首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of protein kinase C stimulation on free cytosolic Ca2+ [( Ca2+]i) were studied in Fura 2-loaded UMR-106 cells. Stimulation of the protein kinase C with the tumor-promoting phorbol esters 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13-diacetate or 1-oleoyl-2-acetylglycerol was followed by an increase in [Ca2+]i. The protein kinase C-induced increase in [Ca2+]i has a lag period, the duration of which was dependent on the stimulant and medium Ca2+ concentrations. With 2 microM TPA, the rise in [Ca2+]i peaked within 1.5 min, after which [Ca2+]i returned partially toward base line. The increase in [Ca2+]i was absolutely dependent on the presence of medium Ca2+ and was inhibited by the Ca2+ channel blockers nicardipine and verapamil. Cell stimulation also results in Ca2+ release from intracellular pool(s) which appears to be mediated by a Ca2+-dependent Ca2+ release mechanism. The reduction in [Ca2+]i was due to channel inactivation. Pretreatment of the cells with 1 nM TPA, 2 units/ml parathyroid hormone (PTH), or 15 microM forskolin blocked the effect of 2 microM TPA on [Ca2+]i. TPA and PTH were more potent inhibitors than was forskolin. The properties of this channel are compared to the cAMP-independent PTH-stimulated Ca2+ channel present in these cells.  相似文献   

2.
Prostaglandins (PGs) are autocrine or paracrine hormones that may interact with circulating hormones such as parathyroid hormone (PTH) in bone. We examined the interaction of the PGs, PGF2 alpha, PGE2, and 6-keto-PGF1 alpha with PTH to enhance the rapid, initial transient rise in free cytosolic calcium ([Ca2+]i) and cAMP levels stimulated by PTH. Pretreatment of UMR-106, MC3T3-E1, and neonatal rat calvarial osteoblast-like cells by PGs resulted in an enhancement of the early transient rise in [Ca2+]i stimulated by PTH. PGF2 alpha was approximately 100 times more potent than PGE2. PGE2 itself was more potent than 6-keto-PGF1 alpha in enhancing PTH-stimulated rise in [Ca2+]i. Near-maximal augmentation was achieved at PGF2 alpha doses of 10 nM and PGE2 of 1 microM. The degree of augmentation in [Ca2+]i by PGF2 alpha was independent of preincubation time. PGF2 alpha pretreatment did not alter the EC50 for the PTH-induced [Ca2+]i increase but only the extent of rise in [Ca2+]i at each dose of PTH. The augmented increase in [Ca2+]i was mostly due to enhanced PTH-mediated release of Ca2+ from intracellular stores. PGF2 alpha did not stimulate an increase in PTH receptor number as assessed by [125I]-PTH-related peptide binding. PG pretreatment partially reversed PTH inhibition of cell proliferation, suggesting that an increase in [Ca2+]i may play a role in tempering the anti-proliferative effect of PTH mediated by cAMP. These studies suggest a new mode by which PGs can affect cellular activity.  相似文献   

3.
The effect of prostaglandins (PG) on free cytosolic calcium concentrations [( Ca2+]i) and cAMP levels was studied in the osteosarcoma cell line UMR-106. PGF2 alpha and PGE2, but not 6-keto-PGF1 alpha, induced an increase in [Ca2+]i which was mainly due to Ca2+ release from intracellular stores. The EC50 for PGF2 alpha was approximately 7 nM, whereas that for PGE2 was approximately 1.8 microM. Maximal doses of PGF2 alpha increased [Ca2+]i to higher levels than PGE2. Both active PGs also stimulated phosphatidylinositol turnover in UMR-106 cells. The effects of the two PGs were independent of each other and appear to involve separate receptors for each PG. PGE2 was a very potent stimulator of cAMP production and increased cAMP by approximately 80-fold with an EC50 of 0.073 microM. PGF2 alpha was a very poor stimulator of cAMP production; 25 microM PGF2 alpha increased cAMP by 5-fold. The increase in cellular cAMP levels activated a plasma membrane Ca2+ channel which resulted in a secondary, slow increase in [Ca2+]i. High concentrations of both PGs (10-50 microM) inhibited this channel independent of their effect on cAMP levels. Pretreatment of the cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate inhibited the PG-mediated increase in phosphatidylinositol turnover and the increase in [Ca2+]i. However, pretreatment with 12-O-tetradecanoyl-13-acetate had no effect on the PGE2-mediated increase in cAMP. The latter finding, together with the dose responses for PGE2-mediated increases in [Ca2+]i and cAMP levels, suggests the presence of two subclasses of PGE2 receptors: one coupled to adenylate cyclase and the other to phospholipase C. With respect to osteoblast function, the cAMP signaling system is antiproliferative, whereas the Ca2+ messenger system, although having no proliferative effect by itself, tempers cAMP's antiproliferative effect.  相似文献   

