首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
Summary An X chromosome in Drosophila melanogaster is described which is mutationally unstable. Mutational events were identified through phenotypic changes associated with a tandem duplication of the X chromosome in which the white locus is present in duplicate. The left segment of the tandem duplication was marked with the mutant w sp, the right segment with mutant w 17G. Some of the phenotypic changes were identified as deletions involving the w 17G marked segment of the duplication. Other phenotypic changes involved the left segment in which phenotypically w sp mutated to w. Experimental evidence is presented which attributes these latter mutations to insertions of foreign DNA into the w locus equivalent to the insertion mutations of E. coli.  相似文献   

2.
TE146 is a transposing element (TE) consisting of six polytene chromosome bands that has inserted into the no-ocelli (noc 250) locus. This member of Ising's TE family carries two copies of the white and roughest loci. TE146 is lost from noc with a spontaneous frequency of approximately 1 in 22000 chromosomes. All spontaneous losses are accompanied by the reversion of the noc mutation associated with the TE. The TE is associated with fold-back (FB) sequences. The losses of TE146 retain fold-back homology at noc. Of 26 -ray-induced losses of TE146, 16 are gross deletions, removing loci neighboring noc and ten are not. The non-deleted -ray-induced losses are either noc and rst + or noc + and rst . The white+ genes of TE146 are dosage compensated since w/Y; TE146/+ and w/w; TE146/+ flies are sexually dimorphic for eye color. These w + genes are also suppressed by zeste since z w; TE146/+ flies have zeste-colored eyes.  相似文献   

3.
The X chromosome region 9F12-10A7 (7 bands removed by Df(1)v l3) was saturated with lethal, semi-lethal, visible and male sterile mutations. A total of 11 complementation groups were found. In the more narrow interval of Df(1)v l1 which removes 3 bands (10A1-2, 10A3, 10A4-5) 6 loci were localised. — The band 10A1-2 consists of a sereis of 5 different subunits: (i) silent DNA where no functions were found — at the distal edge of the band; (ii) and (iii) two genes: v and 1(1)BP4; (iv) silent DNA in middle of the band, (v) locus sev on the proximal edge of the band. About 70% of the band's DNA was found to be silent. — Using the set of chromosome rearrangements removing different parts of the band it was shown that these five sequences may function independently from each other.  相似文献   

4.
A minichromosome has originated from the transposing elementTE1. This autonomously replicating chromosome contains the structural genes white and roughest, from theDrosophila X chromosome. It arose within a stock carryingTE1 at 45F on chromosome2. In addition to thew andrst genes, the minichromosome may carry section 45C–45F from chromosome2. It is inherited by 33%–47% of the offspring. By this criterion it carries a centromere, although the origin of the centromere is unknown. From this minichromosome a still smaller one has originated, probably through the loss of all material from chromosome2 together with some heterochromatin. At the same time a duplication of white and roughest could have taken place. This chromosome has a strange morphology and is more frequently lost in meiosis than the larger one, but is still transmitted to about 29%–37% of the progeny of one parent heterozygous for the minichromosome. In both cases the flies have variegated eyes, probably as a result of position-effect variegation. The variegation pattern is influenced by factors in theX chromosome. The size of the smaller minichromosome is little more than 1 Mb as determined by pulsed field gel electrophoresis.  相似文献   

5.
Summary The w m Co duplication of Drosophila hydei (Dp (1; Y) 16B2-17B1) contains 13–16 bands in salivary gland chromosomes. The duplication resides preferentially in the X heterochromatin or on the Y chromosome. In some stocks frequent (up to 4×10-3) exchanges of the duplication occur between different Y chromosomes (T(X; Y) and free Y) or between the X and the Y chromosome. About 60% of the T(X; Y)-Y exchanges induce mutations in the Y chromosomal male fertility genes of the recipient Y chromosome. From the mutational spectrum generated by the T(X; Y)-Y transpositions and from the variable efficiency as acceptor of different X-Y translocations it can be concluded that the exchanges show a remarkable site specificity: distal positions in the long arm of the Y chromosome are occupied preferentially. More proximal positions in the long arm of insertions into the short arm of the Y chromosome are found only with a lower frequency. No transpositions to the autosomes have been recovered. Duplications are lost with highly differing frequencies. The losses are not linked with insertions of the w m Co element into a new position and are more frequent than transpositions. Therefore, we regard the w m Co element as a giant transposon.  相似文献   

