首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
Atrazine is one of the most environmentally prevalent s-triazine-ring herbicides. The widespread use of atrazine and its toxicity necessitates search for remediation technology. As atrazine is still used in India as a major herbicide, exploration of atrazine-degrading bacterial community is of immense importance. Considering lack of reports on well characterized atrazine-degrading bacterial cultures from India and wide diversity and density of microorganisms in rhizosphere, soil sample from rhizosphere of atrazine-resistant plant was studied. Arthrobacter sp. strain isolated in this investigation utilizes atrazine as the sole nitrogen source. In addition, the bacterium degrades other triazines such as ametryn, cyanizine, propazine and simazine. PCR analysis confirms the presence of atzBCD and triazine hydrolase (trzN) genes on chromosomal DNA. Sequencing of the trzN gene reveals high sequence similarity with trzN from Nocardioides sp. C190. An inducible and intracellular atrazine chlorohydrolase enzyme was isolated and partially purified from this isolate. This study confirms the presence of atrazine-degrading microbial population in Indian soils and could be used efficiently for remediation of contaminated soils. Presence of trzN gene indicates possible presence of bacterial community with more efficient and novel enzymatic capabilities. Comparison of enzyme and gene structure of this isolate with other geographically distinct atrazine-degrading strains will help us in the better understanding of gene transfer and evolution.  相似文献   

2.
Aims: To characterize atrazine‐degrading potential of bacterial communities enriched from agrochemical factory soil by analysing diversity and organization of catabolic genes. Methods and Results: The bacterial communities enriched from three different sites of varying atrazine contamination mineralized 65–80% of 14C ring‐labelled atrazine. The presence of trzN‐atzBC‐trzD, trzN‐atzABC‐trzD and trzN‐atzABCDEF‐trzD gene combinations was determined by PCR. In all enriched communities, trzN‐atzBC genes were located on a 165‐kb plasmid, while atzBC or atzC genes were located on separated plasmids. Quantitative PCR revealed that catabolic genes were present in up to 4% of the community. Restriction analysis of 16S rDNA clone libraries of the three enrichments revealed marked differences in microbial community structure and diversity. Sequencing of selected clones identified members belonging to Proteobacteria (α‐, β‐ and γ‐subclasses), the Actinobacteria, Bacteroidetes and TM7 division. Several 16S rRNA gene sequences were closely related to atrazine‐degrading community members previously isolated from the same contaminated site. Conclusions: The enriched communities represent a complex and diverse bacterial associations displaying heterogeneity of catabolic genes and their functional redundancies at the first steps of the upper and lower atrazine‐catabolic pathway. The presence of catabolic genes in small proportion suggests that only a subset of the community has the capacity to catabolize atrazine. Significance and Impact of the Study: This study provides insights into the genetic specificity and the repertoire of catabolic genes within bacterial communities originating from soils exposed to long‐term contamination by s‐triazine compounds.  相似文献   

3.
We report the characterisation of Nocardioides sp. SP12, an atrazine-degrading bacteria isolated from atrazine-treated bulk- and maize rhizosphere soil. Based on 16S rDNA alignment, strain SP12 showed close phylogenic relationships with Nocardioides sp. C157 and Nocardioides simplex. Internal transcribed spacer (ITS) sequences of strain SP12 were longer than those of other Nocardioides sp. and present Ala- and Ile-tRNA unlike Actinomycetales. Nocardioides sp. SP12 presents a novel atrazine catabolic pathway combining trzN with atzB and atzC. Atrazine biodegradation ends in a metabolite that co-eluted in HPLC with cyanuric acid. This metabolite shows an absorption spectrum identical to that of cyanuric acid with a maximal absorption at 214.6 nm. The mass of the atrazine metabolite is in concordance with that of cyanuric acid according to mass spectrometry analysis. Quantitative PCR revealed that the ITS sequence of Nocardioides sp. SP12 was at a lower number than the one of trzN in atrazine-treated soil samples. It suggests that trzN could also be present in other atrazine degrading bacteria. The numbers of trzN and ITS sequences of Nocardioides sp. SP12 were higher in the maize rhizosphere than in bulk soil.  相似文献   