4.
We investigated cellular mechanisms mediating the parathyroid hormone (PTH)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) in isolated perfused rabbit connecting tubules. Prior and/or concomitant exposure to 0.5 mM of N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-8), a cyclic nucleotide-dependent protein kinase inhibitor, abolished the rise in [Ca2+]i produced by 0.1 nM PTH in five connecting tubules and suppressed it by approximately 50% in another five. In the latter, there was a delayed onset in the rise of [Ca2+]i. Such responses contrasted to the prompt increase in [Ca2+]i in PTH-stimulated control tubules. However, when H-8 was withdrawn, [Ca2+]i rose within minutes to reach a plateau value similar to the uninhibited response to PTH in controls, indicating rapidly reversible inhibition by H-8. In an otherwise identical protocol, 0.5 mM H-8 also reversibly suppressed the rise in [Ca2+]i induced by 0.175 mM 8-Br-cAMP. In contrast to the stimulatory effect of 8-Br-cAMP on [Ca2+]i, 1 mM 8-Br-cGMP caused no increase. At a concentration of 0.4 mM, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp-cAMPS), a well-characterized cAMP-dependent protein kinase inhibitor, totally abolished the rise in [Ca2+]i caused by 0.1 nM PTH. We conclude that a cAMP-dependent protein kinase plays an important role in the PTH-stimulated rise in [Ca2+]i in the rabbit connecting tubule. Since the increase in [Ca2+]i was shown previously to depend on extracellular Ca2+, we propose that cAMP-dependent protein phosphorylation is important in mediating PTH-stimulated Ca2+ fluxes across plasma membranes of connecting tubule cells.  相似文献   

5.
We used the osteogenic sarcoma cell line, UMR-106-01, to determine whether the rise in free cytosolic Ca2+ concentration ([Ca2+]i) and cellular cAMP following PTH stimulation are able to be regulated independently. For this purpose, we compared the effect of a PTH antagonist, stimulation of protein kinase C, augmentation by prostaglandins, and the time course of desensitization of the two cellular responses. Two x 10(-7) M of the PTH antagonist 8,18Nle 34Tyr-bPTH(3-34) amide ([Nle,Tyr]bPTH(3-34)A) was required to inhibit 10(-9) M bPTH(1-34)-stimulated cAMP generation by 50%. 10(-7) M bPTH(1-34) completely overcame the inhibition induced by 10(-6) M [Nle,Tyr]bPTH(3-34)A. Only 7 x 10(-8) M and 2.7 x 10(-7) M [Nle,Tyr]bPTH(3-34)A were required to half maximally inhibit the [Ca2+]i increase evoked by 3 x 10(-8) and 10(-7) M bPTH(1-34), respectively. In addition, dissociation between [Ca2+]i and cAMP signals was observed when modulation by protein kinase C and prostaglandins was tested. Preincubation of the cells with 10 nM TPA for 5 minutes markedly inhibited the PTH-evoked [Ca2+]i increase. Short incubation with PGF2 alpha augmented the PTH-evoked [Ca2+]i increase. Similar pretreatments had no effect on the PTH-stimulated cAMP increase. Finally, preincubation with 1.5 x 10(-9) M bPTH(1-34) for 20 minutes almost completely blocked the effect of 10(-7) M bPTH(1-34) on [Ca2+]i, while preincubation with 5 x 10(-9) M bPTH(1-34) for 4 hours was required to inhibit the effect of 10(-8) M bPTH(1-34) on cAMP production by 50%. The differences in the regulation of the two PTH-stimulated cellular signaling systems, in particular, the response to antagonists and the time course of desensitization, could be at the level of the PTH receptor(s) or at a postreceptor domain.  相似文献   

