首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are documents that confirm the cycle of bacterial transmission between patients, staff, and the inanimate environment. The environment may have more effect on intensive care units (ICUs), because the patients who require intensive care have unstable clinical conditions and are more sensitive to infections. The aim of this study was to determine the prevalence of bacteria in air and inanimate surface in the ICUs and to compare the microbial levels to standard levels.Air and inanimate surface in the four ICUs of a teaching hospital underwent weekly surveillance by means of air sampler and swabs for a period of six-month. Total bacterial counts were evaluated onto trypticase soy agar and mannitol salt agar (MSA).A total of 725 samples [air (168) and inanimate surfaces (557)] were collected. The total mean ± SD CFU/m3 of airborne bacteria in all of the ICUs were 115.93 ± 48.04. The most common bacteria in air of the ICUs were Gram-positive cocci (84.2%). The total mean ± SD airborne of Staphylococcus aureus was 12.10±8.11 CFU/m3. The highest levels of S. aureus contamination were found in ventilators and bed ledges. More suitable disinfection of hospital environments and monthly rotation in utilization of the various disinfectant agents are needed for the prevention of airborne and inanimate transmission of S. aureus.  相似文献   

2.
Multiparametric analysis of waterline contamination in dental units.   总被引:11,自引:2,他引:9       下载免费PDF全文
Microbial contamination of dental unit waterlines is thought to be the result of biofilm formation within the small-bore tubing used for these conduits. Systematic sampling of 121 dental units located at the dental school of Université de Montréal showed that none of the waterlines was spared from bacterial contamination. Multilevel statistical analyses showed significant differences between samples taken at the beginning of the day and samples taken after a 2-min purge. Differences were also found between water from the turbine and the air/water syringe. Random variation occurred mainly between measurements (80%) and to a lesser extent between dental units (20%). In other analyses, it was observed to take less than 5 days before initial bacterial counts reached a plateau of 2 x 10(5) CFU/ml in newly installed waterlines. Sphyngomonas paucimobilis, Acinetobacter calcoaceticus, Methylobacterium mesophilicum, and Pseudomonas aeruginosa were the predominant isolates. P. aeruginosa showed a nonrandom distribution in dental unit waterlines, since 89.5% of the all the isolates were located in only three of the nine clinics tested. Dental units contaminated by P. aeruginosa showed significantly higher total bacterial counts than the others. By comparison, P. aeruginosa was never isolated in tap water remote from or near the contaminated dental unit waterlines. In conclusion, dental unit waterlines should be considered an aquatic ecosystem in which opportunistic pathogens successfully colonize synthetic surfaces, increasing the concentration of the pathogens in water to potentially dangerous levels. The clinical significance of these findings in relation to routine dental procedures is discussed.  相似文献   

3.
In this study it was compared the MAS-100 and the Andersen air samplers' performances and a similar trend in both instruments was observed. It was also evaluated the microbial contamination levels in 3060 samples of offices, hospitals, industries, and shopping centers, in the period of 1998 to 2002, in Rio de Janeiro city. Considering each environment, 94.3 to 99.4% of the samples were the allowed limit in Brazil (750 CFU/m3). The industries' results showed more important similarity among fungi and total heterotrophs distributions, with the majority of the results between zero and 100 CFU/m3. The offices' results showed dispersion around 300 CFU/m3. The hospitals' results presented the same trend, with an average of 200 CFU/m3. Shopping centers' environments showed an average of 300 CFU/m3 for fungi, but presented a larger dispersion pattern for the total heterotrophs, with the highest average (1000 CFU/m3). It was also investigated the correlation of the sampling period with the number of airborne microorganisms and with the environmental parameters (temperature and air humidity) through the principal components analysis. All indoor air samples distributions were very similar. The temperature and air humidity had no significant influence on the samples dispersion patterns.  相似文献   

