首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rules that govern the engagement of antitumor immunity are not yet fully understood. Ags expressed by tumor cells are prone to induce T cell tolerance unless the innate immune system is activated. It is unclear to what extent tumors engage this second signal link by the innate immune system. Apoptotic and necrotic (tumor) cells are readily recognized and phagocytosed by the cells of the innate immune system. It is unknown how this affects the tumor's immunogenicity. Using a murine melanoma (B16m) and lymphoma (L5178Y-R) model, we studied the clonal sizes and cytokine signatures of the T cells induced by these tumors in syngeneic mice when injected as live, apoptotic, and necrotic cells. Both live tumors induced a type 2 CD4 cell response characterized by the prevalent production of IL-2, IL-4, and IL-5 over IFN-gamma. Live, apoptotic, and necrotic cells induced CD4 (but no CD8) T cells of comparable frequencies and cytokine profiles. Therefore, live tumors engaged the second signal link, and apoptotic or necrotic tumor cell death did not change the magnitude or quality of the antitumor response. A subclone of L5178Y-R, L5178Y-S cells, were found to induce a high-frequency type 1 response by CD4 and CD8 cells that conveyed immune protection. The data suggest that the immunogenicity of tumors, and their characteristics to induce type 1 or type 2, CD4 or CD8 cell immunity is not primarily governed by signals associated with apoptotic or necrotic cell death, but is an intrinsic feature of the tumor itself.  相似文献   

2.
Systemic immunological tolerance to Ag encountered in the eye restricts the formation of potentially damaging immune responses that would otherwise be initiated at other anatomical locations. We previously demonstrated that tolerance to Ag administered via the anterior chamber (AC) of the eye required Fas ligand-mediated apoptotic death of inflammatory cells that enter the eye in response to the antigenic challenge. Moreover, the systemic tolerance induced after AC injection of Ag was mediated by CD8(+) regulatory T cells. This study examined the mechanism by which these CD8(+) regulatory T cells mediate tolerance after AC injection of Ag. AC injection of Ag did not prime CD4(+) T cells and led to increased TRAIL expression by splenic CD8(+) T cells. Unlike wild-type mice, Trail(-/-) or Dr5(-/-) mice did not develop tolerance to Ag injected into the eye, even though responding lymphocytes underwent apoptosis in the AC of the eyes of these mice. CD8(+) T cells from Trail(-/-) mice that were first injected via the AC with Ag were unable to transfer tolerance to naive recipient wild-type mice, but CD8(+) T cells from AC-injected wild-type or Dr5(-/-) mice could transfer tolerance. Importantly, the transferred wild-type (Trail(+/+)) CD8(+) T cells were also able to decrease the number of infiltrating inflammatory cells into the eye; however, Trail(-/-) CD8(+) T cells were unable to limit the inflammatory cell ingress. Together, our data suggest that "helpless" CD8(+) regulatory T cells generated after AC injection of Ag enforce systemic tolerance in a TRAIL-dependent manner to inhibit inflammation in the eye.  相似文献   

3.
In this study we examined the immunological parameters underlying the natural immunity to inhaled nonpathogenic proteins. We addressed this question by examining the effect of intranasal exposure to OVA in both wild-type mice and mice reconstituted with OVA-TCR transgenic CD4+ T cells. Intranasal administration of OVA induced an initial phase of activation during which CD4+ T cells were capable of proliferating and producing cytokines. Although many of the OVA-specific CD4+ T cells were subsequently depleted from the lymphoid organs, a stable population of such T cells survived but remained refractory to antigenic rechallenge. The unresponsive state was not associated with immune deviation due to selective secretion of Th1- or Th2-type cytokines, and the presence of regulatory CD8+ T cells was not required. Moreover, neutralization of the immunosuppressive cytokines IL-10 and TGF-beta did not abrogate the induction of tolerance. Inhibition of the interaction of T cells with CD86, but not CD80, at the time of exposure to intranasal Ag prevented the development of unresponsiveness, while selective blockade of CTLA-4 had no effect. Our results suggest that intranasal exposure to Ags results in immunological tolerance mediated by functionally impaired CD4+ T cells via a costimulatory pathway that requires CD86.  相似文献   