6.
Summary A total of 37 genetic markers located in chromosomes 2, 3, 4 and 5 were associated with specific arms by means of telotrisomic analysis in five telotrisomics (Triplo 2 L, 2 S, 3 S, 4 S, 5 L) of barley (Hordeum vulgare L.). The genes v, gp (= gp 2), li, gs 5, tr and msg2 showed a trisomic ratio with Triplo 2 L indicating that these genes were on the long arm of chromosome 2. A disomic ratio was obtained for genes wst 4, gs 5, and v with Triplo 2 S, confirming that these genes were on the long arm of chromosome 2(2 L). A disomic ratio was observed for genes e, f(= lg), sk, and gs6 with Triplo 2 L. Two genes, f(= lg) and gs6 showed a trisomic ratio with Triplo 2S. These results indicated that genes e, f(= lg), sk, and gs 6 are on the short arm of chromosome 2 (2S). Since only one telocentric chromosome was available for chromosome 3, 4 and 5, most of the well-mapped marker genes were tested with those telocentric chromosomes. The genes cu 2, uz, wst, als, gs 2, zb,f2, and cer-zn 348 showed trisomic ratio with the telocentric for chromosome 3. These genes were located on the short arm of chromosome 3 (Robertson 1971). This indicated that the telocentric chromosome is for the short arm of chromosome 3(3 S). A disomic ratio was obtained for genes yst, x c, al, yst2, a n, ari-a 6 and x s, indicating that these genes are on the long arm of chromosome 3. Two genes, f9 and K, showed trisomic ratio with the telocentric chromosome for 4, while genes gl(= gl2), br2, yh, lg 3, lg 4 and lk 5 showed disomic ratios. This indicated that the telocentric chromosome is for the short arm of chromosome 4. Two genes, fs 2 and g, were studied with Triplo 5 L. Both showed trisomic ratio, indicating that fs 2 and g are located on Triplo 5 L. The centromere position (C) on chromosome 2, 3 and 4 was thus located as (the left side of C is the short arm and the right is the long arm): chromosome 2: fskgs6e — C — gs5msg2wst4vgplitr; chromosome 3: f2cer-zn 348uzgs2alscu2wstzb — C — ystx calyst2a nari-a 6x s; chromosome 4: f9KClg4lg 3gl2br2lk5yh. The centromere position on chromosome 5 was not precisely located.Contribution from the Department of Agronomy, Published with the approval of the director of the Colorado State University Experiment Station as Scientific Series Paper No. 2606. This research was supported in part by by NSF Grant GB 4482X and GB 30 493 to T. Tsuchiya and Colorado State University Experiment Station Hatch Project  相似文献   

7.
A whole-genome duplication in the ray-finned fish lineage has been supported by the analyses of the genome sequence of the Japanese pufferfish, Fugu rubripes. Recently, genome sequence of a second teleost fish, the freshwater pufferfish, Tetraodon nigroviridis, was completed. Comparisons of long-range synteny between the Tetraodon and human genomes provided additional evidence for the whole-genome duplication in the ray-finned fish lineage. In the present study, we conducted phylogenetic analysis of the Tetraodon and human proteins to identify ray-finned fish lineage-specific (‘fish-specific’) duplicate genes in the Tetraodon genome. Our analyses provide evidence for 1087 well defined fish-specific duplicate genes in Tetraodon. We also analyzed the Fugu proteome that was predicted in the recent Fugu genome assembly, and identified 346 duplicate genes in addition to the 425 duplicates previously identified. We estimated the ages of duplicate genes using the molecular clock. The ages of duplicate genes in the two pufferfishes independently support a large-scale gene duplication around 380–400 Myr ago. In addition, a burst of recent gene duplications was evident in the Tetraodon lineage. These findings provide further evidence for a whole-genome duplication early in the evolution of ray-finned fishes, and suggest that independent gene duplications have occurred recently in the Tetraodon lineage.  相似文献   

