首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human cholesteryl ester transfer protein (CETP) facilitates the exchange of neutral lipids among lipoproteins. In order to evaluate the effects of increased plasma CETP on lipoprotein levels, a human CETP minigene was placed under the control of the mouse metallothionein-I promoter and used to develop transgenic mice. Integration of the human CETP transgene into the mouse genome resulted in the production of active plasma CETP. Zinc induction of CETP transgene expression caused depression of serum cholesterol due to a significant reduction of high density lipoprotein cholesterol. There was no change in total cholesterol content in very low and low density lipoproteins. However, there was a decrease in the free cholesterol/cholesteryl ester ratio in plasma and in all lipoprotein fractions of transgenic mouse plasma, suggesting stimulation of plasma cholesterol esterification. The results suggest that high levels of plasma CETP activity may be a cause of reduced high density lipoproteins in humans.  相似文献   

2.
A protein catalyzing the exchange of cholesteryl esters among the lipoproteins was found in human plasma. A rapid method for assaying this activity was developed based on the transfer of radioactive cholesteryl esters from low density lipoprotein with MnCl2 in the presence of phosphate. Fractionation of plasma through a combination of ammonium sulfate precipitation, ultracentrifugation at p = 1.25, and chromatography on Phenyl-Sepharose, CM-cellulose, and concanavalin A-Sepharose, yielded a preparation purified 3500-fold compared to the starting plasma. The exchange protein was found to be a glycoprotein with an isoelectric point of 5 and apparent molecular weight of 80 000. On the basis of these properties and its immunological characteristics the exchange protein was judged to be distinct from any of the known apolipoproteins. This protein could also be separated from plasma phosphatidylcholine cholesterol acyl-transferase on DEAE-cellulose. The exchange protein did not appear to influence cholesterol esterification in lipoproteins by phosphatidylcholine cholesterol acyl-transferase, and the latter had no effect on the transfer of low density lipoprotein cholesteryl esters to high density lipoprotein. The exchange protein did not esterify cholesterol or hydrolyze cholesteryl esters in lipoproteins.  相似文献   

3.
Plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to apolipoprotein B-containing lipoproteins. Since CETP regulates the plasma levels of HDL cholesterol and the size of HDL particles, CETP is considered to be a key protein in reverse cholesterol transport, a protective system against atherosclerosis. CETP, as well as plasma phospholipid transfer protein, belongs to members of the lipid transfer/lipopolysaccharide-binding protein (LBP) gene family, which also includes the lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein. Although these four proteins possess different physiological functions, they share marked biochemical and structural similarities. The importance of plasma CETP in lipoprotein metabolism was demonstrated by the discovery of CETP-deficient subjects with a marked hyperalphalipoproteinemia (HALP). Two common mutations in the CETP gene, intron 14 splicing defect and exon 15 missense mutation (D442G), have been identified in Japanese HALP patients with CETP deficiency. The deficiency of CETP causes various abnormalities in the concentration, composition, and functions of both HDL and low density lipoprotein. Although the pathophysiological significance of CETP in terms of atherosclerosis has been controversial, the in vitro experiments showed that large CE-rich HDL particles in CETP deficiency are defective in cholesterol efflux. Epidemiological studies in Japanese-Americans and in the Omagari area where HALP subjects with the intron 14 splicing defect of CETP gene are markedly frequent, have shown an increased incidence of coronary atherosclerosis in CETP-deficient patients. The current review will focus on the recent findings on the molecular biology and pathophysiological aspects of plasma CETP, a key protein in reverse cholesterol transport.  相似文献   

4.
The present studies characterize the turnover of plasma membrane cholesterol in MA-10 Leydig tumour cells. Plasma membrane cholesterol of MA-10 cells was slowly internalized and converted into cholesteryl ester. Low-density lipoprotein (LDL) stimulated, in a dose- and time-dependent fashion, plasma membrane cholesterol conversion into intracellular esters. Stimulation of membrane internalization was not simply the consequence of accelerated uptake of membrane with LDL, since binding and internalization of epidermal growth factor and transferrin had no effect on turnover of plasma membrane cholesterol. The protein of LDL is unimportant as well, since delipidated LDL had no effect on membrane turnover. The action of LDL on cholesterol turnover was explained entirely by its contribution to cholesteryl ester stores. The degree of plasma membrane cholesterol internalization and esterification was directly proportional to the size of cellular ester stores.  相似文献   

