首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to compare whole plant growth and physiological responses to salt stress of two Acacia nilotica subspecies (ssp. cupressiformis and ssp. tomentosa ). Salt stress was induced by adding NaCl at different concentrations to the nutrient solution: 0, 75, 100 and 200 m M . After one month under such stress, plants were still healthy and actively growing in both subspecies up to 100 m M NaCl. Water potential (Ψ) and osmotic potential (π) decreased with salinity and the lower π enabled the plants to maintain turgor. Höfler diagrams confirmed that osmotic adjustment had occurred under all treatments. Furthermore, the point of zero turgor occurred at a higher relative water content. An increase in the elastic modulus (ɛ) was observed under stress (low elasticity of the cell wall). Both osmotic adjustment and a high ɛ modified the capacity of both subspecies to maintain a positive water balance. Accumulation of ions (Na+, K+ and Cl) and proline could explain such osmotic adjustment. Acacia nilotica ssp. cupressiformis showed a higher absorption of K+ than ssp. tomentosa up to 100 m M NaCl treatment.  相似文献   

2.
Light enhanced the abscisic acid‐induced accumulation of proline in barley ( Hordeum vulgare L. cv. Georgie) and wheat ( Triticum durum L. cv. Valnova). In wheat ABA is ineffective in the dark. In both barley and wheat, the accumulation of proline in the light showed the same characteristics as those of the process that occurs in barley in the dark, namely a synergistic interaction between the hormone and K(Na)Cl, an enhancing effect of Cl anion in excess over K+ cation in the incubation medium, and an inhibiting effect of D ‐mannose and monensine. In wheat, furthermore, light is needed during treatment with ABA if proline is to accumulate. Light was effective in both wheat and barley during the second or accumulation phase of the hormonal process, whereas the events occurring in the first (or lag) phase did not require light. The results suggest that in wheat light induces a putative factor(s) involved in the proline accumulation pathway that is lost in the dark, whereas in barley it is present in the dark.  相似文献   

3.
Intact internodal cells of Chara are known to maintain their osmotic pressures at constant levels in artificial pond water at room temperature. Cell fragments with osmotic pressures higher and those cell fragments with osmotic pressures lower than the original, both of which are prepared from intact internodal cells using transcellular osmosis and ligation with threads, can also return their osmotic pressures to the original level within a week in artificial pond water. These regulatory phenomena are realized mainly by extrusion of K+ and Cl in the cytoplasm and/or vacuole or by absorption of K+ and Cl from the external solution. According to the electrochemical potential difference calculated for K+ between the vacuole and the external solution, the cells should be able to maintain these regulatory functions even in 50–100 m M KCl+ 1 m M CaCl2 solutions. However, novel phenomena were observed when they were immersed in such concentrated KCl solutions. To maintain electroneutrality, their osmotic pressures increased up to ca l MPa in 2 days due to absorption of K+ and Cl and many gradually died over time. Ionic and osmotic reguratory functions of Chara cells were lost when they were immersed in 50–100 m M K-salt solutions containing 1 m M Ca2+.  相似文献   

4.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

5.
The response of Suaeda aegyptiaca (Hasselq.) Zoh. to various salinity treatments was tested in sand culture. Growth was promoted by NaCl and by Na2SO4 at all tested concentrations, but not by KCl. The effect of NaCl on growth was stronger than that of Na2SO4 and it increased gradually up to a 125 eq. m−3 optimum. Ion uptake was also affected by the different salts. Cl was taken up in similar quantities from KCl and from NaCl solutions and the content of the respective cations was also similar to one another. The presence of Na+ in the medium lowered the content of K+ in the plants and at the same time increased growth by as much as 900%. Transpiration was reduced and water use efficiency increased by Na+-salts. Highest water use efficiency was exhibited by plants which were treated with 125 eq. m−3 NaCl. It is concluded that Na+ at the macronutrient level has a specific promotive effect on the physiological processes of S. aegyptiaca. This effect is not due to replacement of K+ by Na+; neither can it be achieved by increasing the K+ concentration. Cl has an additional positive effect on growth of S. aegyptiaca. This effect is only expressed in the presence of Na+.  相似文献   

6.
Many plants accumulate proline as a non-toxic and protective osmolyte under saline or dry conditions. Its accumulation is caused by both the activation of its biosynthesis and inactivation of its degradation. We report here on the alterations induced by water and salt stress in the proline metabolism and amino acid content of 5-day-old seedlings of Triticum durum cv. Simeto. Most of the amino acids showed an increase with the induction of either stress, but proline increased more markedly than did other amino acids. We also measured the activities of two enzymes, Δ1-pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2) and proline dehydrogenase (EC 1.5.1.2), which are involved in proline biosynthesis and catabolism, respectively. The activity of P5C reductase was enhanced during both water and salt stress, while proline dehydrogenase was inhibited only during salt stress. The results indicate that synthesis de novo is the predominant mechanism in proline accumulation in durum wheat. Use of a cDNA clone that encodes P5C-reductase from Arabidopsis thaliana , showed no differences in the gene expression between controls and stressed plants, implying that the increase in enzyme activity is unrelated to the expression of this gene.  相似文献   