6.
Using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid, we have recently demonstrated that Pb2+ treatment elevates the intracellular free calcium ion concentration ([Ca2+]i) of rat osteoblastic osteosarcoma cells (ROS 17/2.8) (Proc. Natl. Acad. Sci. USA (1989) 86, 5133-5135). In this study, we have examined the effects of Pb2+ on the basal and parathyroid hormone (PTH)-stimulated levels of [Ca2+]i and cAMP in cultured ROS 17/2.8 cells. PTH treatment (400 ng/ml) stimulated a 150% elevation in [Ca2+]i from a control level of 105 +/- 25 nM to a concentration of 260 +/- 24 nM. Treatment of ROS 17/2.8 cells with Pb2+ (5 microM) alone produced a 50% elevation in the [Ca2+]i to 155 +/- 23 nM. Pb2+ treatment diminished subsequent elevation in [Ca2+]i in response to PTH administration thereby limiting the peak increase in [Ca2+]i to only 25% or 193 +/- 22 nM. In contrast to the dampening effect of Pb2+ on the peak rise in [Ca2+]i produced by PTH, Pb2+ (1 to 25 microM) had no effect on PTH-induced increments in intracellular cAMP levels. Hence, Pb2+ dissociated the PTH stimulation of adenylate cyclase from PTH effects on [Ca2+]i and shifted the regulation of [Ca2+]i beyond the control of PTH modulation. These observations further extend the hypothesis that an early toxic effect of Pb2+ at the cellular level is perturbation of [Ca2+]i homeostasis.  相似文献   

7.
The role of cAMP and calcium in the induction of ornithine decarboxylase (ODC, E.C.4.1.1.17) activity in the osteogenic sarcoma cell line, UMR 106-01, was studied, with particular interest for parathyroid hormone (PTH). PTH and forskolin dose-dependently induced the ODC activity and the cAMP production. Protein synthesis is involved in the effect of PTH and forskolin on ODC activity but not on cAMP production. Using quin2 we showed that 20 nM PTH and 10 microM forskolin increased the intracellular ionized calcium concentration ([Ca2+]i), thereby offering the possibility for calcium to play a role as cellular mediator in the action of PTH and forskolin in bone. Data obtained with A23187 showed that solely an increase of the [Ca2+]i is not sufficient to stimulate basal or potentiate PTH- and forskolin-induced ODC activity. However, the effects of calcium channel blockers and EGTA on basal and PTH- and forskolin-induced ODC activity point to a specific role for calcium. Moreover, the effects of calcium channel blockers and EGTA on basal and PTH- and forskolin-induced cAMP production indicate that the involvement of calcium in the induction of ODC activity is primarily located at another site than the adenylate cyclase. These data indicate that calcium is involved in the control of basal ODC activity. Furthermore, these data suggest that both cAMP and calcium are involved in the induction of ODC activity by PTH and forskolin. More precisely, ODC activity in UMR 106-01 cells can be induced by PTH and forskolin via a calcium-dependent cAMP messenger system.  相似文献   

8.
Bradykinin (BK) triggered long lasting intracellular free calcium ([Ca2+]i) oscillation in polyoma middle T-transformed cell line MT3 cells but not in the parental NIH3T3 cells. This periodic [Ca2+]i fluctuation was extracellular Ca(2+)-dependent and blocked by pretreatments with Ca2+ channel blockers, SK&F 96365 or CdCl2, suggesting a crucial role of Ca2+ entry across the plasma membrane possibly through a receptor-operated Ca2+ channel. Brief pretreatment with phorbol myristate acetate (PMA) completely abolished the BK-induced [Ca2+]i oscillation, and a protein kinase C (PKC) inhibitor, H-7, reversed the effect of PMA, indicating involvement of PKC. On the other hand, in some cells, oscillatory changes in [Ca2+]i were seen without agonist stimulation. The spontaneous oscillation was also dependent on extracellular Ca2+, but neither treatment with PMA nor H-7 had any effect under the same conditions.  相似文献   

9.
One of the major biological targets of free radical oxidations, prone, for anatomical reasons, to oxidative challenges, is the cardiovascular system. In the present paper the effect of hydrogen peroxide on intracellular ionized calcium ([Ca2+]i) homeostasis in smooth muscle cells (SMC) is studied, the major aim of the study being a better understanding of the protective effect of antioxidants and Ca2+ channel blockers. The exposure of SMC to 300 microM H2O2 induced a rapid increase of [Ca2+]i, followed by a decrease to a new constant level, higher than the basal before the oxidative challenge. When incubation medium was Ca2+ free, the pattern of [Ca2+]i change was different. The rapid increase was still observed, but it was followed by a rapid decrease to a level only slightly above the basal before the oxidative challenge. The involvement of intracellular Ca2+ stores was tested by using vasopressin, a hormone able to induce discharge of inositol 1,4,5-triphosphate-sensitive Ca2+ stores. When H2O2 was added after vasopressin no [Ca2+]i increase was observed. Treatment of cells, in which the stable increase of [Ca2+]i was induced by H2O2, with disulfide reducing compounds, induced a progressive decrease of [Ca2+]i toward the level observed before the oxidative challenge. Calcium channel blockers and antioxidants, on the other hand, effectively prevented the stabilization of [Ca2+]i at the high steady-state, after the internal Ca2+ release phase. Dihydropyridine Ca2+ channel blockers were by far more active than verapamil and among those the most active was lacidipine. Also the antioxidants trolox and N,N'-diphenyl-1,4-phenylenediamine both prevented the [Ca2+]i unbalance. These results suggest that Ca+ channel blockers and antioxidants, although inactive on oxidative stress-induced Ca2+ release from intracellular stores, prevent the increased influx apparently related to a membrane thiol oxidation.  相似文献   