5.
High plasma triacylglycerol and low high-density lipoprotein levels are risk factors for cardiovascular disease in diabetes. Plasma high-density lipoprotein levels are regulated by cholesterol ester transfer protein (CETP). The regulation of CETP under diabetic conditions is not clear, and this is due to a lack of appropriate models. We used transgenic mice expressing human CETP to study the regulation of this protein under type-1 diabetic conditions and further investigated whether insulin reverses the effect of diabetes. Mice expressing human CETP under the control of its natural flanking region and age-matched littermates not expressing this protein were made diabetic by injecting streptozotocin, and the reversal of diabetes was assessed by injecting insulin. The plasma total cholesterol, low-density lipoprotein-cholesterol, and triacylglycerol concentrations were elevated, whereas high-density lipoprotein-cholesterol concentrations were reduced after the onset of diabetes. Insulin injection partially recovered this effect. The plasma cholesterol ester transfer activity, CETP mass, and hepatic CETP mRNA abundance were significantly higher in diabetic mice that were partially restored by insulin administration. There was a strong correlation between high-density lipoprotein-cholesterol concentrations and cholesterol ester transfer activity. These results suggest that an increase in CETP under diabetic conditions might be a major factor responsible for increased incidence of diabetes-induced atherosclerosis.  相似文献   

6.
Male Syrian hamsters were fed 0.02, 0.03, or 0.05% cholesterol to test the hypothesis that moderate cholesterol intake increases the cholesteryl ester content of the plasma low-density lipoproteins (LDL). Dietary cholesterol levels of 0.02%-0.05% were chosen to reflect typical human intakes of cholesterol. Hamsters were fed ad libitum a cereal-based diet (modified NIH-07 open formula) for 15 weeks. Increasing dietary cholesterol from 0.02% to 0.05% resulted in significantly increased plasma LDL and high-density lipoprotein cholesterol concentration, increased liver cholesterol concentration, and increased total aorta cholesterol content. The cholesteryl ester content of plasma LDL was determined as the molar ratio of cholesteryl ester to apolipoprotein B and to surface lipid (i.e., phospholipid + free cholesterol). Increasing dietary cholesterol from 0.02% to 0.05% resulted in significantly increased cholesteryl ester content of LDL particles. Furthermore, cholesteryl ester content of LDL was directly associated with increased total aorta cholesterol, whereas a linear relationship between plasma LDL cholesterol concentration and aorta cholesterol was not observed. Thus, the data suggest that LDL cholesteryl ester content may be an important atherogenic feature of plasma LDL.  相似文献   

7.
PURPOSE OF REVIEW: Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipoprotein metabolism. It is thus vital to understand their pathophysiology and determine which factors influence their functioning in type 2 diabetes. RECENT FINDINGS: Cholesteryl ester transfer protein-mediated transfer is increased in diabetic patients and contributes to low plasma high-density lipoprotein cholesterol levels. Apolipoproteins A-I, A-II and E are components of the donor lipoprotein particles that participate in the transfer of cholesteryl esters from high-density lipoprotein to apolipoprotein B-containing lipoproteins. Current evidence for functional roles of apolipoproteins C-I, F and A-IV as modulators of cholesteryl ester transfer is discussed. Phospholipid transfer protein activity is increased in diabetic patients and may contribute to hepatic very low-density lipoprotein synthesis and secretion and vitamin E transfer. Apolipoprotein E could stimulate the phospholipid transfer protein-mediated transfer of surface fragments of triglyceride-rich lipoproteins to high-density lipoprotein, and promote high-density lipoprotein remodelling. SUMMARY: Both phospholipid and cholesteryl ester transfer proteins are important in very low and high-density lipoprotein metabolism and display concerted actions in patients with type 2 diabetes.  相似文献   

