首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ice premelting during differential scanning calorimetry   总被引:1,自引:0,他引:1       下载免费PDF全文
PW Wilson  JW Arthur    AD Haymet 《Biophysical journal》1999,77(5):2850-2855
Premelting at the surface of ice crystals is caused by factors such as temperature, radius of curvature, and solute composition. When polycrystalline ice samples are warmed from well below the equilibrium melting point, surface melting may begin at temperatures as low as -15 degrees C. However, it has been reported (. Biophys. J. 65:1853-1865) that when polycrystalline ice was warmed in a differential scanning calorimetry (DSC) pan, melting began at about -50 degrees C, this extreme behavior being attributed to short-range forces. We show that there is no driving force for such premelting, and that for pure water samples in DSC pans curvature effects will cause premelting typically at just a few degrees below the equilibrium melting point. We also show that the rate of warming affects the slope of the DSC baseline and that this might be incorrectly interpreted as an endotherm. The work has consequences for DSC operators who use water as a standard in systems where subfreezing runs are important.  相似文献   

3.
 用差示扫描量热计,测定了不同水合态(水含量h从0.08g/g至2.50g /g)冻结的水合醛缩酶样品中冰的熔化温度和熔化焓,并计算出熔化熵。实验结果表明,变性前,水合醛缩酶中的水转化成四种状状:(1)不冻结水,(2)熔化焓和熔化温度均低了普通水的可冻结水,(3)熔化焓与普通水相同而熔化温度低于普通水的可冻结水,(4)熔化焓和熔化温度均与普通水相同的容积水。变性后,水合醛缩酶中的水可处于五种状态,即不冻结水,熔化焓低于普通水而熔化温度与普通水相同的可冻结水,以及熔化温度均低于普通水且彼此不相同的三种状态的可冻结水。实验还观察到,水合醛缩酶在热变性前后,水在这些态中的量是不同的。  相似文献   

4.
The effects of a type I AFP on the bulk melting of frozen AFP solutions and frozen AFP+solute solutions were studied through an NMR microimaging experiment. The solutes studied include sodium chloride and glucose and the amino acids alanine, threonine, arginine, and aspartic acid. We found that the AFP is able to induce the bulk melting of the frozen AFP solutions at temperatures lower than 0 °C and can also keep the ice melted at higher temperatures in the AFP+solute solutions than those in the corresponding solute solutions. The latter shows that the ice phases were in super-heated states in the frozen AFP+solute solutions. We have tried to understand the first experimental phenomenon via the recent theoretical prediction that type I AFP can induce the local melting of ice upon adsorption to ice surfaces. The latter experimental phenomenon was explained with the hypothesis that the adsorption of AFP to ice surfaces introduces a less hydrophilic water-AFP-ice interfacial region, which repels the ionic/hydrophilic solutes. Thus, this interfacial region formed an intermediate chemical potential layer between the water phase and the ice phase, which prevented the transfer of water from the ice phase to the water phase. We have also attempted to understand the significance of the observed melting phenomena to the survival of organisms that express AFPs over cold winters.  相似文献   

5.
Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.  相似文献   

6.
Differential scanning calorimetry (DSC) was used to study the melting and crystallization of frozen water dispersed in humid potato starch. Melting and crystallization temperatures and heats as functions of the degree of hydration of the starch were obtained for native and amorphous starch states. Manifestations of the size effect were observed in the dependences of heat for the processes in both starch states. Crystallization and melting heats of frozen water were found to change nonlinearly with the increasing degree of hydration in all cases. In contrast, a size effect in the dependences of melting and crystallization temperatures of frozen water was detected only for native starch. Reasons responsible for the absence of a size effect in the amorphous state were considered. Hysteresis, which is characteristic of small particles, was observed upon melting and crystallization of frozen water and its manifestation strongly differed in the native and amorphous states of potato starch.  相似文献   