4.
In the setting of autoimmunity, one of the goals of successful therapeutic immune modulation is the induction of peripheral tolerance, a large part of which is mediated by regulatory/suppressor T cells. In this report, we demonstrate a novel immunomodulatory mechanism by an FDA-approved, exogenous peptide-based therapy that incites an HLA class I-restricted, cytotoxic suppressor CD8+ T cell response. We have shown previously that treatment of multiple sclerosis (MS) with glatiramer acetate (GA; Copaxone) induces differential up-regulation of GA-reactive CD8+ T cell responses. We now show that these GA-induced CD8+ T cells are regulatory/suppressor in nature. Untreated patients show overall deficit in CD8+ T cell-mediated suppression, compared with healthy subjects. GA therapy significantly enhances this suppressive ability, which is mediated by cell contact-dependent mechanisms. CD8+ T cells from GA-treated patients and healthy subjects, but not those from untreated patients with MS, exhibit potent, HLA class I-restricted, GA-specific cytotoxicity. We further show that these GA-induced cytotoxic CD8+ T cells can directly kill CD4+ T cells in a GA-specific manner. Killing is enhanced by preactivation of target CD4+ T cells and may depend on presentation of GA through HLA-E. Thus, we demonstrate that GA therapy induces a suppressor/cytotoxic CD8+ T cell response, which is capable of modulating in vivo immune responses during ongoing therapy. These studies not only explain several prior observations relating to the mechanism of this drug but also provide important insights into the natural immune interplay underlying this human immune-mediated disease.  相似文献   

5.
The signals directing induction of tolerance rather than immunity are largely unknown. The CD8 T cell response to soluble Ags generally results in deletional tolerance following transient, costimulation-dependent activation. We demonstrated that CD40 signaling reversed the outcome of this response. Adoptive transfer of OVA-specific CD8 T cells followed by soluble OVA immunization resulted in induction of lytic activity and optimal clonal expansion only when CD40 was triggered via an agonistic mAb. Activation of CD8 T cells by CD40 signaling was indirect, because CD40 expression by host cells was required. CD40 signaling along with soluble Ag immunization also induced expansion of secondary lymphoid and intestinal mucosal endogenous OVA-specific CD8 T cells as detected by MHC tetramer reactivity. When CD40 activation was included, long-lived secondary lymphoid and mucosal memory CD8 cells were generated from adoptively transferred and endogenous CD8 T cells. Mucosal and peripheral CD8 memory cells exhibited constitutive Ag-specific lytic activity, with mucosal memory cells being 10-fold more lytic than splenic or lymph node memory cells. These results demonstrated that CD40 signaling during a response to a poorly immunogenic soluble Ag was necessary and sufficient for CTL and memory T cell induction.  相似文献   

6.
In murine schistosomiasis mansoni the cell-mediated immune response to the deposited eggs is mediated by CD4+ delayed-type hypersensitivity effector T (TDH) cells that produce vigorous granulomatous responses in the liver and intestines of acutely infected animals. The response is significantly down-modulated in chronically infected mice by Ag-specific Ts cells. The present study was undertaken to establish an in vitro model by which TDH-Ts cell interactions could be analyzed. To this end, Ts cells were induced in vitro by preculture of chronic or acute infection spleen cells with soluble egg Ag (SEA) for 48 h. The induced cells suppressed the SEA-specific proliferation of acute infection spleen cells by 80 to 95%. The induced suppressor cells were Ag specific in both induction and elicitation of function, and were not cytotoxic to the acute infection splenic target cells. Suppression by the induced cells was manifested within the first 24 h of the SEA-induced response as IL-2 produced by acute infection spleen cells was suppressed 62%. Phenotypic analysis by flow cytometry of the induced suppressor cells showed that CD8+ cells from acute infection spleens and CD4+ and CD8+ cells from chronic infection spleens were effector Ts cells. Taken together, CD4+ and CD8+ SEA-specific Ts cells can be induced in vitro to effectively suppress the SEA-specific lymphoproliferation and IL-2 production of acute infection spleen cells. Establishment of this in vitro model will allow us to further analyze the mechanisms of Ts cell-mediated suppression of TDH cells.  相似文献   