4.
AIMS: To determine the level of aerosol formation and fallout within a toilet cubicle after flushing a toilet contaminated with indicator organisms at levels required to mimic pathogen shedding during infectious diarrhoea. METHODS AND RESULTS: A semisolid agar carrier containing either Serratia marcesens or MS2 bacteriophage was used to contaminate the sidewalls and bowl water of a domestic toilet to mimic the effects of soiling after an episode of acute diarrhoea. Viable counts were used to compare the numbers of Serratia adhering to the porcelain surfaces and those present in the bowl water before and after flushing the toilet. Air sampling and settle plates were used to determine the presence of bacteria or virus-laden aerosols within the toilet cubicle. After seeding there was a high level of contamination on the porcelain surfaces both under the rim and on the sides of the bowl. After a single flush there was a reduction of 2.0-3.0 log cycles cm(-2) for surface attached organisms. The number of micro-organisms in the bowl water was reduced by 2.0-3.0 log cycles ml(-1) after the first flush and following a second flush, a further reduction of c. 2.0 log cycles ml(-1) was achieved. Micro-organisms in the air were at the highest level immediately after the first flush (mean values, 1370 CFU m(-3) for Serratia and 2420 PFU m(-3) for MS2 page). Sequential flushing resulted in further distribution of micro-organisms into the air although the numbers declined after each flush. Serratia adhering to the sidewalls, as well as free-floating organisms in the toilet water, were responsible for the formation of bacterial aerosols. CONCLUSIONS: Although a single flush reduced the level of micro-organisms in the toilet bowl water when contaminated at concentrations reflecting pathogen shedding, large numbers of micro-organisms persisted on the toilet bowl surface and in the bowl water which were disseminated into the air by further flushes. SIGNIFICANCE AND IMPACT OF THE STUDY: Many individuals may be unaware of the risk of air-borne dissemination of microbes when flushing the toilet and the consequent surface contamination that may spread infection within the household, via direct surface-to-hand-to mouth contact. Some enteric viruses could persist in the air after toilet flushing and infection may be acquired after inhalation and swallowing.  相似文献   

5.
目的 调查医院各病区环境中真菌含量及分布特点.方法 运用分离培养及DNA测序方法对医院不同病区、不同环境中真菌进行监测分析.结果 医院不同病区真菌含量不同,呼吸科、血液科、小儿科空气中真菌含量较高,分别为400、225和200 CFU/m3,其中以烟曲霉菌( 325 CFU/m3)、黄曲霉菌( 275 CFU/m3)、枝孢霉菌( 125 CFU/m3)、根霉( 125 CFU/m3)为主;老年病科、肿瘤科和血液科空调出气口真菌含量较高,分别为0.559、0.500和0.323 CFU/cm2,以链格孢霉(0.441 CFU/cm2)、根霉(0.412 CFU/cm2)、烟曲霉菌(0.294 CFU/cm2)为主;不同环境中真菌含量不同,其中以空气和空调出气口真菌含量最高,分别为130 CFU/m3、0.173 CFU/cm2.结论 真菌广泛存在于医院环境中,且不同病区、不同环境真菌污染程度不同,因而我们必须制订健全的消毒管理制度,预防医院真菌感染.  相似文献   

6.
AIMS: The purpose of this study was to evaluate the degree of bacterial contamination generated by three Italian composting plants (1, 2 and 3) in two different seasons and to assess the health risk for the employees. METHODS AND RESULTS: Aerosols samples were collected with an agar impact sampler. Several plant sites and external upwind and downwind controls were examined. Total colony-forming counts of mesophilic and thermophilic bacteria, actinomycetes and streptomycetes, Gram-negatives, coliforms and sulfite-reducers were determined. Selective media were used in order to isolate pathogenic bacteria. The levels of total mesophilic and thermophilic micro-organisms ranged between 33 and >40,000 CFU m(-3) in plant 1, 39 and 18,700 CFU m(-3) in plant 2 and 261 and 6278 CFU m(-3) in plant 3. Strains of Escherichia coli, Staphylococcus aureus and Clostridium perfringens were also found. CONCLUSIONS: The plants monitored in this study have proved to be sources of aerosolized bacteria. The activities involving mechanical movement of the composting mass and the indoor activities were of greatest potential risk. In all the studied plants, a statistically significant dependence was found between the bacterial contamination and the season for some or almost all the analysed parameters, but a clear seasonal trend could not be observed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides broad evidence of bacterial aerosol dispersion and site-related biological hazards that may be useful to the regional government to implement regulations on worker safety in composting plants.  相似文献   