8.
The effects of cholestyramine and of clofibrate on the turnover rates of individual cholesteryl esters in whole human plasma and in each of the three classes of plasma lipoproteins have been studied. Four hyperlipidemic patients (two under treatment with each of the two drugs) were injected intravenously with cholesterol-(14)C, and serial plasma samples were collected after 3-4 hr, 8 hr, 24 hr, and 4-5 days. The plasma samples were separated into three classes of lipoproteins by ultracentrifugation. The cholesteryl esters and free cholesterol were isolated from each sample, and the specific radioactivity of the free and esterified cholesterol was determined. The specific radioactivity of each individual cholesteryl ester was then determined for each sample, by separately measuring the distribution of cholesterol mass and of radioactivity among four different cholesteryl ester groups, namely the saturated, mono-, di-, and tetra-unsaturated esters. In all subjects the plasma cholesteryl esters were metabolically heterogeneous, and could be divided into three pools corresponding to the three classes of plasma lipoproteins. High density lipoprotein (d > 1.063) cholesteryl esters showed the greatest fractional turnover rate, and low density lipoprotein (d 1.019-1.063) cholesteryl esters showed the smallest fractional turnover rate. In each subject the cholesteryl ester composition of the three classes of plasma lipoprotein was almost identical. Within each lipoprotein, and in whole plasma, all the different individual cholesteryl esters were found to turn over at the same fractional rate. In all respects these results were similar to those previously obtained with normal subjects. The results suggest that neither drug has a strongly selective effect on the turnover of one particular cholesteryl ester, or on the turnover or composition of the cholesteryl esters in one particular plasma lipoprotein.  相似文献   

9.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

10.
The hydrolysis of cholesteryl esters contained in plasma low density lipoprotein was reduced in cultured fibroblasts derived from a patient with cholesteryl ester storage disease, an inborn error of metabolism in which lysosomal acid lipase activity is deficient. While these mutant cells showed a normal ability to bind low density lipoprotein at its high affinity cell surface receptor site, to take up the bound lipoprotein through endocytosis, and to hydrolyze the protein component of the lipoprotein in lysosomes, their defective lysosomal hydrolysis of the cholesteryl ester component of the lipoprotein led to the accumulation within the cell of unhydrolyzed cholesteryl esters, the fatty acid distribution of which resembled that of plasma lipoprotein. When the cholesteryl ester storage disease cells were incubated with low density lipoprotein, the reduced rate of liberation of free cholesterol by these mutant cells was associated with a delay in the occurrence of two lipoprotein-mediated regulatory events, suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and activation of endogenous cholesteryl ester formation. In contrast to their defective hydrolysis of exogenously derived lipoprotein-bound cholesteryl esters, the choleseryl ester storage disease cells showed a normal rate of hydrolysis of cholesteryl esters that had been synthesized within the cell. These data lend support to the concept that in cultured human fibroblasts cholesteryl esters entering the cell bound to low density lipoprotein are hydrolyzed within the lysosome and that one of the functions of this intracellular organelle is to supply the cell with free cholesterol.  相似文献   

11.
Diets rich in polyunsaturated fatty acids lower plasma HDL cholesterol concentrations when compared to diets rich in saturated fatty acids. We investigated the mechanistic basis for this effect in the hamster and sought to determine whether reduced plasma HDL cholesterol concentrations resulting from a high polyunsaturated fat diet are associated with a decrease in reverse cholesterol transport. Animals were fed semisynthetic diets enriched with polyunsaturated or saturated fatty acids for 6 weeks. We then determined the effect of these diets on the following parameters: 1) hepatic scavenger receptor B1 (SR-BI) mRNA and protein levels, 2) the rate of hepatic HDL cholesteryl ester uptake, and 3) the rate of cholesterol acquisition by the extrahepatic tissues (from de novo synthesis, LDL and HDL) as a measure of the rate of reverse cholesterol transport. Compared to saturated fatty acids, dietary polyunsaturated fatty acids up-regulated hepatic SR-BI expression by approximately 50% and increased HDL cholesteryl ester transport to the liver; as a consequence, plasma HDL cholesteryl ester concentrations were reduced. Although dietary polyunsaturated fatty acids increased hepatic HDL cholesteryl ester uptake and lowered plasma HDL cholesterol concentrations, there was no change in the cholesterol content or in the rate of cholesterol acquisition (via de novo synthesis and lipoprotein uptake) by the extrahepatic tissues.These studies indicate that substitution of polyunsaturated for saturated fatty acids in the diet increases SR-BI expression and lowers plasma HDL cholesteryl ester concentrations but does not affect reverse cholesterol transport.  相似文献   