7.
The uptake of immune complexes by FcRs on APCs augments humoral and cellular responses to exogenous Ag. In this study, CD11c+ dendritic cells are shown to be responsible in vivo for immune complex-triggered priming of T cells. We examine the consequence of Ab-mediated uptake of self Ag by dendritic cells in the rat insulin promoter-membrane OVA model and identify a role for the inhibitory FcgammaRIIB in the maintenance of peripheral CD8 T cell tolerance. Effector differentiation of diabetogenic OT-I CD8+ T cells is enhanced in rat insulin promoter-membrane OVA mice lacking FcgammaRIIB, resulting in a high incidence of diabetes. FcgammaRIIB-mediated inhibition of CD8 T cell priming results from suppression of both DC activation and cross-presentation through activating FcgammaRs. Further FcgammaRIIB on DCs inhibited the induction of OVA-specific Th1 effectors, limiting Th1-type differentiation and memory T cell accumulation. In these MHC II-restricted responses, the presence of FcgammaRIIB only modestly affected initial CD4 T cell proliferative responses, suggesting that FcgammaRIIB limited effector cell differentiation primarily by inhibiting DC activation. Thus, FcgammaRIIB can contribute to peripheral tolerance maintenance by inhibiting DC activation alone or by also limiting processing of exogenously acquired Ag.  相似文献   

8.
We have established a comprehensive in vivo mouse model for the CD4(+) T cell response to an "innocuous" versus "dangerous" exogenous Ag and developed an in vivo test for tolerance. In this model, specific gene-expression signatures, distinctive upregulation of early T cell-communication molecules, and differential expansion of effector T cells (Teff) and regulatory T cells (Treg) were identified as central correlates of T cell tolerance and T cell immunity. Different from essentially all other T cell-activation molecules, ICOS was found to be induced in the immunity response and not by T cells activated under tolerogenic conditions. If expressed, ICOS did not act as a general T cell costimulator but selectively caused a massive expansion of effector CD4(+) T cells, leaving the regulatory CD4(+) T cell compartment largely undisturbed. Thus, ICOS strongly contributed to the dramatic change in the balance between Ag-specific Teff and Treg from ~1:1 at steady state to 21:1 at the height of the immune response. This newly defined role for the balance of Teff to Treg, together with its known key function in T cell help for B cells, establishes ICOS as a central mediator of immunity. Given its exceptionally selective induction on CD4(+) T cells under inflammatory, but not tolerogenic, conditions, ICOS emerges as a pivotal effector molecule in the early decision between tolerance and immunity to exogenous Ag.  相似文献   

9.
Exposure of newborn animals to a foreign Ag may result in immunological tolerance to that specific Ag, a phenomenon called neonatal tolerance. We have previously reported that neonatal administration to Brown-Norway rats of mercury, a heavy metal toxicant, induces a dominant tolerance, specific for the chemical otherwise responsible for Th2 cell-mediated autoimmune responses in this susceptible strain of rats. Neonatal exposure to Ags can prime immunity, rather than inactivate or delete responses, and sustain regulatory functions effective against autoreactive T cells. Here, we address whether such a tolerant response is due to the generation of regulatory cells. The results suggest that the CD8(+) T cell subset is involved in neonatal tolerance to mercuric salt-induced Th2 autoimmune disease. Thus, we demonstrate that in vivo CD8 depletion breaks tolerance following mercury recall in animals under a neonatal tolerance protocol. Furthermore, adoptive cotransfer of splenocytes from naive and tolerant rats as well as transfer of CD8(+) T cells from tolerant animals prevent naive syngeneic rats from developing pathologic Th2 immune responses. These observations indicate that CD8(+) T cells are endowed with regulatory functions in neonatal tolerance and mediate active suppression. Moreover, neonatal tolerance induced the expansion of CD8(+)CD45RC(high) T cells and the emergence of a high percentage of IFN-gamma-synthesizing CD8(+) T cells, which probably reflects the implication of regulatory Tc1 cells. Thus, in vivo induction of neonatal tolerance suppresses Th2 autoimmune responses via generation of a CD8(+) cell-mediated regulatory response.  相似文献   