7.
8.
Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m3; the mean particle count was 4,194,569 no./m3 for particles of diameter ≥0.5 µm and 13,519 no./m3 for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres.  相似文献   

9.
Dental unit waterlines (DUWL) support growth of a dense microbial population that includes pathogens and hypersensitivity-inducing bacteria, such as Legionella spp. and non-tuberculous mycobacteria (NTM). Dynamic dental instruments connected to DUWL generate aerosols in the work environment, which could allow waterborne pathogens to be aerosolized. The use of the real-time quantitative polymerase chain reaction (qPCR) provides a more accurate estimation of exposure levels compared with the traditional culture approach. Bioaerosol sampling was performed 13 times in an isolated dental treatment room according to a standardized protocol that included four dental prophylaxis treatments. Inhalable dust samples were taken at the breathing zone of both the hygienist and patient and outside the treatment room (control). Total bacteria as well as Legionella spp. and NTM were quantified by qPCR in bioaerosol and DUWL water samples. Dental staff and patients are exposed to bacteria generated during dental treatments (up to 4.3 E + 05 bacteria per m(3) of air). Because DUWL water studied was weakly contaminated by Legionella spp. and NTM, their aerosolization during dental treatment was not significant. As a result, infectious and sensitization risks associated with legionellae and NTM should be minimal.  相似文献   

10.
The number of airborne microorganisms in the area of large-scale composting facilities with different composting techniques (A: open facility using the intensive decomposition process [4000 t/year]. B: closed facility with compost containers [7000 t/year], C: closed facility with table-pile compositing and automatic turning equipment [22 000 t/year]) was investigated using impactor sampling systems (Andersen samplers). All counts carried out inside the closed facilities, especially during the turning process, showed values of >5.0 × 105 CFU/m3 for viable bacteria and moulds with a proportion ofAspergillus fumigatus of up to 64%. Depending on the type of facility, different median values were determined inside the plant area. Counts were highest in the immediate area around the biofilter outside of Facility C (1.7 × 104 CFU/m3 for bacteria and 9.5 × 103 CFU/m3 for moulds). In view of the high load of ambient airborne microorganisms inside the composting facilities, adequate occupational health measures are urgently required. Counts determining the hazard to neighbourhood residents at distances of between 150 and 2000 m showed, depending on the facility, annual median values of 170–330 CFU/m3 for bacteria, 75–340 CFU/m3 for moulds, and 15–52 CFU/m3 forA. fumigatus. Higher individual counts — up to 3 × 103 CFU/m3 for moulds and up to 350 CFU/m3 forA. fumigatus — were found as a result of specific climatic influences, (e.g. winds) and activities as well poor operation. Given the high proportion ofA. fumigatus in the exhaust air, this mould can serve as an indicator for the evaluation of the health risk. However, the maximum values found in the present study, may also be caused by other events in rural areas, (e.g. agricultural activities). With regard to neighbourhood residents, odour complaints are more important than pollution by microorganisms.  相似文献   