7.
Abstract Washed cells of Rhodopseudomonas sphaeroides forma sp. denitrificans , grown under photodenitrifying conditions, exhibited K+ uptake dependent on the transmembrane proton gradient (Δ pH). These cells also acidified the suspension medium in response to K+ pulses both aerobically and anaerobically in light and in the dark. The results indicate that the photodenitrifier has a reversible K+/H+ exchange activity which reflects its role in regulating the intracellular K+ concentration, as well as intracellular pH. The acidification of the external medium resulting from K+ pulses was inhibited by carbonyl cyanide- m -chlorophenylhydrazone (CCCP) indicating that the antiporter is energy-dependent. Addition of KCl to washed cells depolarized the membrane potential (Δψ) with a concomitant increase in ΔpH, indicating that the K+/H+ antiporter was electrogenic.  相似文献   

8.
Processing tomato ( Lycopersicon esculentum Mill. cv. UC82B) plants were subjected to moderate levels of water deficit and salinity (Na2SO4/CaCl2) in sand culture. Fruit water content and the relative contributions of organic and inorganic constituents to fruit solute potential (Ψ) and soluble solids content were determined throughout development. Fruit Ψ averaged –0.63, –0.86 and –0.77 MPa in the control, salinity and water deficit plants, respectively. Reduced net water import and maintenance of solute accumulation, irrespective of water import, accounted for the reductions in Ψ of stressed fruits. Mineral ions (Na+, K+, Ca2+, Mg2+, Cl and SO2-4) contributed –0.31 MPa to Ψ in salinized fruit, compared with –0.19 MPa in control and water deficit treatments. Changes in net carbon accumulation were not observed among treatments, despite considerable differences in fruit K+ status. Starch accumulation in immature fruit was increased and hexose accumulation was decreased by both salinity and water deficit. Maximum starch levels were negatively correlated with total fruit Ψ, but were independent of fruit K+. Organic acid levels were generally higher throughout development in salinized plants, relative to control plants, and correlated with increased inorganic cation rather than anion accumulation in these fruits.  相似文献   

9.
Abstract A number of obligately anaerobic chemoorganotrophic moderately halophilic bacteria have been isolated from the bottom sediments of the Dead Sea and the Great Salt Lake, Utah: (1) Halobacteroides halobius , a long motile rod from the Dead Sea, fermenting sugars to ethanol, acetate, H2 and CO2; (2) Clostridium lortetii , a rod-shaped bacterium from the Dead Sea, producing endospores with attached gas vacuoles; (3) a spore-forming motile rod-shaped bacterium, fermenting sugars, isolated from the Dead Sea; (4) Haloanaerobium praevalens , isolated from the Great Salt Lake, fermenting carbohydrates, peptides, amino acids and pectin to acetate, propionate, butyrate, H2 and CO2.
Analysis of their 16S rRNA shows that these organisms are related to each other, but unrelated to any of the other subgroups of the eubacterial kingdom, to which they belong.
Ha. praevalens and Hb. halobius regulate their internal osmotic pressure by the accumulation of salt (Na+, K+, Cl) rather than by organic osmotic solutes.  相似文献   

10.
A stimulation of the abscisic acid (ABA)-induced increase in proline was observed in leaf segments of barley ( Hordeum vulgare L. cv. Georgie) if K+ or Na+ were supplied in the external medium as salts of monovalent anions such as NO3, Br, Cr and I, but not when sulphate or phosphate were used. To a lesser extent, the effect was evident also with RbCl, but it did not occur when chlorides of Li+. Cs+, NH4+, Mg:+ and Ca2+ were used. Both KC1 and NaCl in the concentration range 2–100 m M influence the ABA-dependent proline accumulation to the same extent; the increase induced was about 100% at 10 m M , and reached a maximum between 60 and 100 m M. The effect is not due to the osmotic activity of the salts and does not seem to depend on changes in K+ and Na+ levels within the leaf tissue, but it is somehow linked to their external concentration. The existence of a specific interaction between ABA and K+ or Na+, possibly at the cell membrane level, is proposed.  相似文献   

11.
Channel catfish, Ictalurus punctatus Rafinesque, injected intraperitoneally with 2-methyl-quinoline sulphate (QdSO4) or 3-trifluoromethyl-4-nitrophenol (TFM) eliminate most of the dose of these compounds by extra-renal routes. Patterns of renal excretion of Na+, K+, Ca2+, Mg2+, and Cl (ρEq kg−1 h−1) appeared to be associated with the 'stress' of the urine collection technique rather than with the elimination of either compound. Concentrations of Na+, K+, Ca2+, Mg2+, and Cl (mEq/1) were determined in urine, plasma and gall bladder bile.  相似文献   

