mg AFDM?1 in the natural stream. Phosphorus content decreased with increasing light and increased with increasing water column phosphorus. The simultaneous effects of light and phosphorus were consistent with the LNH that the balance between light and nutrients determines algal nutrient content. 3. In experiments in the laboratory streams, periphyton phosphorus increased hyperbolically with increasing DRP. Uptake then began levelling off around 50 μg L?1. 4. The relationship between periphyton phosphorus and the light : phosphorus ratio was highly nonlinear in both the laboratory and natural streams, with phosphorus content declining sharply with initial increases in the light : phosphorus ratio, then leveling off at higher values of the ratio. 5. Although light and DRP both affected periphyton phosphorus content, the effects of DRP were much stronger than those of light in both the laboratory and natural streams. DRP explained substantially more of the overall variability in periphyton phosphorus than did light, and light effects were evident only at lower phosphorus concentrations (≤25 μg L?1) in the laboratory streams. These results suggest that light has a significant negative effect on the food quality of grazers in streams only under a limited set of conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号