8.
Abstract The D. melanogaster rst and kirre genes encode two highly related immunoglobulin-like cell adhesion molecules that function redundantly during embryonic muscle development. The two genes appear to be derived from a common ancestor by gene duplication. Gene duplications have been proposed to be of major evolutionary significance since duplicated redundant sequences can accumulate mutations without detrimental effects for the organism and leave the duplicated genes free to assume novel functions. To address the issue of conservation of the duplicated sequences and their putative redundancy, as well as to identify putative functional divergence of the paralogs during drosophilid evolution, we performed an interspecies comparison of the rst and kirre genes from D. virilis and D. melanogaster. The D. virilis genome contains orthologues of both rst and kirre and hence the duplication took place before the split of the two lineages and has subsequently been conserved. However, whilst the Rst orthologues show a high degree of sequence similarity, this similarity is lower in Kirre orthologues. Especially the intracellular domains of D. virilis and D. melanogaster Kirre sequences are highly divergent: the D. virilis kirre gene lacks the 3′-most exon present in D. melanogaster, which contains motifs conserved between kirre and rst in D. melanogaster. Hence, while each of the two genes is highly conserved at the level of its exon-intron organization, the selection forces acting on the rst and kirre coding sequences are different. These findings are discussed in the light of general evolutionary mechanisms.  相似文献   

9.
Summary An unstable long tandem duplication which includes the white locus twice, marked with w sp in the left and w 17G in the right locus, when kept in males has been found to produce red-eyed sons which have lost the long duplication and with it the w sp and w 17G mutants. Such exceptions were produced also when w 17G had been exchanged for w a.Stocks originating from these exceptions are unstable, producing: 1) zeste males, also unstable, 2) w - deletions, stable, 3) transpositions of the white locus to sites in other chromosomes.The instability is interpreted as the effect of an IS element, within or adjacent to the white locus, which is supposed to retain a duplication of the proximal zeste interacting part of this locus. According to the orientation of the IS element the duplicated part can be active or inactive, giving a zeste or red eye phenotype.The frequency of exceptional offspring after X-ray treatment of the red and zeste unstable stocks have been compared to stable stocks with corresponding genotypes.  相似文献   

10.
Chromosomes and phenotypes of four different sex-linkedwhite-mottled mutants of the position-effect variogation type were studied. Three mutants (w m1,w m2,w m3) are X-chromosomal rearrangements which shift the w+ locus into a position close to heterochromatin, but which have different ouchromatic and heterochromatic breaks. The fourth, a spontaneous derivative ofw m1, is an insertional duplication of part of the X chromosome, including thew + andN +loci. The duplicated segment is inserted into the distal part of the long arm of the heterochromatic Y chromosome. It is designated,w m CoY, orXw m Co when transferred to the X chromosome.Three chromosomal types (w m1,w m CoY) and (Xw m Co) having the same cuchromatic break near thew + locus, cause large-spotted eyes whereas two others (w m2,w m3) produce a popper-and-salt type of mottling. From the position of the various eu- and heterochromatic breaks, it appears that the distance of thew + locus to the point of reunion with heterochromatin, rather than the amount or type of adjoining heterochromatin, dietates the phenotypic action of the displacedw + locus, in the sense of a spreading effect on two proposed functional subunits within thew + locus.The pigmentation background against which the mottling effect is produced, i.e., a givenw-allele with its characteristic colour, or other eye colour mutations, does not seem to affect the type of mottling. Drosopterins and ommochromes react in the same way to modifing factors like temperature and supernumerary Y chromosomes. Two mutants (w m2 andw m CoY) while reacting in the same manner to Y chromosomes showed an opposite temperature response.By exchange between the heterochromatin of the Y and X chromosome inw/w m CoY males thew m Co duplication was transferred between the sex chromosomes with a certain regularity. It is not yet known wether the exchanges are mitotic or meiotic in origin but their heterochromatic nature has been demonstrated cytologically.  相似文献   