11.
Aim:  To examine the efficacy of tetra-sodium EDTA in controlling microbial contamination of dental unit water systems (DUWS).
Methods and Results:  Ten dental units were treated once a week with either 4% or 8% tetra-sodium EDTA for four or two consecutive weeks, respectively. Before treatment, 43% and 60% of the water samples from the air/water triple syringe and high-speed hand-pieces, respectively, exceeded the American Dental Association (ADA) guidelines of 200 CFU ml−1 water during a 6-week baseline period. After each weekend treatment, the levels of microbial contamination in all DUWS fell significantly ( P  < 0·001) to below the ADA guideline. By the end of the week, microbial counts in the outflowing water had returned to baseline levels indicating a transient effect of single doses of tetra-sodium EDTA, and the need for multiple applications. The biofilms were virtually eliminated after a single weekend treatment.
Conclusions:  Tetra-sodium EDTA is effective in controlling microbial contamination in DUWS.
Significance and Impact of the Study:  Inexpensive, effective and safe products for reducing the microbial load of water from DUWS are needed to meet ADA and other national guidelines. Tetra-sodium EDTA can significantly reduce microbial biofilms and bacterial counts in outflowing water, and is compatible for use in DUWS.  相似文献   

12.
Bacterial air sampling in an animal care laboratory showed that dense aerosols are generated during cage changing and cage cleaning. Reyniers and Andersen sampling showed that the airborne bacteria numbered 50 to 200 colony-forming units (CFU)/ft3 of air. Of the viable particles collected by Andersen samplers, 78.5% were larger than 5.5 μm. A low velocity laminar air flow system composed of high-efficiency particulate air (HEPA) filters and a ceiling distribution system maintained the number of airborne viable particles at low levels, generally less than 2 CFU/ft3. Vertical air flow of 15 ft/min significantly reduced the rate of airborne infection by a strain of Proteus mirabilis. Other factors shown to influence airborne infection included type of cage utilized, the use of bedding, the distance between cages, and the number of animals per cage.  相似文献   

13.
A study of six child care centers was conducted to assess the microbiological quality of three food contact surfaces (one food serving surface and two food preparation surfaces) and one non-food contact surface (diaper changing surface) to determine the effectiveness of cleaning and sanitization procedures within the facilities. Aerobic plate counts (APCs) and Escherichia coli/coliform counts of 50-cm2 areas on all surfaces were determined using standard microbiological swabbing methods. Samples were taken three times a day (preopening, lunchtime, and following final cleanup) twice per month for 8 months in each child care center (n = 288 sampling times). Mean log APCs over the survey period were 1.32, 1.71, 1.34, 1.96, 1.50, and 1.81 log CFU/50 cm2 for the six centers. Mean log coliform counts were 0.15, 0.40, 0.33, 1.41, 0.28, and 1.12 CFU/50 cm2 for the same centers. Coliforms were detected in 283 of 1,149 (24.7%) samples, with counts ranging from 1 to 2,000 CFU/50 cm2, while E. coli was detected in 18 of 1,149 (1.6%) samples, with counts ranging from 1 to 35 CFU/50 cm2. The findings of this study demonstrated that the extent of bacterial contamination was dependent on the center, time of day, and the area sampled. While no direct correlation between contamination and illness can be made, given the high risk of food-borne illness associated with children, microbial contamination of food contact or non-food contact surfaces is an aspect of food safety that requires more attention. Emphasis on training and the development of modified standard sanitation operating procedures for child care centers are needed to reduce potential hazards.  相似文献   

14.
Improved system for floor cleaning in health care facilities.   总被引:1,自引:1,他引:0       下载免费PDF全文
A new system has been developed for sanitizing floors in hospitals; this system replaces the traditional procedure of daily dusting and wet mopping with a disinfectant-detergent solution and periodic buffing . This new system relies on a sequence of procedures consisting of dust mopping using a chemically treated dust mop, machine buffing of a sprayed-on polymer treatment, and a second dust mopping . The effectiveness of the procedures was evaluated by means of surface sampling for bacterial contamination and air sampling for airborne bacteria and dust. The level of bacterial contamination on the floors was reduced by 93.6% by using the new system, compared with 79.8% by using the conventional process of dust mopping and wet mopping with a disinfectant solution. The levels of airborne bacteria during and after the individual procedures did not vary significantly from the initial level (123.6 CFU/per m3 of air). A survey of representative colonies from air samples revealed staphylococci, gram-positive bacilli, gram-positive diplococci, yeast cells, and infrequent gram-negative rods. The distribution at the conclusion of the sanitizing process was similar to that at the outset. Similarly, the levels of airborne dust measured during and after the individual procedures did not vary significantly from the initial level. When compared with the traditional method of cleaning by wet mopping , the new method was significantly more effective in removal of microbial contamination and required less labor.  相似文献   