4.
不同生境黑果枸杞根际与非根际土壤微生物群落多样性   总被引:2,自引:0,他引:2  
李岩  何学敏  杨晓东  张雪妮  吕光辉 《生态学报》2018,38(17):5983-5995
研究典型生境黑果枸杞根际与非根际土壤微生物群落多样性及其与土壤理化性质间的关系,为进一步研究黑果枸杞抗逆性提供理论数据。采集新疆精河县艾比湖地区(EB)盐碱地、乌苏市(WS)路旁荒地、五家渠市(WQ)人工林带的黑果枸杞根际与非根际土壤,利用Illumina-MiSeq高通量测序技术分析细菌和真菌群落组成和多样性。结果表明:根际土壤细菌多样性高于非根际土壤(WQ除外),而根际真菌多样性低于非根际土壤。WQ非根际土壤细菌和真菌多样性均高于EB和WS;根际细菌多样性排序为EBWSWQ,根际真菌多样性排序为WSEBWQ。根际土壤优势细菌门依次是变形菌门、拟杆菌门、放线菌门、酸杆菌门,真菌优势门为子囊菌门、担子菌门。根际土壤细菌变形菌门、拟杆菌门、酸杆菌门的相对丰度高于非根际土壤,而厚壁菌在根际土壤中的丰度显著降低,真菌优势门丰度在根际土和非根际土中的变化趋势因地区而异; Haliea、Gp10、Pelagibius、Microbulbifer、假单胞菌属、Thioprofundum、Deferrisoma是根际土壤细菌优势属;多孢子菌属、支顶孢属、Corollospora、Cochlonema是根际真菌优势属。细菌、真菌优势类群(门、属)的组成以及丰富度存在地区间差异,厚壁菌门在EB地区的丰富度显著高于含盐量较低的WS、WQ;盐碱生境EB中根际土壤嗜盐细菌的丰度高于非盐碱生境(WQ、WS),如盐单胞菌属、动性球菌属、Geminicoccu、Pelagibius、Gracilimonas、Salinimicrobium等。小囊菌属是EB根际真菌的最优势属,Melanoleuca是WQ和WS的最优势属,地孔菌属、Xenobotrytis、Brachyconidiellopsis、多孢子菌属等在EB根际土壤中的丰度显著高于WQ和WS。非盐碱生境(WS和WQ)的微生物群落之间的相似性较高,并且高于与盐碱环境(EB)之间的相似性,表明土壤含盐量对微生物群落组成丰度具有重要的影响。  相似文献   

5.
The main objective of this work was to characterize an atrazine-mineralizing community originating from agrochemical factory soil, especially to elucidate the catabolic pathway and individual metabolic and genetic potentials of culturable members. A stable four-member bacterial community, characterized by colony morphology and 16S rDNA sequencing, was rapidly able to mineralize atrazine to CO2 and NH3. Two primary organisms were identified as Arthrobacter species (ATZ1 and ATZ2) and two secondary organisms (CA1 and CA2) belonged to the genera Ochrobactrum and Pseudomonas, respectively. PCR assessment of atrazine-degrading genetic potential of the community, revealed the presence of trzN, trzD, atzB and atzC genes. Isolates ATZ1 and ATZ2 were capable of dechlorinating atrazine to hydroxyatrazine and contained the trzN gene. ATZ2 further degraded hydroxyatrazine to cyanuric acid and contained atzB and atzC genes whereas ATZ1 contained atzC but not atzB. Isolates CA1 and CA2 grew on cyanuric acid and contained the trzD gene. Complete atrazine degradation was a result of the combined metabolic attack on the atrazine molecule, and complex interactions may exist between the community members sharing carbon and nitrogen from atrazine mineralization.Scientific relevance: Despite numerous reports on atrazine degradation by pure bacterial cultures, the pathways and the atrazine-degrading gene combinations harboured by bacterial communities are only poorly described. In this work, we characterized a four-member atrazine-mineralizing community enriched from an agrochemical factory soil, which was capable of rapidly metabolizing atrazine to CO2. This study will contribute towards better understanding of the genetic potential and metabolic activities of atrazine-degrading communities, which are generally considered to be responsible for atrazine mineralization in the natural environment.  相似文献   