11.
Summary We have initiated a cytogenetic analysis of chromosome region 89A of Drosophila melanogaster by isolating a set of radiation-induced mutations causing loss of function of P[(w)B]1-1, a transposon bearing the white locus inserted in 89A. Complementation tests and cytological examination of these chromosomes identified four new deficiencies (Df(3R)Po 2, Df(3R)Po 3, Df(3R)Po 4 and Df(3R)c(3)G 2 ). The new deficiencies and three previously identified deficiencies (Df(3R)sbd 26, Df(3R)sbd 45 and Df(3R)sbd 105) were tested for the ability to complement mutations in the enzyme loci Po and Aldox-1, the indirect flight muscle genes Tm2 and act88F, the morphological mutations jvl, sbd 2 and Sb, the vital loci srp, pnr and mor, and a newly described vital locus l(3)89Aa. We also used linkage analysis to determine the order and relative positions of P[(w)B]1-1 and an independent transposon insertion, P[w+]21, with respect to cv-c, Po, Aldox-1 and sbd 2. Cytological examination of the deficiencies and analysis of the transformed lines by in situ hybridization permits the correlation of genetically defined regions with specific polytene chromosome bands. A revised cytogenetic map of the 8817–8913 region is presented.  相似文献   

12.
W J Gehring  R Paro 《Cell》1980,19(4):897-904
In Drosophila several transposing elements that contain the white locus are known. Transpositions of one such element, which carries both the white-apricot (wa) and the neighboring roughest (rst+) genes, have been isolated at more than 120 sites scattered over the entire genome (Ising and Ramel 1976). We have isolated a recombinant plasmid (61F4) containing sequences that appear to be present on this transposing element (TE). In nontransposed stocks, 61F4 hybridizes to approximately 40 sites in the polytene chromosomes including the nucleolus, the chromocenter and chromosome section 3C (that is, the white-apricot roughest region). In six different tranpositions tested, the genetic map position of the TE corresponds to one site of in situ hybridization of 61F4, indicating that the TE contains homologous sequences. The sites of in situ hybridization correlate with the wa allele or alleles derived from wa but not with w+ and other w alleles tested, nor with an X-ray-induced revertant of wa. Thus wa strains appear to carry additional DNA sequences homologous to 61F4, close to or within the w gene. The recombinant plasmid 61F4 carries 7.3 kb of Drosophila DNA inserted into pSF2124. It contains a segment homologous to a member of the copia gene family (Finnegan et al. 1978). Since copia appears to be a highly mobile element (Strobel, Dunsmuir and Rubin 1979), the association of copia sequences with the wa-rst+ transposing element suggests that copia sequences may be responsible for the transposition of this element.  相似文献   

13.
The combined effects of water activity (aw) and temperature on mycotoxin production by Penicilium commune (cyclopiazonic acid — CPA) and Aspergillus flavus (CPA and aflatoxins — AF) were studied on maize over a 14-day period using a statistical experimental design. Analysis of variance showed a highly significant interaction (P 0.001) between these factors and mycotoxin production. The minimum aw/temperature for CPA production (2264 ng g–1 P. commune, 709 ng g–1 A. flavus) was 0.90 aw/30 °C while greatest production (7678 ng g–1 P. commune, 1876 ng g–1 A. flavus) was produced at 0.98 aw/20 °C. Least AF (411 ng g–1) was produced at 0.90 aw/20 °C and most (3096 ng g–1) at 0.98 aw/30 °C.  相似文献   