15.
Modern dental chair units consist of a network of interconnected narrow-bore plastic tubes called dental unit waterlines (DUWLs). The water delivered by these DUWLs acts as both a coolant for a range of instruments and an irrigant during dental treatments. The quality of water is of considerable importance because both patients and dental team are regularly exposed to water and aerosols generated by dental equipment. Studies have demonstrated that DUWLs provide a favourable environment for microbial proliferation and biofilm formation, and that water is consequently often contaminated with high densities of various microorganisms (bacteria, fungi, protozoa, viruses). The presence of high levels of microbial contamination may be a health problem for dentists and patients, especially those who are immunocompromised. The current status of knowledge on microbial contamination of DUWLs is presented, with an emphasis on the infectious risk associated with DUWLs and on the various approaches for disinfecting and protecting DUWLs.  相似文献   

16.
Understanding the structure of indoor airborne microbial communities could be useful in optimizing conservation and disinfection procedures in archive repositories, preventing the biodeterioration of stored collections. In this study we characterized the microbial air community inside the Archive of the University of Coimbra, by identifying different fungal and bacterial organisms retrieved from air samples. The microbial contamination was determined using conventional culture methods, and the isolates were typified using morphological techniques. Results indicated a low microbial air contamination (107 ± 12 CFU/m3), particularly regarding fungal propagules (6 ± 1 CFU/m3). Fungal isolates were identified using ITS-DNA sequencing. Among fungal isolates, Penicillium was the most frequent genus, and Penicillium griseofulvum was the predominant species. Simpson diversity index (1-D) was applied to phenotypic and genotypic results. Total phenotypic diversity varied from 0.4 to 0.8 and regarding fungal species, the diversity was higher than 0.5. These results were compared with previous analyses of the Archive's air, suggesting that short-term changes in atmospheric conditions may influence the indoor air microbial community structure.  相似文献   

17.
Microbial environmental monitoring represents one of the most useful methods to assess potential risks related to the integrity of cultural heritage and people’s health. The monitoring plan described in the present work is based on standardized techniques for measuring microbial air and surface contamination. Air contamination is assessed through both active and passive samplings, measuring the concentration of microbes in air (in colony forming units per cubic metre, CFU/m3) and the rate at which microorganisms settle on surfaces (expressed by the Index of Microbial Air Contamination, IMA, CFU/dm2/h). For surface contamination, two parameters are measured using nitrocellulose membranes: the Microbial Buildup (MB, the total number of microorganisms accumulated on a surface in an unknown period of time prior to the sampling) and the Hourly Microbial Fallout (HMF, the number of microorganisms that settle on a specific surface during 1 h). The monitoring plan was implemented at the Pilotta Palace in Parma, Italy, during the Correggio exhibition in 2009. Samplings were taken before and during opening times. Some microbial contamination was already detected before the arrival of visitors: air contamination mean values of 99.1 CFU/m3 and 5.2 CFU/dm2/h were recorded, while MB and HMF mean values for surfaces were 92 and 7 CFU/dm2, respectively. A significant increase was recorded in air contamination during opening times, with mean values of 323.7 CFU/m3 and 19.4 CFU/dm2/h; surface contamination values increased as well. This monitoring plan represents a contribution towards the definition of a much needed standardized methodology.  相似文献   