6.
Total of 272 crude oil-degrading bacteria were isolated from seven locations along the coast of Kuwait. The analysis of the 16S rDNA sequences of isolated bacteria revealed the predominance of six bacterial genera: Pseudomonas, Bacillus, Staphylococcus, Acinetobacter, Kocuria and Micrococcus. Investigation of the factors associated with bacterial predominance revealed that, dominant culturable crude oil-degrading bacteria were better crude oil utilizers than the less frequently occurring isolates. Bacterial predominance was also influenced by the ability of bacteria to adapt to the level of organic content available. Predominant culturable bacteria constituted 89.7–54.2% of the total crude oil-degrading bacterial communities. Using 16S-RFLP analyses to assess the diversity of the dominant crude oil-degrading bacterial genera, four phylotypes of Pseudomonas sp. and seven phylotypes of Bacillus sp. were determined. This suggested high degree of diversity of crude oil-degrading bacterial population at the strain level, but low diversity at the genus level.  相似文献   

7.
Three bacterial strains capable of degrading atrazine were isolated from Manfredi soils (Argentine) using enrichment culture techniques. These soils were used to grow corn and were treated with atrazine for weed control during 3 years. The strains were nonmotile Gram-positive bacilli which formed cleared zones on atrazine solid medium, and the 16S rDNA sequences indicated that they were Arthrobacter sp. strains. The atrazine-degrading activity of the isolates was characterized by the ability to grow with atrazine as the sole nitrogen source, the concomitant herbicide disappearance, and the chloride release. The atrazine-degrader strain Pseudomonas sp. ADP was used for comparative purposes. According to the results, all of the isolates used atrazine as sole source of nitrogen, and sucrose and sodium citrate as the carbon sources for growth. HPLC analyses confirmed herbicide clearance. PCR analysis revealed the presence of the atrazine catabolic genes trzN, atzB, and atzC. The results of this work lead to a better understanding of microbial degradation activity in order to consider the potential application of the isolated strains in bioremediation of atrazine-polluted agricultural soils in Argentina.  相似文献   

8.
阿特拉津降解菌株的分离、鉴定和工业废水生物处理试验   总被引:1,自引:0,他引:1  
用液体无机盐培养基富集培养法和无机盐平板直接分离法, 从生产阿特拉津的农药厂的废水和污泥混合物中分离到13个能以阿特拉津为唯一氮源生长的细菌菌株。通过16S rRNA基因序列分析, 11个菌株被鉴定为Arthrobacter spp., 2个菌株被鉴定为Pseudomonas spp.。对阿特拉津降解活力最高的Arthrobacter sp. AD30和Pseudomonas sp. AD39的降解基因组成和降解特性进行了详细研究。降解基因的PCR扩增表明, AD30和AD39都含有trzN-atzBC基因, 能将有毒的阿特拉津降解成无毒的氰尿酸。降解实验表明, 向阿特拉津浓度为200 mg/L的无机盐培养基中分别接种等量的AD30、AD39和这两个菌株的混合菌液, 30°C振荡培养48 h以后, 阿特拉津去除率分别为92.5%、97.9%和99.6%, 表明混合菌的降解效果好于单菌。用AD30和AD39的混合菌液接种阿特拉津浓度为176 mg/L的工业废水, 30°C振荡培养72 h以后, 99.1%的阿特拉津被去除, 表明混合菌株在阿特拉津工业废水的生物处理中有很好的应用潜力。  相似文献   