7.
Differential scanning calorimetry (DSC) and two dielectric techniques, broadband dielectric relaxation spectroscopy and thermally stimulated depolarization currents (TSDC), were employed to study glass transition and water and protein dynamics in mixtures of water and a globular protein, lysozyme, in wide ranges of water content, both solutions, and hydrated solid samples. In addition, water equilibrium sorption isotherms (ESI) measurements were performed at room temperature. The main objective was to correlate results by different techniques to each other and to determine critical water contents for various processes. From ESI measurements the content of water directly bound to primary hydration sites was determined to 0.088 (grams of water per grams of dry protein), corresponding to 71 water molecules per protein molecule, and that where clustering becomes significant to about 0.25. Crystallization and melting events of water were first observed at water contents 0.270 and 0.218, respectively, and the amount of uncrystallized water was found to increase with increasing water content. Two populations of ice crystals were observed by DSC, primary and bulk ice crystals, which give rise to two separate relaxations in dielectric measurements. In addition, the relaxation of uncrystallized water was observed, superimposed on a local relaxation of polar groups on the protein surface. The glass transition temperature, determined by DSC and TSDC in rather good agreement to each other, was found to decrease significantly with increasing water content and to stabilize at about −90 °C for water contents higher than about 0.25. This is a novel result of this study with potential impact on cryoprotection and pharmaceutics.  相似文献   

8.
The thick fraction of hen egg white is a protein hydrogel with an immeasurably high viscosity composed of ~90% water that can serve as a model system for mammalian mucous membrane. Measurements of the rate constants of diffusion-controlled reactions occurring within the gel (and corresponding activation energies) and electric conductivity revealed that the thick fraction of egg white can be envisioned as a 3D network comprising hydrated protein molecules (held by intermolecular S-S bridges) surrounded by water pools and channels (of nonuniform diameters) that have a microviscosity that is very similar to that of bulk water. This was corroborated by differential scanning calorimetry measurements that revealed that 16% of water is bound to proteins. The melting kinetics of ice crystallites (produced from the freezable water) indicates nonhomogeneous water pool size.  相似文献   

9.
Mechanisms involved in cold hardiness of cocoons of the lumbricid earthworm Dendrobaena octaedra were elucidated by osmometric and calorimetric studies of water relations in cocoons exposed to subzero temperatures. Fully hydrated cocoons contained ca. 3 g water · g dry weight-1; about 15% of this water (0.5 g·g dry weight-1) was osmotically inactive or bound. The melting point of the cocoon fluids in fully hydrated cocoons was-0.20°C. Exposure to frozen surroundings initially resulted in supercooling of the cocoons dehydrated (as a result of the vapour pressure difference at a given temperature between supercooled water and ice) to an extent where the vapour pressure of water in the body fluids was in equilibrium with the surrounding ice. This resulted in a profound dehydration of the cocoons, even at mild freezing exposures, and a concomitant slight reduction in the amount of osmotically inactive water. At temperatures around-8°C, which cocoons readily survive, almost all (>97%) osmotically active water had been withdrawn from the cocoons. It is suggested that cold injuries in D. octaedra cocoons observed at still lower temperatures may be related to the degree of dehydration, and possibly to the loss of all osmotically active water. The study indicates that ice formation in the tissues is prevented by equilibrating the body fluid melting point with the exposure temperature. This winter survival mechanism does not conform with the freeze tolerance/freeze avoidance classification generally applied to cold-hardy poikilotherms. Implications of this cold hardiness mechanism for other semi-terrestrial invertebrates are discussed.Abbreviations DSC differential scanning calorimetry - dw dry weight - MP melting point(s) - II water potential - R universal gas constant - T absolute temperature - V specific volume of water  相似文献   

10.
Nanoparticles in solution offer unique electrical, mechanical and thermal properties due to their physical presence and interaction with the state of dispersion. This work is aimed to study the effects of hydroxyapatite (HA) nanoparticles on the devitrification and recrystallization events of two important cryoprotective solutions used in cell and tissue preservation namely glycerol (60% w/w) and PEG-600 (50% w/w). HA nanoparticles (20, 40 or 60 nm) were incorporated into solutions at the content of 0.1% or 0.5% (w/w), and were studied by differential scanning calorimeter (DSC) and cryomicroscopy. The presence of nanoparticles does not change the glass transition temperatures and melting temperatures of quenched solutions, but significantly affects the behavior of devitrification and recrystallization upon warming. Cryomicroscopic investigation showed the complex interactions among solution type, nanoparticle size and nanoparticle content, which apparently influence ice crystal growth or recrystallization in the quenched dispersions. These findings have significant implications for biomaterial cryopreservation, cryosurgery, and food manufacturing. The complexity of ice crystal growth kinetics in nanoparticle-containing dispersions remains to be poorly understood at the moment.  相似文献   

