首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The effects of magnesium and manganese in the initiation and elongation steps of the RNA polymerase I reaction in RNA synthesis were studied. For RNA chain initiation manganese was found to be a better effector than magnesium. For RNA chain elongation either manganese or magnesium acted as an effector, but a high concentration of manganese was inhibitory.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Functional architecture of T7 RNA polymerase transcription complexes   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.  相似文献   

15.
We previously reported that RNA polymerase II (purified from wheat germ) is inhibited by selenotrisulfides, the products of the reaction of selenite with sulfhydryl compounds [Frenkel, Walcott, and Middleton, Molecular Pharmacology 31, 112 (1987)]. We have now found that the initiation stage of the reaction is inhibited by selenotrisulfide but the elongation stage of the reaction is not. The actual start of the RNA chain is not inhibited by the selenotrisulfide, but rather the formation of the enzyme-DNA binary complex. Selenotrisulfide has a similar differential effect on initiation and elongation by RNA polymerase II from HeLa cells; in contrast, with E. coli RNA polymerase, it inhibits elongation as well.  相似文献   

16.
17.
18.
19.
20.
Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号