9.
We compared the size, culturability, diversity, and dominant species similarity of the bacterial communities of Leucanthemopsis alpina (L.) Heywood rhizosphere and adjacent bare soil (interspace) along a chronosequence of soil development time (5, 50, and 70 years) in the forefield of the Dammaglacier (Switzerland). We found no evidence that the size of the bacterial community was significantly affected by either soil age or the presence of L. alpina. In contrast, the proportion of the bacterial community that could be cultured on nonselective agars, and which was taken as an indication of the proportion of r-selected populations, was significantly higher in the 50- and 70-year-old soils than in the 5-year-old soil, and was also significantly higher in the rhizosphere of L. alpina at all time points. RDA indicated significant correlations between the increased culturability of the bacterial community over time and increasing concentrations of labile N, and between the increased culturability in the rhizosphere and increased concentrations of labile C and N. HaeIII-amplified ribosomal DNA (rDNA) restriction analysis of a library of 120 clones of 16S rDNA revealed 85 distinct phylotypes. Hurlbert's probability of interspecific encounter (PIE) values derived from this library ranged from 0.95 to 1.0, indicating a very high genetic diversity. There was no significant difference in the PIE values of rhizosphere and interspace communities. Detrended correspondence analysis (DCA) of 16S ribosomal RNA (rRNA) denaturing gradient gel electrophoresis (DGGE) community profiles clearly distinguished the rhizosphere from the interspace community in the 5-year-old soils and also clearly distinguished between these communities and the rhizosphere and interspace communities of the 50- and 70-year-old soils. However, 16S rRNA DGGE revealed little difference between rhizosphere and interspace communities in the 50- and 70-year-old soils. The relative similarity of the 16S rRNA profiles strongly reflected labile carbon and nitrogen availability. Overall, our results suggest that improved C and N availability in the rhizosphere of L. alpina increases the size of r-selected bacterial species populations, but that the influence of L. alpina depends on soil age, being maximal in the youngest soils and minimal in the oldest. The reduced influence of L. alpina in the older soils may reflect a feedback between improved nutrient availability and reduced rhizodeposition.  相似文献   

10.
长春花内生细菌多样性与柑橘黄龙病菌的相关性   总被引:1,自引:0,他引:1  
【目的】分析感柑橘黄龙病长春花植株与健康长春花植株不同部位内生细菌菌群结构变化,为柑橘黄龙病菌与长春花内生细菌的相关性研究提供理论基础。【方法】本研究利用兼性厌氧可培养技术、16S rDNA限制性片段长度多态性分析(Restriction fragment length polymorphism,RFLP)以及16S rDNA序列分析相结合的方法。【结果】分别从感病和健康长春花叶、茎、根的组织中分离获得67株内生细菌,与GenBank中29种细菌的相似性达到97%-100%。其中短小杆菌属(Curtobacterium sp.)、欧文氏菌属(Erwinia sp.)、蜡样芽胞杆菌(Bacillus cereus)为感病长春花内生细菌的优势菌群,鞘胺醇单胞菌属(Brevundimonas sp.)、芽胞杆菌属(Bacillus sp.)为健康长春花内生细菌的优势菌群;马胃葡萄球菌(Staphylococcus equorum)为两者的共同优势菌群。通过RFLP方法分析,感病株得到16个、健株得到23个操作分类单元(Operational TaxonomicUnits,OTUs),感病植株中除柑橘黄龙病菌Candidatus Liberibacter asiaticus外,还有丰富的CandidatusLiberibacter sp.存在。【结论】感病与健康长春花植株中均含有丰富的内生细菌,黄龙病菌的存在改变了长春花原有内生细菌的菌群结构,且菌群多样性下降。可见长春花内生细菌在一定程度上受到柑橘黄龙病菌的抑制。  相似文献   

11.
【背景】小麦/玉米轮作是中国粮食作物主要种植模式之一,目前对小麦/玉米轮作田根际土壤微生物差异变化缺乏全面的了解。【目的】明确小麦/玉米根际土壤微生物差异变化并了解其潜在功能。【方法】以小麦/玉米根际土壤为材料,运用细菌16S rRNA基因和真菌rDNA ITS基因测序,分析小麦/玉米根际土壤微生物多样性。【结果】玉米季微生物丰富度高于小麦季,而多样性无明显差异。放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi)为小麦季和玉米季根际土壤的优势细菌门,优势真菌门为子囊菌门(Ascomycota)。小麦季和玉米季共有细菌和真菌分别是631个和261个,小麦季特有细菌和真菌分别是38个和58个,玉米季特有细菌和真菌分别是25个和39个。LEfSe分析(LDA阈值为2)细菌和真菌表明,放线菌纲(Actinobacteria)和微囊菌目(Microascales)在小麦季富集,鞘脂单胞菌目(Sphingomonadales)和银耳纲(Tremellomycetes)在玉米季富集。小麦季、玉...  相似文献   