10.
Maternal immunological tolerance of the semiallogeneic fetus involves several overlapping mechanisms to balance maternal immunity and fetal development. Anti-paternal CD8+ T cells are suppressed during pregnancy in some but not all mouse models. Since semen has been shown to mediate immune modulation, we tested whether exposure to paternal Ag during insemination activated or tolerized anti-paternal CD8+ T cells. The uterine lumen of mated female mice contained male MHC I+ cells that stimulated effector, but not naive, CD8+ T cells ex vivo. Maternal MHC class I+ myeloid cells fluxed into the uterine lumen in response to mating and cross-presented male H-Y Ag to effector, but not naive, CD8+ T cells ex vivo. However, neither unprimed nor previously primed TCR-transgenic CD8+ T cells specific for either paternal MHC I or H-Y Ag proliferated in vivo after mating. These T cells subsequently responded normally to i.p. challenge, implicating ignorance rather than anergy as the main reason for the lack of response. CD8+ T cells responded to either peptide Ag or male cells delivered intravaginally in ovariectomized mice, but this response was inhibited by systemic estradiol (inducing an estrus-like state). Subcutaneous Ag induced responses in both cases. Allogeneic dendritic cells did not induce responses intravaginally even in ovariectomized mice in the absence of estradiol. These results suggest that inhibition of antiallogeneic responses is restricted both locally to the reproductive tract and temporally to the estrous phase of the menstrual cycle, potentially decreasing the risk of maternal immunization against paternal Ags during insemination.  相似文献   

11.
The tolerogenic signal produced by the i.v. injection of haptenated peritoneal exudate cells can be converted to an immunogenic signal by treating the cells with antibody to the hapten before administration. We examined this phenomenon and found that immunity induced by antigen-antibody complexes, as opposed to skin sensitization, is resistant to suppressor T cell influences. This resistance to suppression is due to the activation of an I-J+, Ly-1 T cell population which adheres to the Vicia villosa lectin, all characteristics of contrasuppressor T cells. Because haptenated cells can induce immunity if injected subcutaneously or into cyclophosphamide-pretreated recipients (thereby avoiding the induction of suppressor cells), we suggest that the activation of contrasuppressor cells by antigen-antibody complexes overrides suppressive influences in the host, allowing immunity to become dominant. The possible roles of suppression and contrasuppression in channeling the effector arm of the immune response (e.g., contact sensitivity vs humoral immunity) are discussed.  相似文献   

12.
Previous studies of the immune response of C57BL/6 mice to the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten determined that challenge with antigenic forms of hapten induces both immunity and suppression. The anti-NP plaque-forming cell response can be down regulated by an Ag-induced cascade consisting of three suppressor T cell subsets. These three populations, termed Ts1, Ts2, and Ts3 have been characterized to have inducer, transducer and effector functions, respectively. Although the functions of each of these subsets have been examined in vivo, the cellular requirements for in vitro Ts induction have only been investigated for the Ts3 population. The present study characterizes the cellular events that lead to the induction of the Ts2, suppressor transducer population. Culture of naive C57BL/6 spleen cells with Ts1-derived suppressor factor in the absence of exogenous Ag leads to the generation of Ts2 cells that mediate Ag-specific suppression of NP plaque-forming cell responses. Phenotypic analyses demonstrate that a CD3+, CD4-, CD5+, CD8+, and I-J+ precursor population is stimulated by TsF1 to become mature Ts2 cells that express CD3, CD8, and I-J but not CD5. Although previous studies have reported an essential role for B cells in the induction of other Ts populations, depletion of B cells from Ts2 induction cultures had no effect on Ts2 generation. Despite the absence of B cells in these cultures, the mature Ts2 cells were functionally IgH restricted. Studies with IgH congenic B.C-8 mice suggest that this restriction specificity was imposed by the idiotype-related determinants expressed on the TsF1, not the T cell genotype.  相似文献   