12.
Abstract Unidirectional fluxes of Na+, Cl and 3-O-methyl-D-glucose (3-MG) were measured in vitro across Campylobacter jejuni live culture-infected and control rat ileal short-circuited tissues by the Using Chamber technique. Net secretion of Na+ and enhanced secretion of Cl ions was observed in the infected animals ( P < 0.001, n =6) as compared to the net absorption of Na+ and marginal secretion of Cl ions in the control animals. There was a significant decrease in the mucosal-to-serosal fluxes of 3-MG in C. jejuni -infected rat ileum. The specific Na+,K+-ATPase activity when measured biochemically in the membrane-rich fraction of enterocytes was found to be significantly lower (58%) in the infected group as compared to the control group ( P < 0.001). Our results therefore suggest that infection with an enterotoxigenic C. jejuni inhibits the Na+,K+-ATPase activity in rat enterocytes. The impairment of Na+,K+-ATPase activity thus appears to induce a secondary change in Na+,Cl and 3-MG transport in vitro in rat ileum.  相似文献   

13.
The amount of total monovalent cations in leaves of Sorghum bicolor , L. Moench, RS 610, which were exposed to salinity stress, was a function of both the osmotic potential and the concentration of K+ of growth media. The plants have a Na+ exclusion mechanism that keeps the level of Na+ in leaves low. Thus, most of the osmotic adjustment in leaves was due to K+. Proline did not start to accumulate in leaves until the concentration of total monovalent cations in leaves reached a threshold of approximately 200 μmol/g fresh weight. Above this threshold, the contents of prolioe and monovalent cations in leaves increased with increasing salinity of the medium. The ratio of proline to monovalent cation was 5% of that amount of monovalent cation in excess of the threshold concentration. Therefore, if the cations are located in the vacuoles and proline accumulates in the cytoplasm, then the amount of accumulated proline is sufficient to act as a balancing osmoticum across the tonoplast. Very little proline accumulated in roots because this tissue contained much less total monovalent cations than leaves from the same salt-stressed plants. The same threshold of 200 μmol/g fresh weight of total monovalent cations was required in roots as in leaves to initiate proline accumulation.  相似文献   

14.
In the present study, glass eels Anguilla anguilla in the Minho River estuary (41·5° N, 8·5° W) decreased in size (standard length, L S and mass, M ) from the beginning (autumn) to the end of the sampling season (summer). On the other hand elvers increased in L S and M from spring to summer and were significantly larger than glass eels in paired comparisons. Branchial Na+/K+-ATPase and vacuolar (V-type) proton ATPase ( in vitro activities), two important ion transporting pumps, did not show significant seasonal changes in either glass eels or elvers although in glass eels Na+/K+-ATPase (activity) expression was significantly higher than in elvers. In a single month comparison Na+/K+-ATPase branchial mRNA expression was also higher in glass eels as was the protein level expression of both Na+/K+-ATPase and NKCC (Na+:K+:2Cl co-transporter). Immunofluorescence microscopy indicated apical CFTR Cl channel labelling in Na+/K+-ATPase positive chloride cell in glass eels which was absent in elvers. Whole body sodium concentration and percentage water did not show significant seasonal differences in either glass eels or elvers although there were significant differences between these two groups during some months.  相似文献   

15.
Abstract. Cultivars of hexaploid wheat ( Triticum aestivum cvs. Chinese Spring or PI 178704) and derivatives containing chromosomes from both a cultivar and a wild, salt-tolerant species ( Lophopyrum elongatum or L. ponticum ) were compared to determine differences in growth, ion transport and ion accumulation under salt-stress. Two experiments were conducted in which plants were grown under saline and non-saline conditions and harvested at various lime intervals throughout ontogeny. Under salt-stress the growth rate of the cultivars, as compared to the growth rate of the derivatives, decreased more rapidly later in development. Transport rates from root to shoot of Na+ and Cl reached higher levels in the cultivars. The cultivars accumulated more Na+ and Cl and relatively less K+ in the shoot. The K+/Na+ ratio was higher in the derivatives than in the cultivars from which they were derived. The addition of chromosomes from Lophopyrum species into wheat altered ion accumulation, growth rates, and ion transport rates from root to shoot.  相似文献   