12.
Culture-independent molecular techniques, 16S rDNA clone library alongside RFLP and phylogenetic analysis, were applied to investigate the bacterial diversity associated with three South China Sea sponges, Stelletta tenui, Halichondria rugosa and Dysidea avara. A wide bacterial diversity was detected according to total genomic DNA-based 16S rDNA clone library, abundant clones with low identify with sequences retrieved from database were found as well as uncultured sponge symbionts. The phylogenetic analysis shows that the bacterial community structure of Stelletta tenui is similar to that of Halichondria rugosa comprising gamma-Proteobacteria and Firmicutes. Whereas, alpha-Proteobacteria, gamma-Protebacteria, Bacteroidetes and uncultured sponge symbionts were found in sponge Dysidea avara, suggesting that Dysidea avara has the highest bacteria diversity among these sponges. A specific sponge–microbe association is suggested based on the difference of bacterial diversity among these three sponges from the same geography location and the observed sponge species-specific bacteria.  相似文献   

13.
To investigate bacterial communities between rhizosphere and non-rhizosphere soils of the wild medicinal plant Rumex patientia of Jilin, China, small subunit rRNAs (16S rDNA) from soil metagenome were amplified by polymerase chain reaction using primers specific to the domain bacteria and analysed by cloning and sequencing. The relative proportion of bacterial communities in rhizosphere soils was similar to non-rhizosphere soils in five phylogenetic groups (Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi and Planctomycetes). But there were differences in five other phylogenetic groups (Firmicutes, Bacteroidetes, Gemmatimonadetes, Verrucomicrobia and Unclassified bacteria). Over 97.24 % of the sequenced clones were found to be unique to rhizosphere and non-rhizosphere soils, while 2.76 % were shared by both of them. Our results indicate that there are differences in the composition and proportion of bacterial communities between rhizosphere and non-rhizosphere soils. Furthermore, the unique bacterial clones between rhizosphere and non-rhizosphere soils of the wild medicinal plant R. patientia have obvious differences.  相似文献   

14.
AIMS: To isolate and characterize atrazine-degrading bacteria in order to identify suitable candidates for potential use in bioremediation of atrazine contamination. METHODS AND RESULTS: A high efficiency atrazine-degrading bacterium, strain AD1, which was capable of utilizing atrazine as a sole nitrogen source for growth, was isolated from industrial wastewater. 16S rDNA sequencing identified AD1 as an Arthrobacter sp. The atrazine chlorohydrolase gene (atzA) isolated from strain AD1 differed from that found in the Pseudomonas sp. ADP by only one nucleotide. However, it was found located on the bacterial chromosome rather than on plasmids as previously reported for other bacteria. CONCLUSIONS: Atrazine chlorohydrolase gene, atzA, either encoded by chromosome or plasmid, is highly conserved. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison analysis of atrazine degradation gene structure and arrangement in this and other bacteria provides insight into our understanding of the ecology and evolution of atrazine-degrading bacteria.  相似文献   

15.
采用热处理法从海南省佳西热带雨林土壤中分离到147株芽胞杆菌,并利用16S rDNA PCR-RFLP与序列分析技术对其遗传多样性进行了研究。16S rDNA PCR-RFLP酶切图谱UPGMA聚类分析结果表明,在100%的相似性水平上,这些芽胞杆菌分属13个遗传类群。不同遗传类型代表菌株的16S rRNA基因序列分析结果显示,它们分布在Bacillaceae、Planococcaceae和Paenibacillaceae科的Bacillus、Lysinibacillus、Paucisalibacillus、Bhargavaea和Paenibacillus五个属,其中Bacillus为优势属(占50%);有3株芽胞杆菌的16S rRNA基因序列与数据库中相应模式菌株的最大相似性在98.3%~98.9%之间。结果表明,佳西热带雨林土壤中芽胞杆菌有着较为丰富的遗传多样性。  相似文献   