13.
Dendritic cells (DCs) play an important role in the induction of T cell responses. Fc gammaRs, expressed on DCs, facilitate the uptake of complexed Ag, resulting in efficient MHC class I and MHC class II Ag presentation and DC maturation. In the present study, we show that prophylactic immunization with DCs loaded with Ag-IgG immune complexes (ICs) leads to efficient induction of tumor protection in mice. Therapeutic vaccinations strongly delay tumor growth or even prevent tumors from growing out. By depleting CD4+ and CD8+ cell populations before tumor challenge, we identify CD8+ cells as the main effector cells involved in tumor eradication. Importantly, we show that DCs that are preloaded in vitro with ICs are at least 1000-fold more potent than ICs injected directly into mice or DCs loaded with the same amount of noncomplexed protein. The contribution of individual Fc gammaRs to Ag presentation, T cell response induction, and induction of tumor protection was assessed. We show that Fc gammaRI and Fc gammaRIII are capable of enhancing MHC class I-restricted Ag presentation to CD8+ T cells in vitro and that these activating Fc gammaRs on DCs are required for efficient priming of Ag-specific CD8+ cells in vivo and induction of tumor protection. These findings show that targeting ICs via the activating Fc gammaRs to DCs in vitro is superior to direct IC vaccination to induce protective tumor immunity in vivo.  相似文献   

14.
Induction of CD4 suppressor T cells with anti-Leu-8 antibody   总被引:6,自引:0,他引:6  
To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody.  相似文献   

15.
This study analyzes the involvement of CD4+ and CD8+ T cells in a secondary cellular immune response to the highly metastatic murine lymphoma ESb in situ. This tumor line expresses tumor-associated transplantation Ag which can induce protective immunity in vivo and specific CTL in vitro. In tumor-immune mice the injection of a tumor vaccine (x-irradiated ESb tumor cells) into s.c. implanted vascularized sponges resulted in the generation of a specific secondary immune response characterized by massive leukocyte recruitment and generation of strong CTL activity at the restimulation site. During the antitumor immune response the CD4+:CD8+ T cell ratio decreased significantly and specifically in the restimulated sponges. Depletion of CD8+ but not CD4+ T cells from the tumor immune mice before restimulation significantly reduced the delayed-type hypersensitivity-like response and totally blocked the generation of tumor-specific CTL activity in situ. Only a minority of the CD8+ immune T cells which predominated the secondary response in situ expressed IL-2R and lymph node homing receptors as detected by the mAb MEL-14.  相似文献   

16.
Peripheral tolerance is required to prevent autoimmune tissue destruction by self-reactive T cells that escape negative selection in the thymus. One mechanism of peripheral tolerance in CD8(+) T cells is their activation by resting dendritic cells (DC). In contrast, DC can be "licensed" by CD4(+) T cells to induce cytotoxic function in CD8(+) T cells. The question that then arises, whether CD4(+) T cell help could impair peripheral tolerance induction in self-reactive CD8(+) T cells, has not been addressed. In this study we show that CD4(+) T cell activation by resting DC results in helper function that transiently promotes the expansion and differentiation of cognate CD8(+) T cells. However, both the CD4(+) and CD8(+) T cell populations ultimately undergo partial deletion and acquire Ag unresponsiveness, disabling their ability to destroy OVA-expressing pancreatic beta cells and cause diabetes. Thus, effective peripheral tolerance can be induced by resting DC in the presence of CD4(+) and CD8(+) T cells with specificity for the same Ag.  相似文献   