11.
Antifreeze proteins (AFP) are able to inhibit the growth of ice-crystals at temperatures below the equilibrium freezing point (Tf) of hemolymph. The analysis of AFP activity has commonly involved the use of direct microscopic observation of a sample following inoculation with ice. The resulting activity, defined as the amount of thermal hysteresis observed between Tf and the subsequent rapid growth of ice, has been reported to range up to 7 degrees C. However, most studies report high level of variation, possibly due to ice-crystal size variability and the presence of non-visible ice nuclei. We describe a new method of analysis of AFP activity using differential scanning calorimetry (DSC). DSC analysis reveals much higher activity, up to 10 degrees C, with less variation observed within a sample, and is not subject to the difficulty of accurate assessment of ice-crystal volume.  相似文献   

12.
The mechanism by which fish antifreeze proteins cause thermal hysteresis   总被引:6,自引:0,他引:6  
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein "freezing" to the surface. In essence: the antifreeze proteins are "melted off" the ice at the bulk melting point and "freeze" to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

13.
《Cryobiology》2006,52(3):262-280
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein “freezing” to the surface. In essence: the antifreeze proteins are “melted off” the ice at the bulk melting point and “freeze” to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

14.
G Sartor  E Mayer 《Biophysical journal》1994,67(4):1724-1732
Calorimetric studies of the melting patterns of ice in hydrated methemoglobin powders containing between 0.43 and 0.58 (g water)/(g protein), and of their dependence on annealing at subzero temperatures and on isothermal treatment at ambient temperature are reported. Cooling rates were varied between approximately 1500 and 5 K min-1 and heating rate was 30 K min-1. Recrystallization of ice during annealing is observed at T > 228 K. The melting patterns of annealed samples are characteristically different from those of unannealed samples by the shifting of the melting temperature of the recrystallized ice fraction to higher temperatures toward the value of "bulk" ice. The "large" ice crystals formed during recrystallization melt on heating into "large" clusters of water whose redistribution and apparent equilibration is followed as a function of time and/or temperature by comparison with melting endotherms. We have also studied the effect of cooling rate on the melting pattern of ice with a methemoglobin sample containing 0.50 (g water)/(g protein), and we surmise that for this hydration cooling at rates of > or = approximately 150 K min-1 preserves on the whole the distribution of water molecules present at ambient temperature.  相似文献   

15.
差示扫描量热法直接测定抗冻蛋白质溶液的热滞效应   总被引:6,自引:1,他引:6  
文献上一直用显微镜观察法等测定抗冻蛋白的热滞效应,其冰晶量是靠观察晶核体积估算得得的,人为性很大,用并示扫描量热法直接测定沙冬青抗冻蛋白质溶液的热滞效应,通过熔融焓和冻结焓值准确地测定了冰晶含有量和热滞温度。同文献比较,沙冬青AFP具有极高的抗冻活性,而且开创了一个新的有效的测量抗冻蛋白抗冻活性的途径。  相似文献   

16.
The effects of frozen storage (0–120 day) on the secondary structure and molecular chain conformation of hydrated gluten were investigated using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). After frozen storage, no changes were observed in the secondary structure of the 60% hydrated gluten; spectra were consistent with a tight ordered structure with many interchain hydrogen bond interactions. For the dehydrated gluten, more complex changes took place: during frozen storage for up to 60 days, there were distinctive changes in the low-frequency region of the amide I band (1618–1633 cm?1) which were attributed to changes in the β-sheet structure. However, with the increase of frozen storage from 60 to 120 days, a band near 1614 cm?1 replaced that at 1659 cm?1 illustrate that the formation of protein aggregates during the long-time frozen storage, which along with the establishment of new intermolecular non-covalent bonds within the protein molecule or between two neighboring molecules. AFM images showed that the gluten chain formed a fibril-like branched network, and this network was weakened with increasing frozen storage time.  相似文献   