10.
Basal and receptor-regulated changes in cytoplasmic calcium concentration ([Ca2+]i) were monitored by fluorescence analysis in individual rat pituitary gonadotrophs loaded with the calcium-sensitive dye indo-1. Most gonadotrophs exhibited low amplitude spontaneous oscillations in basal [Ca2+]i that were interspersed by quiescent periods and abolished by removal of extracellular Ca2+ or addition of calcium channel blockers. Such random fluctuations in [Ca2+]i, which reflect the operation of a plasma membrane oscillator, were not coupled to basal gonadotropin secretion. The physiological agonist GnRH induced high amplitude [Ca2+]i oscillations; when a threshold [Ca2+]i level was reached, a cytoplasmic oscillator began to generate extremely regular Ca2+ transients. The time required to reach the threshold [Ca2+]i level was inversely correlated with agonist dose; the frequency, but not the amplitude, of agonist-induced Ca2+ spiking increased with agonist concentration. The duration of the latent period decreased and the frequency of Ca2+ spiking increased with the increase in ambient temperature. At high GnRH concentrations, the calcium transients merged into biphasic responses similar to those observed in cell suspensions at all GnRH concentrations. The presence of spontaneous fluctuations in basal [Ca2+]i did not significantly change the patterns of agonist-induced [Ca2+]i responses. Also, removal of extracellular Ca2+ did not interfere with the frequency or amplitude of Ca2+ spikes, but caused the loss of the plateau phase. Blockade of intracellular Ca(2+)-ATPase pumps by thapsigargin was usually accompanied by a subthreshold increase in [Ca2+]i. In such cells the agonist-induced oscillatory pattern was transformed into the biphasic response. In about 10% of the cells, however, high thapsigargin concentrations induced coarse [Ca2+]i oscillations; subsequent stimulation of such cells with GnRH was ineffective. The cytoplasmic oscillatory and biphasic responses may represent a mechanism for differential activation of Ca(2+)-dependent enzymes and their dependent cellular processes, including hormone secretion. The membrane oscillator is probably responsible for refilling of agonist-sensitive pools during and after agonist stimulation.  相似文献   

11.
TRH stimulates a biphasic increase in intracellular free calcium ion, [Ca2+]i. Cells stably transfected with TRH receptor cDNA were used to compare the response in lines with and without L type voltage-gated calcium channels. Rat pituitary GH-Y cells that do not normally express TRH receptors, rat glial C6 cells, and human epithelial Hela cells were transfected with mouse TRH receptor cDNA. All lines bound similar amounts of [3H][N3-Me-His2]TRH with identical affinities (dissociation constant = 1.5 nM). Both pituitary lines expressed L type voltage-gated calcium channels; depolarization with high K+ increased 45Ca2+ uptake 20- to 25-fold and [Ca2+]i 12- to 14-fold. C6 and Hela cells, in contrast, appeared to have no L channel activity. GH4C1 cells responded to TRH with a calcium spike (6-fold) followed by a sustained second phase. When TRH was added after 100 nM nimodipine, an L channel blocker, the initial calcium burst was unaffected but the second phase was abolished. GH-Y cells transfected with TRH receptor cDNA responded to TRH with a 6-fold [Ca2+]i spike followed by a plateau phase (>8 min) in which [Ca2+]i remained elevated or increased. Nimodipine did not alter the peak TRH response or resting [Ca2+]i but reduced the sustained phase, which was eliminated by chelation of extracellular Ca2+. In the transfected glial C6 and Hela cells without calcium channels, TRH evoked transient, monophasic 7- to 9-fold increases in [Ca2+]i, and [Ca2+]i returned to resting levels within 3 min. Thapsigargin stimulated a gradual, large increase in [Ca2+]i in transfected C6 cells, and subsequent addition of TRH caused no further rise. Removal of extracellular Ca2+ from transfected C6 cells shortened the [Ca2+]i responses to TRH, to endothelin 1, and to thapsigargin. The TRH responses were pertussis toxin-insensitive. In summary, TRH can generate a calcium spike in pituitary, C6, and Hela cells transfected with TRH receptor cDNA, but the plateau phase of the [Ca2+]i response is not observed when the receptor is expressed in a cell line without L channel activity.  相似文献   