17.
APC exposed to TGFbeta2 and Ag (tolerogenic APC) promote peripheral Ag-specific tolerance via the induction of CD8(+) T regulatory cells capable of suppressing Th1 and Th2 immunity. We postulated that tolerogenic APC might reinstate tolerance toward self-neuronal Ags and ameliorate ongoing experimental autoimmune encephalomyelitis (EAE). Seven days after immunization with myelin basic protein (MBP), mice received MBP-specific tolerogenic APC, and EAE was evaluated clinically. To test for the presence and the phenotype of T regulatory cells, CD4 and/or CD8 T cells from tolerogenic APC-treated mice were transferred to naive mice before their immunization with MBP. The MBP-specific tolerogenic APC decreased both the severity and incidence of ongoing EAE. Tolerance to self-neuronal Ags was induced in naive recipient mice via adoptive transfer of CD8(+), but not CD4(+) T cells. Rational use of in vitro-generated tolerogenic APC may lead to novel therapy for autoimmune disease.  相似文献   

18.
We examined the hypothesis that a failure of the immune system to eradicate tumors is due to the immunosuppressive environment created by the growing tumor, which is influenced by the site of tumor growth. We demonstrated that T cell responses to a bystander Ag in mice were suppressed by a growing CT26 tumor. T cells purified from the growing tumor expressed mRNA for IL-10, TGF-beta, and Foxp3. Intracellular cytokine staining revealed a high frequency of IL-10-secreting macrophages, dendritic cells, and CD4+ and CD8+ T cells infiltrating the tumor. In contrast, T cell IFN-gamma production was weak and CD8+ CTL responses were undetectable in mice with CT26 lung metastases and weak and transient following s.c. injection of CT26 cells, but were enhanced in the presence of anti-IL-10 and anti-TGF-beta. Consistent with this, removal of CD8+ T cells abrogated CTL responses and promoted progression of the s.c. tumor. However, in the lung model, depletion of CD8+ T cells significantly reduced the tumor burden. Furthermore, depletion of CD4+ or CD25+ T cells in vivo reduced tumor burden in s.c. and lung models, and this was associated with significantly enhanced IFN-gamma production by CD8+ T cells. These findings suggest that tumor growth facilitates the induction or recruitment of CD4+ regulatory T cells that secrete IL-10 and TGF-beta and suppress effector CD8+ T cell responses. However, CD8+ T regulatory cells expressing IL-10 and TGF-beta are also recruited or activated by the immunosuppressive environment of the lung, where they may suppress the induction of antitumor immunity.  相似文献   

19.
The fate of dendritic cells (DC) after they have initiated a T cell immune response is still undefined. We have monitored the migration of DC labeled with a fluorescent tracer and injected s.c. into naive mice or into mice with an ongoing immune response. DC not loaded with Ag were detected in the draining lymph node in excess of 7 days after injection with maximum numbers detectable approximately 40 h after transfer. In contrast, DC that had been loaded with an MHC class I-binding peptide disappeared from the lymph node with kinetics that parallel the known kinetics of activation of CD8+ T cells to effector function. In the presence of high numbers of specific CTL precursors, as in TCR transgenic mice, DC numbers were significantly decreased by 72 h after injection. The rate of DC disappearance was extremely rapid and efficient in recently immunized mice and was slower in "memory" mice in which memory CD8+ cells needed to reacquire effector function before mediating DC elimination. We also show that CTL-mediated clearance of Ag-loaded DC has a notable effect on immune responses in vivo. Ag-specific CD8+ T cells failed to divide in response to Ag presented on a DC if the DC were targets of a pre-existing CTL response. The induction of antitumor immunity by tumor Ag-loaded DC was also impaired. Therefore, CTL-mediated clearance of Ag-loaded DC may serve as a negative feedback mechanism to limit the activity of DC within the lymph node.  相似文献   

20.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号