16.
不同生长季节黑果枸杞的根际细菌群落结构   总被引:1,自引:0,他引:1  
王飞  杨晓东  李岩 《微生物学报》2019,59(3):533-545
【目的】黑果枸杞是一种耐盐植物,是我国西北干旱区盐渍土改良的优良植物物种,其根际土壤细菌群落结构在不同生长时期的变化特征尚不清楚。【方法】本研究采用Illumina MiSeq高通量测序研究了黑果枸杞3个生长阶段的根际土壤细菌群落结构的动态变化。【结果】所有样品中共获得317467条序列,对应于7028个细菌/古细菌OTUs。根际土壤细菌群落的α多样性显著高于非根际土壤。衰老期根际细菌的多样性和丰富度明显低于营养生长期和花/果期。变形菌门和酸杆菌门的相对丰度随生长时期的演变而逐渐降低,而蓝细菌门则相反。厚壁菌门的丰度在衰老期明显高于营养生长期和花/果期。优势属的组成也随生长期的演变而改变,营养生长期、花/果期、衰老期的优势属数量分别为17、16、4,且组成也具有差异。相似性分析表明营养生长期和花/果期的根际细菌群落具有很高的相似性,衰老期根际细菌群落组成与生长期和花/果期具有很高差异,然而与非根际土壤的群落结构具有较高的相似性。【结论】根际土壤细菌群落多样性和组成随生长期的改变而表现出明显的动态变异性,表明黑果枸杞生长时期对根际土壤细菌群落结构具有重要的影响。  相似文献   

17.
Sun L  Qiu F  Zhang X  Dai X  Dong X  Song W 《Microbial ecology》2008,55(3):415-424
The endophytic bacterial diversity in the roots of rice (Oryza sativa L.) growing in the agricultural experimental station in Hebei Province, China was analyzed by 16S rDNA cloning, amplified ribosomal DNA restriction analysis (ARDRA), and sequence homology comparison. To effectively exclude the interference of chloroplast DNA and mitochondrial DNA of rice, a pair of bacterial PCR primers (799f–1492r) was selected to specifically amplify bacterial 16S rDNA sequences directly from rice root tissues. Among 192 positive clones in the 16S rDNA library of endophytes, 52 OTUs (Operational Taxonomic Units) were identified based on the similarity of the ARDRA banding profiles. Sequence analysis revealed diverse phyla of bacteria in the 16S rDNA library, which consisted of alpha, beta, gamma, delta, and epsilon subclasses of the Proteobacteria, Cytophaga/Flexibacter/Bacteroides (CFB) phylum, low G+C gram-positive bacteria, Deinococcus-Thermus, Acidobacteria, and archaea. The dominant group was Betaproteobacteria (27.08% of the total clones), and the most dominant genus was Stenotrophomonas. More than 14.58% of the total clones showed high similarity to uncultured bacteria, suggesting that nonculturable bacteria were detected in rice endophytic bacterial community. To our knowledge, this is the first report that archaea has been identified as endophytes associated with rice by the culture-independent approach. The results suggest that the diversity of endophytic bacteria is abundant in rice roots.  相似文献   

18.
采用平板培养、BOXAIR-PCR和16S rDNA RFLP技术对宁夏黄土高原马铃薯连作栽培土壤可培养细菌遗传多样性进行研究。结果表明,4个连作年限2个生育期8份土样共分离到91株细菌菌株, BOXAIR-PCR分析发现,91株细菌菌株的遗传相似系数为0.531~0.939,相同连作年限不同生育期根际土细菌菌群分布不同,不同连作年限同一生育期根际土细菌菌群的分布也不同,随着连作年限增加,可培养细菌遗传多样性呈现下降趋势;结合16S rDNA 的序列分析,从91株菌株中筛选出的41个代表菌株可分为23个物种,分属于细菌域的12个属,其中,芽孢杆菌属(Bacillus)占同一连作年限菌株数的53.6%。连作导致土壤细菌菌群结构发生变化,出现各自特有的菌属。系统发育分析表明,23个细菌物种分布于6个系统发育群。  相似文献   

19.
Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a β-glucoronidase (GUS) reporter construct driven by the β-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon–Weiner, and Simpson’s diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages.  相似文献   

20.
利用DGGE法研究不同种植体系中根际微生物群落结构   总被引:7,自引:0,他引:7  
利用DGGE技术研究不同间作和轮作种植体系对作物根际细菌和真菌群落结构的影响.运用16SrDNA和18SrDNA特异引物对,将土壤中提取的总DNA进行PCR扩增后,通过DGGE技术对PCR产物进行分析,结果表明:玉米-蚕豆轮作对蚕豆根际细菌和真菌群落结构影响明显,二者都与单作蚕豆有较大差异;小麦/蚕豆间作明显改变两种作物根际细菌群落结构和蚕豆根际真菌群落结构;玉米/蚕豆间作明显改变玉米根际细菌、真菌群落结构和蚕豆根际真菌群落结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号