16.
Salinity response of a freshwater charophyte, Chara vulgaris   总被引:2,自引:2,他引:0  
Abstract. Chara vulgaris L. growing in an oligohaline lake was adapted to laboratory conditions and subjected to long-term salinity treatments ranging from 0 to 350 mol m 3 NaCl added to the lake water (40–680 mosmol kg 1). Osmotic potential and concentration of the main osmotically active solutes (K+, Na+, Mg2+, Cl and sucrose) in the vacuolar sap of the central internodal cells were estimated. C. vulgaris did regulate turgor but incompletely. Turgor decreased from 335 mosmol kg 1 under control conditions to 52–111 mosmol kg 1 at 350 mol m 3 NaCl. The enhancement of πi was achieved by increase in both ions and sucrose. Sterile and fertile plants differed in their response to osmotic stress. In sterile plants, the ions accounted for about 87% of the vacuolar osmotic potential. The increase of πi under osmotic stress was exclusively due to an accumulation of Na+ and Cl-. In fertile plants, sucrose accounted for about 35% of πi and ions for about 51% Under osmotic stress, sucrose content increased together with the ionic content of Na+ and Cl-.  相似文献   

17.
Mean values of the composition of the seminal fluid of 30 turbots were: osmotic pressure =306 mosml−1, pH =7–31, total protein =8.8mg ml1, Na+=133.0 mmoll1, K+=3.80mmoll−1, Cl=129mmol l−1. The rounded nucleus, the reduced middle piece and the typical '9 + 2' structure of the flagellum mean that the spermatozoon of turbot can be considered to be of a primitive type.  相似文献   

18.
In this study, amiodarone, at very low concentrations, produced a clear efflux of K+. Increasing concentrations also produced an influx of protons, resulting in an increase of the external pH and a decrease of the internal pH. The K+ efflux resulted in an increased plasma membrane potential difference, responsible for the entrance of Ca2+ and H+, the efflux of anions and the subsequent changes resulting from the increased cytoplasmic Ca2+ concentration, as well as the decreased internal pH. The Δ tok1 and Δ nha1 mutations resulted in a smaller effect of amiodarone, and Δ trk1 and Δ trk2 showed a higher increase of the plasma membrane potential. Higher concentrations of amiodarone also produced full inhibition of respiration, insensitive to uncouplers and a partial inhibition of fermentation. This phenomenon appears to be common to a large series of cationic molecules that can produce the efflux of K+, through the reduction of the negative surface charge of the cell membrane, and the concentration of this cation directly available to the monovalent cation carriers, and/or producing a disorganization of the membrane and altering the functioning of the carriers, probably not only in yeast.  相似文献   

19.
Apoplastic pH and ionic conditions exert strong influence on cell wall metabolism of many plant tissues; however, the nature of the apoplastic environment of ripening fruit has been the subject of relatively few studies. In this report, a pressure-bomb technique was used to extract apoplastic fluid from tomato fruit ( Lycopersicon esculentum Mill.) pericarp at several developmental stages. pH and the levels of K+, Na+, Ca2+, Mg2+, Cl and P were determined and compared with the values for the bulk pericarp and locule tissues. The pH of the apoplastic fluid from pericarp tissue decreased from 6.7 in immature and mature-green fruits to 4.4 in fully-ripe fruit. During the same period, the K+ concentration increased from 13 to 37 m M . The levels of Na+ and divalent cations did not change, whereas the anions P and Cl increased in ripe fruit. Ca2+ levels remained relatively constant during ripening at 4–5 m M , concentrations that effectively limit pectin solubilization. The electrical conductivity of the apoplastic liquid increased 3-fold during ripening, whereas osmotically active solutes increased 2-fold. Pressure-treated fruit retained the capacity to ripen. The decline in apoplastic pH and increase in ionic strength during tomato fruit ripening may regulate the activity of cell wall hydrolases. The potential role of apoplastic changes in fruit ripening and softening is discussed.  相似文献   

20.
The responses of salt‐sensitive citrus rootstocks to 200 m M NaCl were periodically determined on seedlings of citrange Carrizo ( Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) during 30 days. The stressed seedlings adjusted osmotically, reduced stomatal conductance, increased proline content and ethylene production, and showed massive leaf abscission (92%). The salt shock also increased abscisic acid (ABA) and aminocyclopropane‐1‐carboxylic acid (ACC) in roots, xylem fluid and leaves, and in addition promoted Cl accumulation. The pattern of change of ABA, ACC and proline followed a two‐phase response: an initial transient increase (10‐12 days) overlapping with a gradual and continuous accumulation. This biphasic response appears to be compatible with the proposal that the transitory hormonal rises are induced by the osmotic component of salinity, whereas the Cl increase determines the subsequent accumulations. During the second phase, Cl levels correlated with abscission in leaves. Production of leaf ethylene was also concomitant with the increase in the abscission rate. Salt‐induced abscission was either reduced with CoCl2 (52%) or inhibited with silver thiosulphate (14%). The results suggest that in salt‐stressed citrus, leaf abscission is induced by the chloride build‐up through a mechanism that stimulates leaf ACC synthesis and further conversion to ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号