12.
Previously, we isolated and characterized unique liposomal-like, cholesterol-rich lipid particles that accumulate in human atherosclerotic lesions. Human plasma low density lipoprotein (LDL) has a molar ratio of total cholesterol to phospholipid (3:1) similar to that of this lesion cholesterol-rich lipid particle. However, LDL is enriched in cholesteryl ester while the lesion lipid particle is enriched in unesterified cholesterol. To examine a possible precursor-product relationship between LDL and the lesion lipid particle, we hydrolyzed the cholesteryl ester core of LDL with cholesterol esterase. Cholesteryl ester hydrolysis occurred only after LDL was treated with trypsin. Trypsin pretreatment was not required for cholesteryl ester hydrolysis of LDL oxidized with copper, a treatment that also degrades apolipoprotein B, the major protein moiety in LDL. In contrast to greater than 90% hydrolysis of cholesteryl ester in trypsin-cholesterol esterase-treated or copper-oxidized LDL, there was only 18% hydrolysis of cholesteryl ester in similarly treated high density lipoprotein. With a limited 10-min hydrolysis of LDL cholesteryl ester, LDL-sized particles and newly formed larger flattened films or discs were present. With complete hydrolysis of LDL cholesteryl ester, LDL particles converted to complex multilamellar, liposomal-like, structures with sizes approximately five times larger than native LDL. These liposomal-like particles derived from LDL were chemically and structurally similar to unesterified cholesterol-rich lipid particles that accumulate in atherosclerotic lesions.  相似文献   

13.
Optimally effective lipid-lowering agents should not only restore plasma lipids to normal levels but also correct potentially atherogenic alterations in lipoprotein composition and function often present in hyperlipidemic patients. Lovastatin, a competitive inhibitor of cholesterol biosynthesis, clearly lowers plasma cholesterol levels. Its effects on lipoprotein composition and cholesteryl ester transfer (CET), a key step in reverse cholesterol transport, however, are not known. Since abnormalities in CET and lipoprotein composition are present in patients with hypercholesterolemia, we studied these parameters of plasma lipoprotein transport in twelve hypercholesterolemic (HC; Type IIa) subjects (six male, six female) before and 2 months after lovastatin treatment (20 mg qd). Before lovastatin, the free cholesterol (FC)/lecithin (L) ratio in plasma, a new index of cardiovascular risk that reflects lipoprotein surface composition, was abnormally increased (1.18 +/- 0.26 vs controls 0.83 +/- 0.14; P less than 0.001) in very low density lipoproteins (VLDL) and high density lipoprotein-3 (HDL3), and remained so after treatment despite significant declines in whole plasma cholesterol (311.7 +/- 68.2 vs 215.6 +/- 27.2 mg/dl; P less than 0.001), low density lipoprotein (LDL)-cholesterol (206.3 +/- 47.9 vs 146.8 +/- 29.4; P less than 0.001), and apolipoprotein B (149 +/- 30 vs 110 +/- 17; P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Carboxyl ester lipase (CEL, also called cholesterol esterase or bile salt-dependent lipase) is a lipolytic enzyme capable of hydrolyzing cholesteryl esters, triacylglycerols, and phospholipids in a trihydroxy bile salt-dependent manner but hydrolyzes ceramides and lysophospholipids via bile salt-independent mechanisms. Although CEL is synthesized predominantly in the pancreas, a low level of CEL expression was reported in human macrophages. This study used transgenic mice with macrophage CEL expression at levels comparable with that observed in human macrophages to explore the functional role and physiological significance of macrophage CEL expression. Peritoneal macrophages from CEL transgenic mice displayed a 4-fold increase in [(3)H]oleate incorporation into cholesteryl [(3)H]oleate compared with CEL-negative macrophages when the cells were incubated under basal conditions in vitro. When challenged with acetylated low density lipoprotein, cholesteryl ester accumulation was 2.5-fold higher in macrophages expressing the CEL transgene. The differences in cholesteryl ester accumulation were attributed to the lower levels of ceramide and lysophosphatidylcholine in CEL-expressing cells than in CEL-negative cells. CEL transgenic mice bred to an atherosclerosis susceptible apoE(-/-) background displayed an approximate 4-fold higher atherosclerotic lesion area than apoE(-/-) mice without the CEL transgene when both were fed a high fat/cholesterol diet. Plasma level of the atherogenic lysophosphatidylcholine was lower in the CEL transgenic mice, but plasma cholesterol level and lipoprotein profile were similar between the two groups. These studies documented that CEL expression in macrophages is pro-atherogenic and that the mechanism is because of its hydrolysis of ceramide and lysophosphatidylcholine in promoting cholesterol esterification and decreasing cholesterol efflux.  相似文献   