17.
BackgroundIn this study we investigated hydrogen bonding interactions in hydrated and frozen solutions of different cryoprotective agents (CPAs) including dimethyl sulfoxide, glycerol, ethylene glycol, propylene glycol, and trehalose. We also investigated the effect of CPAs on ice crystal growth during storage and correlated this with storage stability of liposomes.MethodsFTIR spectroscopy was used to study hydrogen bonding interactions in CPA solutions in H2O and D2O, and their thermal response was analyzed using van ’t Hoff analysis. The effect of CPAs on ice crystal growth during storage was investigated by microscopy and correlated with storage stability of liposomes encapsulated with a fluorescent dye.ResultsPrincipal component analyses demonstrated that different CPAs can be recognized based on the shape of the OD band region only. Chemically similar molecules such as glycerol and ethylene glycol closely group together in a principal component score plot, whereas trehalose and DMSO appear as condensed separated clusters. The OH/OD band of CPA solutions exhibits an overall shift to higher wavenumbers with increasing temperature and changed fractions of weak and strong hydrogen interactions. CPAs diminish ice crystal formation in frozen samples during storage and minimize liposome leakage during freezing but cannot prevent leakage during frozen storage.ConclusionsCPAs can be distinguished from one another based on the hydrogen bonding network that is formed in solution. DMSO-water mixtures behave anomalous compared to other CPAs that have OH groups. CPAs modulate ice crystal formation during frozen storage but cannot prevent liposome leakage during frozen storage.  相似文献   

18.
Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.  相似文献   

19.
Differential scanning calorimetry (DSC) was used to determine the amount of water that freezes in an aqueous suspension of multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. The studies were performed with dehydrated suspensions (12-20 wt% water) and suspensions containing an excess of water (30-70 wt% water). For suspensions that contained > or = 18 wt% water, two ice-formation events were observed during cooling. The first was attributed to heterogeneous nucleation of extraliposomal ice; the second was attributed to homogeneous nucleation of ice within the liposomes. In suspensions with an initial water concentration between 13 and 16 wt%, ice formation occurred only after homogeneous nucleation at temperatures below -40 degrees C. In suspensions containing < 13 wt% water, ice formation during cooling was undetectable by DSC, however, an endotherm resulting from ice melting during warming was observed in suspensions containing > or = 12 wt% water. In suspensions containing < 12 wt% water, an endotherm corresponding to the melting of ice was not observed during warming. The amount of ice that formed in the suspensions was determined by using an improved procedure to calculate the partial area of the endotherm resulting from the melting of ice during warming. The results show that a substantial proportion of water associated with the polar headgroup of phosphatidylcholine can be removed by freeze-induced dehydration, but the amount of ice depends on the thermal history of the samples. For example, after cooling to -100 degrees C at rates > or = 10 degrees C/min, a portion of water in the suspension remains supercooled because of a decrease in the diffusion rate of water with decreasing temperature. A portion of this supercooled water can be frozen during subsequent freeze-induced dehydration of the liposomes under isothermal conditions at subfreezing storage temperature Ts. During isothermal storage at Ts > or = -40 degrees C, the amount of unfrozen water decreased with decreasing Ts and increasing time of storage. After 30 min of storage at Ts = -40 degrees C and subsequent cooling to -100 degrees C, the amount of water associated with the polar headgroups was < 0.1 g/g of DPPC. At temperatures > -50 degrees C, the amount of unfrozen water associated with the polar headgroups of DPPC decreased with decreasing temperature in a manner predicted from the desorption isotherm of DPPC. However, at lower temperatures, the amount of unfrozen water remained constant, in large part, because the unfrozen water underwent a liquid-to-glass transformation at a temperature between -50 degrees and -140 degrees C.  相似文献   

20.
The purpose of this research was to investigate the interaction of water with ethylcellulose samples and assess the effect of particle size on the interaction. The distribution of water within coarse particle ethylcellulose (CPEC; average particle size 310 μm) and fine particle ethylcellulose (FPEC; average particle size 9.7 μm) of 7 cps viscosity grade was assessed by differential scanning calorimetry (DSC) and dynamic vapor sorption analysis. The amounts of nonfreezing and freezing water in hydrated samples were determined from melting endotherms obtained by DSC. An increase in water content resulted in an increase in the enthalpy of fusion of water for the two particle size fractions of EC. The amount of nonfreezable water was not affected by the change in particle size at low water contents. Exposure of ethylcellulose to water for 30 minutes is sufficient to achieve equilibration within the hydrated polymer at 47% wt/wt water content. The moisture sorption profiles were analyzed according to the Guggenheim-Anderson-de Boer (GAB) and Young and Nelson equations, which can help to distinguish moisture distribution in different physical forms. The amount of externally adsorbed moisture was greater in the case of FPEC. Internally absorbed moisture was evident only with the CPEC. In light of these results, and explanation is offered for the success of FPEC in wet-granulation methods where CPEC was not successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号