12.
Using laser image cytometry and Indo-1 fluorescence, we investigated the intracellular free Ca2+ concentration ([Ca2+]i) of confluent A172 human glioblastoma cells stimulated by the BB homodimer of platelet-derived growth factor (PDGF-BB). The shape of the calcium transients and the delay time between stimulation and the beginning of the transient varied considerably. The percentage of responsive cells, the peak [Ca2+]i and the duration of the response were directly related to PDGF-BB dose, while the delay time was inversely related; the maximal response occurred at a PDGF-BB concentration of 20 ng/ml. Studies with EGTA and inorganic calcium-channel blockers (Ni2+, La3+) showed that the increase of [Ca2+]i resulted from initial release of intracellular stores and subsequent calcium influx across the plasma membrane. Opening of calcium channels in the plasma membrane, monitored directly by studying Mn2+ quenching of Indo-1 fluorescence, was stimulated by PDGF-BB and blocked by La3+; the opening occurred 55 +/- 10 s after the initial increase in [Ca2+]i. Therefore, in these tumor cells, intracellular release always occurs before channel opening in the plasma membrane. Depolarization of cells with high extracellular [K+] did not generally induce calcium transients but did decrease calcium influx. L-type calcium-channel blockers (verapamil, nifedipine, and diltiazem) had little or no effect on the calcium influx induced by PDGF-BB. These results indicate that PDGF-BB induces calcium influx by a mechanism independent of voltage-sensitive calcium channels in A172 human glioblastoma cells.  相似文献   

13.
Binding of mitogenic lectins to T lymphocytes results in elevated cytoplasmic Ca2+ concentrations ([Ca2+]i). This change in [Ca2+]i is thought to be essential for cellular proliferation. In addition, the lectins increase the conductance to K+ through voltage-sensitive channels. Based on the inhibitory effect of K+ channel blockers on lectin-induced mitogenesis, it has been suggested that Ca2+ could enter the cells through these activated K+ channels (Chandy, K. G., De Coursey, T. E., Cahalan, M. D., McLaughlin, C., and Gupta, S. (1984) J. Exp. Med. 160, 369-385; Chandy, K. G., De Coursey, T. E., Cahalan, M. D., and Gupta, S. (1985) J. Clin. Immunol. 5, 1-5). This hypothesis was tested experimentally by measuring the effect of activation or blockade of K+ channels on [Ca2+]i using quin-2 and indo-1 and by determining the effect of K+ channel blockers on lectin-induced proliferation. We found that: depolarization of the membrane, which is expected to open the K+ channels, failed to increase [Ca2+]i, K+ channel blockers such as tetraethylammonium and 4-aminopyridine had only a marginal effect on the lectin-induced increase in [Ca2+]i, and the inhibitory effect of K+ channel blockers on proliferation was found to be nonspecific, occurring also when proliferation was triggered by phorbol esters under conditions where [Ca2+]i is not elevated. It is concluded that the lectin-induced changes in [Ca2+]i are not mediated by the opening of voltage-gated K+ channels.  相似文献   