15.
The role of human plasma cholesteryl ester transfer protein (CETP) in the cellular uptake of high density lipoprotein (HDL) cholesteryl ester (CE) was studied in a liver tumor cell line (HepG2). When HepG2 cells were incubated with [3H]cholesteryl ester-labeled HDL3 in the presence of increasing concentrations of CETP there was a progressive increase in cell-associated radioactivity to levels that were 2.8 times control. The CETP-dependent uptake of HDL-CE was found to be saturated by increasing concentrations of both CETP and HDL. The CETP-dependent uptake of CE radioactivity increased continuously during an 18-h incubation. In contrast to the effect on cholesteryl ester, CETP failed to enhance HDL protein cell association or degradation. Enhanced uptake of HDL cholesteryl ester was shown for the d greater than 1.21 g/ml fraction of human plasma, partially purified CETP, and CETP purified to homogeneity, but not for the d greater than 1.21 g/ml fraction of rat plasma which lacks cholesteryl ester transfer activity. HDL cholesteryl ester entering the cell under the influence of CETP was largely degraded to free cholesterol by a process inhibitable by chloroquine. CETP enhanced uptake of HDL [3H]CE in cultured smooth muscle cells and to a lesser extent in fibroblasts but did not significantly influence uptake in endothelial cells or J774 macrophages. These experiments show that, in addition to its known role in enhancing the exchange of CE between lipoproteins, plasma CETP can facilitate the in vitro selective transfer of CE from HDL into certain cells.  相似文献   

16.
Little or no information is available on biologically valid labeling of hypercholesterolemic plasma lipoproteins with cholesteryl ester. The esterification of labeled unesterified cholesterol in hypercholesterolemic rabbit plasma by the lecithin: cholesterol acyltransferase reaction is inefficient. The use of the d > 1.063 plasma fraction for this reaction greatly improves the efficiency, but some labeled unesterified cholesterol remains in the end products. The latter disadvantage can be avoided by the addition to whole plasma of labeled cholesteryl ester dissolved in DMSO or acetone. However, in hypercholesterolemic rabbit plasma only a small fraction of the added cholesteryl ester was associated with lipoproteins. When phosphatidylcholine/ cholesteryl ester liposomes were incubated with hypercholesterolemic rabbit plasma for 18–24 h at 37°C the labeled cholesteryl ester was quantitatively incorporated into lipoproteins. Chylomicron-like, cholesteryl ester-rich particles were removed by centrifugation (106g · min) and the subsequently isolated d < 1.019 and d = 1.019–1.063 (LDL) fractions were injected intravenously into normal and hypercholesterolemic rabbits. The disappearance of d < 1.019 and LDL cholesteryl ester and the appearance of cholesteryl ester in other lipoprotein fractions was indistinguishable from that of in vivo-labeled lipoproteins. In vivo and in vitro cholesteryl ester-labeled lipoproteins were also compared by measuring the exchangeability of their cholesteryl ester with HDL cholesteryl ester in vitro. Equal exchangeability of the two labels was observed in the d < 1.019 fraction from which the chylomicron-like particles had been removed. These findings demonstrate that when cholesteryl ester is incorporated by the liposome procedure, the distribution of labeled cholesteryl ester within the lipoprotein complex corresponds closely to that of the in vivo-incorporated labeled cholesteryl ester.  相似文献   