18.
Limited data are currently available on the concentrations of airborne bacteria, fungi, and endotoxins in indoor environments. The levels of aerial bacteria and fungi were measured at several microenvironments within a well-ventilated residential apartment in Singapore including the living room, kitchen, bedroom, toilet, and at a workplace environment by sampling indoor air onto culture medium plates using the 6-stage Andersen sampler. Total microbial counts were determined by collecting the air samples in water with the Andersen sampler, staining the resultant extracts with a fluorescent dye, acridine orange, and counting the microbes using a fluorescent microscope. The levels of airborne endotoxins were also determined by sampling the airborne microorganisms onto 0.4?μm polycarbonate membrane filter using the MiniVol sampler at 5?l/min for 20?h with a PM2.5 cut-off device. The aerial bacterial and fungal concentrations were found to be in the ranges of 117–2,873?CFU/m3 and 160–1,897?CFU/m3, respectively. The total microbial levels ranged from 49,000 to 218,000?microbes/m3. The predominant fungi occurring in the apartment were Aspergillus and Penicillium while the predominant bacterial strains appeared to be Staphylococcus and Micrococcus. The average indoor endotoxin level was detectable in the range of 6–39?EU/m3. The amount of ventilation and the types of human activities carried out in the indoor environment appeared to be important factors affecting the level of these airborne biological contaminants.  相似文献   

19.
Totally 341 outdoors air samples were taken by Casella Airborne Sampler at a height of 7 m in the Allergy Centre of Kuwait between 1986 and 1988. Bacillus was detected in 85.3% of the samples. Micrococcus (71.3%), Staphylococcus albus (65.4%). Gram-positive rods (53.4%) were more prevalent than gram-negative rods (23.7%). Higher counts were seen in 1986 (500 CFU m?3) compared to 1987 (407 CFU m?3) and 1988 (369 CFU m?3). Relatively higher counts were seen in August and September and a smaller peak was found in February and March. The correlation between the various types was always positive and was frequently highly significant. High counts were seen with strong winds. Among the meteorological factors, wind speed was the only significant factor. High average of bacteria counts were found when winds were blowing from the land (574 CFU m?3) compared with the sea (346.5 CFU m?3). Higher average counts were observed in the days with sand storms (1769 CFU m?3), with rising sand (534.8 CFU m?3) and the other days with dust phenomena, compared with clear weather (317 CFU m?3).  相似文献   

20.
Microbiological aerosols were measured on a spray irrigation site at Fort Huachuca, Ariz. Indigenous bacteria and tracer bacteriophage were sampled from sprays of chlorinated and unchlorinated secondary-treatment wastewaters during day and night periods. Aerosol dispersal and downwind migration were determined. Bacterial and coliphage f2 aerosols were sampled by using Andersen viable type stacked-sieve and high-volume electrostatic precipitator samplers. Bacterial standard plate counts averaged 2.4 x 10(5) colony-forming units per ml in unchlorinated effluents. Bacterial aerosols reached 500 bacteria per m3 at 152 m downwind and 10,500 bacteria per m3 at 46m. Seeded coliphage f2 averaged 4.0 x 10(5) plaque-forming units per ml in the effluent and were detected 563 m downwind. Downwind microbial aerosol levels were somewhat enhanced by nighttime conditions. The median aerodynamic particle size of the microbial aerosols was approximately 5.0 micrometer. Chlorination reduced wastewater bacterial levels 99.97% and reduced aerosol concentrations to near background levels; coliphage f2 was reduced only 95.4% in the chlorinated effluent and was readily measured 137 m downwind. Microbiological source strength an meteorological data were used in conjunction with a dispersion model to generate mathematical predictions of aerosol strength at various sampler locations. The mean calculated survival of aerosolized bacteria (standard plate count) in the range 46 to 76 m downwind was 5.2%, and that of coliphage f2 was 4.3 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号