14.
We demonstrated previously that an α1—β2—γ2 gene cluster of the γ-aminobutyric acid (GABAA) receptor is located on human chromosome 5q34–q35 and that an ancestral α—β—γ gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the α4 gene (GABRA4) maps to human chromosome 4p14–q12, defining a cluster comprising the α2, α4, β1, and γ1 genes. The existence of an α2—α4—β1—γ1 cluster on chromosome 4 and an α1—α6—β2—γ2 cluster on chromosome 5 provides further evidence that the number of ancestral GABAA receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the α gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of α subunit should be located on human chromosome 15q11–q13 within an α5—αx—β3—γ3 gene cluster at the locus for Angelman and Prader—Willi syndromes.  相似文献   

15.
Of 204 mutations located in the 8–12 band Df(2L)130 region, 37B9-C1,2;37D1-2, 199 have been assigned to twelve lethal genes and one visible gene (hook). The 13 genes are not evenly distributed. Twelve, (possibly all thirteen) are in the seven band region 37B10-C4 giving a gene-to-band ratio of almost two. Only one gene, 1(2)37Cf, may be in the four band region 37C5-7, and none are localized in band 37D1. In situ hybridization places the dopa decarboxylase structural gene, Ddc, in or very close to band 37C1,2 (Hirsh and Davidson, 1981). The methyl dopa hypersensitive gene, 1(2) amd, is 0.002 map units distal to Ddc. Df(2L)VA17, 37C1,2; 37F5-38A1 may actually break in the 37C1,2 singlet. It places six genes, hook, 1(2)amd, and four lethal genes, in a maximum of five bands, 37B10, 11, 12, 13 and perhaps part of the 37C1,2 singlet and localizes six genes, Ddc plus five lethal genes, in a maximum of three bands; probably part of the 37C1,2 singlet plus bands, C3, and C4. Wild type activity of five of twelve lethal genes is necessary for female fertility. — Band 37C5 puffs at the time of pupariation; Puff Stages 8–10. Twelve of eighteen alleles of 1(2)37Cf havs been examined as heterozygotes over CyO and none affect the appearance of a homozygous 37C5 puff. — Of the 204 mutations considered here only one Ddc p1, affects the function of more than one gene. It eliminates Ddc + and l(2) 37Ca + function and at 30 ° C reduces l(2)37Ce + function. It is not a deficiency but could be a polar mutant.Prof. Beermann's co-authors are very pleased to dedicate this paper to him in honor of his sixtieth birthday and in recognition of his seminal, most significant, extensive, and authoritive contributions on the functional organization of chromosomes  相似文献   

16.
Summary We have studied the influence of various factors on the V-type position effect of the white gene transposed to heterochromatin as a result of different chromosome rearraugements in D. melanogaster. Variegation due to the white gene position effect is much weaker if the flies have received Dp(1;3)wvco from parental males, and not females. The origin of the chromosome rearrangement does not have this influence in the case of T(1;4)wm5 or has it to insignificant extent in the case of In(1)wm4. The Y-chromosome in maternal genome strongly suppresses Dp(1;3)wvco-induced variegation even in the progeny which has not received an extra Y-chromosome but only if this progeny gets Dp(1;3)wvco from the same female. The low temperature (16° C) at which parental females have developed, considerably affects the position effect in the progeny with Dp(1;3)wvco, whereas the temperature of males' development has no influence at all. The maternal temperature effect occurs also when Dp(1;3)wvco has come down from the father, though it is stronger if the mother subjected to low temperature treatment bore the rearrangement. The influence of temperature seems to take effect at the final stages of oogenesis.The data obtained lead one to suppose that the influence of genotypic and external factors on variegation is passed to the next generation of flies in different ways. The direction of crosses and additional Y-chromosome heterochromatin in the maternal genome seem to affect variegation in the progeny through changes in the properties (structure) of the chromosome rearrangement expressing the position effect. As to the temperature of the mothers development, only a small part of its influence may be accounted for by the same mechanism, whereas most of the temperature influence seems to be passed on through other components of the nucleus or through the cytoplasm.  相似文献   