17.
18.
We have investigated the effects of substituting lipoprotein depleted serum (LPDS) for normal fetal calf serum (FCS) in culture media on cholesterol ester concentrations and the activity of the ester hydrolases in cultured glioblastoma (C-6 glial) cells. Glial cells grown in media supplemented with 10% FCS contained 16–23% of total cholesterol as esterified sterol. Total sterol content of the cells cultured in media supplemented with LPDS was reduced by 55–75% as compared to cells cultured in FCS media and none of this sterol was in esterified form. Cholesterol ester hydrolase activity was maximal at pH values of 4.5 and 6.5 and required Triton X-100 for optimal activity. Cholesterol ester hydrolase activity at pH 4.5 was significantly higher in cells grown in FCS media than in cells cultured in LPDS media, but the activity at pH 6.5 was not significantly different. The protein: DNA ratio of cells cultured in FCS was higher than in cells cultured in LPDS. These findings indicate that the increase in cholesterol ester concentrations in cells is accompanied by increased activity of lysosomal cholesterol ester hydrolase; and suggest that, in cells cultured in FCS, the availability of free cholesterol for incorporation into cellular membranes is regulated by cholesterol ester hydrolase. The findings also indicate that changes in growth and differentiation of cells cultured in LPDS may be related to reduced availability of exogenous cholesterol.  相似文献   

19.
The distribution of apolipoprotein A-I, apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein in fasting normal human plasma was determined by two-dimensional electrophoresis followed by immunoblotting. The synthesis and transfer of labeled cholesteryl esters generated in plasma briefly incubated with [3H]cholesterol-labeled fibroblasts was followed in terms of the lipoprotein species containing these antigens. Following the early appearance of labeled free cholesterol in two pre beta-migrating apolipoprotein A-I species (Castro, G. R., and Fielding, C. J. (1988) Biochemistry 27, 25-29), labeled esters were first detected, after a 2-min delay, in a third pre beta-migrating species which also contained apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein. Pulse-chase experiments determined that label generated in this fraction was the precursor of at least a major part of labeled cholesteryl esters in the bulk of alpha-migrating high density lipoprotein. Over the maximum time course of these experiments (15 min, 37 degrees C), less than 10% of labeled cholesteryl esters were recovered in low or very low density lipoproteins separated by electrophoresis, immunoaffinity, or heparin-agarose chromatography. These data suggest channeling of cell-derived cholesterol and cholesteryl esters derived from it through a preferred pathway involving several minor pre beta-migrating lipoproteins to alpha-migrating high density lipoprotein.  相似文献   

20.
Sertoli cells and germ cells are separated from the interstitial blood capillaries by an extracellular matrix and the peritubular cells, which constitute a barrier to the movement of plasma lipoproteins. The present study was undertaken to evaluate in vivo and in vitro the high density lipoprotein (HDL) cholesteryl ester transfer from plasma to seminiferous tubule cells in the testis of 30-day-old rats. Firstly, the transfer of HDL cholesteryl oleate from plasma to testicular compartments was evaluated and, secondly, the role of apolipoproteins A-I and E in the uptake of cholesteryl ester by Sertoli cells was investigated. At 2 h after the administration of HDL reconstituted with [3H]cholesteryl ester, dimyristoyl phosphatidylcholine and apolipoproteins, the tissue space in the interstitial cells (740 +/- 60 microliters g-1 cell protein) was fourfold higher than that in the seminiferous tubule cells (170 +/- 10 microliters g-1). Sertoli cells were isolated and incubated with [3H]cholesteryl ester HDL reconstituted with apolipoprotein A-I or E to evaluate the mechanisms of cholesteryl ester influx. At the same apolipoprotein concentration (50 micrograms apolipoprotein ml-1 medium), the uptake of [3H]cholesteryl oleate from phospholipid-apolipoprotein E vesicles was twofold higher than that with phospholipid-apolipoprotein A-I vesicles. The presence of heparin reduced the uptake of cholesteryl ester from apolipoprotein E vesicles but not with apolipoprotein A-I vesicles, indicating that uptake of apolipoprotein A-I vesicles via a secretion of apolipoprotein E by the cells themselves was not involved. These results demonstrate that plasma lipoprotein cholesterol is able to cross the testis lamina propria and that Sertoli cells take up cholesteryl ester for seminiferous tubule cell metabolism mainly via an apolipoprotein E pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号