17.
Looptail (Lp) is a mutation that profoundly affects neurulation in mouse and is characterized by craniorachischisis, an open neural tube extending from the midbrain to the tail in embryos homozygous for the mutation. Lp maps to the distal portion of mouse chromosome 1, and as part of a positional cloning approach, we have generated a high-resolution linkage map of the Lp chromosomal region. For this, we have carried out extensive segregation analysis in a total of 706 backcross mice informative for Lp and derived from two crosses, (Lp/ + X SJL/J)F1 X SJL/J and (Lp/ + X SWR/J)F1 X SWR/J. In addition, 269 mice from a (Mus spretus X C57BL/6J)F1 X C57BL/6J interspecific backcross were also used to order marker loci and calculate intergene distances for this region. With these mice, a total of 28 DNA markers corresponding to either cloned genes or anonymous markers of the SSLP or SSCP-types were mapped within a 5-cM interval overlapping the Lp region, with the following locus order and interlocus distances (in cM): centromere-D1Mit110 / Atp1β1 / Cd3ζ / Cd3η / D1Mit145 — D1Hun14 / D1Mit15 — D1Mit111 / D1Mit112 — D1Mit114 — D1Mit148 / D1Mit205/ D1Mit36 / D1Mit146 / D1Mit147 / D1Mit270 / D1Hun13 — Fcgr2 — Mpp — Apoa2/Fcer1γ - Lp - D1Mit149 / Spna1/Fcer1α-Eph1-Hlx1/D1Mit62. These studies have allowed the delineation of a maximum genetic interval for Lp of 0.5 cM, a size amenable to physical mapping techniques.  相似文献   

18.
The behavior of an unstable allele of the singed-bristle locus on the X chromosome was studied in connection with the occurrence of lethal mutations on that same chromosome. The unstable allele, weak singed (snw), is under the control of the P-M system of hybrid dysgenesis and, in the M cytotype, mutates secondarily to extreme singed (sne) and to wild type (sn+) at high rates. Chromosomes whose snw allele had mutated in this fashion sustained lethal mutations at a rate of 3%; whereas, those whose snw allele had apparently remained unchanged, acquired lethals at a lower rate, 1.3%. The significant difference between these values indicates a statistical coincidence between the phenomena of snw instability and X-linked lethal mutation induction. This coincidence can be explained by postulating that mutations at the singed locus sometimes release a genetic element capable of reinserting elsewhere in the chromosome. Alternately, snw instability and lethal induction might be associated because they are the effects of a common cause, perhaps some mutation-inducing substance present in various amounts in the germ cells of dysgenic flies.—The lethals that occurred on chromosomes whose snw allele had mutated to sne mapped preferentially close to singed. The lethals on the snw and sn+ chromosomes did not show this concentration on the map. Cytological analysis of samples of all three types of lethal chromosomes indicated that, with one exception, there was no detectable breakage at the singed locus itself. The single instance of breakage at singed was not associated with any change in the singed phenotype. Thus, the instability of snw apparently does not involve detectable breakage of the singed locus, or if it does, this breakage is not a common event.  相似文献   

19.
20.
Polytene chromosome sections 63E1-6 of 3L in Drosophila melanogaster were studied by 3H-uridine and 3H-thymidine autoradiography in late third instar larvae and prepupae. In late third instar larvae 63E does not incorporate 3H-uridine. In prepupae, however, a large puff is formed in 63E which is most active in RNA synthesis. — 3H-thymidine labeling patterns and frequencies of regions 61A-64C were analysed and the non-puffed and puffed 63E sections were compared with reference sections. Both in late third instar larvae and in prepupae 63E shows late replication behavior. It is concluded that the decondensation of chromosome bands does not necessarily entail earlier and/or faster DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号