14.
While the stimulatory effect of parathyroid hormone (PTH) on osteoblast-like cell adenylate cyclase is well known, the effect of PTH on cytosolic calcium ion ([Ca2+]i) mobilization is controversial, one group finding no effect but others reporting various increases. We investigated the effects on [Ca2+]i of synthetic rat PTH fragment 1-34 (rPTH(1-34)) and two bovine PTH analogues that inhibit PTH's stimulation of adenylate cyclase (bovine 8,18Nle, 34Tyr-PTH(3-34) and 34Tyr-PTH(7-34]. [Ca2+]i was measured before, during, and after exposure to PTH analogues in perifused, attached osteoblast-like rat osteosarcoma cells (ROS 17/2.8) that had been scrape-loaded with the luminescent photoprotein aequorin. Resting [Ca2+]i was 0.094 +/- 0.056 microM (mean +/- S.D., n = 103) and rose in a time- and dose-specific way after exposure to rPTH(1-34). At 10(-10) M rPTH(1-34), [Ca2+]i rose 100% within 30 s to a plateau; higher concentrations of PTH yielded increasing initial peaks of [Ca2+]i followed by lower plateaus. At 10(-6) M, the initial peak was 5-fold basal, or 0.64 +/- 0.07 microM. Both analogues of PTH were at least partial agonists for [Ca2+]i mobilization and did not reduce peak [Ca2+]i when co-perifused with rPTH(1-34). However, the analogues did reduce significantly rPTH(1-34)-induced cAMP accumulation and did not increase cAMP accumulation by themselves. Thus, rPTH(1-34) strongly mobilizes [Ca2+]i in ROS 17/2.8 cells, at near-physiologic concentrations. Failure of the PTH analogues to block the effect of PTH on [Ca2+]i while inhibiting the effect on cAMP accumulation suggests separate pathways for PTH activation of adenylate cyclase and mobilization of calcium.  相似文献   

15.
Isolated pancreatic acini were loaded with the calcium selective fluorescent indicator, quin-2. Measurements of cellular K+ content and lactic dehydrogenase release indicated that cell viability was not affected by quin-2 loading. The concentration of intracellular free calcium of unstimulated acinar cells was calculated to be 180 +/- 4 nM. When cells suspended in media containing millimolar calcium were exposed to the secretagogues carbachol and cholecystokinin a rapid increase in [Ca2+]i occurred. Both the amplitude and rate of rise of the concentration increase were dose dependent with [Ca2+]i reaching a maximum of 860 +/- 41 nM. The dose-response relationship coincides with the known concentration dependence of the stimulation of amylase release by these agents. In the absence of extracellular calcium, carbachol was still able to elicit a rise in [Ca2+]i. These studies indicate that pancreatic secretagogues induce an increase in [Ca2+]i of acinar cells, both in the presence or absence of extracellular calcium.  相似文献   

16.
Single pituitary gonadotrophs exhibit episodes of spontaneous fluctuations in cytoplasmic calcium concentration [( Ca2+]i) due to entry through voltage-sensitive calcium channels (VSCC) and show prominent agonist-induced oscillations in [Ca2+]i that are generated by periodic release of intracellular Ca2+. Gonadotropin releasing hormone (GnRH) elicited three types of Ca2+ responses: at low doses, subthreshold, with an increase in basal [Ca2+]i; at intermediate doses, oscillatory, with dose-dependent modulation of spiking frequency; and at high doses, biphasic, without oscillations. Elevation of [Ca2+]i or activation of protein kinase C (PKC) did not influence the frequency of agonist-induced [Ca2+]i spikes but caused dose-dependent reductions in amplitude for all types of Ca2+ response. Stimulation of transient Ca2+ spikes by GnRH was followed by inhibition of the spontaneous fluctuations. GnRH also reduced the ability of high extracellular K+ to promote Ca2+ influx through VSCC. Activation of PKC by phorbol esters stimulated Ca2+ influx in quiescent cells but inhibited influx when VSCC were already activated, either spontaneously or by high K+. In contrast to their biphasic actions on [Ca2+]i, phorbol esters exerted only stimulatory actions on gonadotropin release, even when Ca2+ influx was concomitantly reduced. However, pituitary cells had to be primed with an appropriate [Ca2+]i level before exocytosis could be amplified by PKC. In PKC-depleted cells, all actions of phorbol esters on Ca2+ entry and amplitude modulation, and on LH release, were abolished. GnRH-induced LH secretion was also significantly reduced, especially the plateau phase of the response. These data indicate that Ca2+ and PKC serve as interacting signals during the cascade of cellular events triggered by agonist stimulation, in which Ca2+ turns cell responses on or off, and PKC amplifies the positive and negative effects of Ca2+.  相似文献   

17.
When dispersed chief cells from guinea pig stomach were first incubated with carbachol, washed, and then reincubated with carbachol in fresh incubation solution, the stimulation of pepsinogen secretion and the rise in intracellular calcium concentration during the second incubation were reduced. Carbachol did not cause residual enzyme secretion, but the same range of concentrations that causes enzyme secretion caused desensitization that was rapid, temperature dependent, and reversible with time. Preincubation with carbachol caused approximately a 65% reduction in enzyme secretion stimulated during a subsequent incubation with this agonist, but the potency of carbachol was unaffected. Prior exposure to carbachol also reduced subsequent stimulation caused by cholecystokinin (CCK-8), gastrin I, ionophore A23187, or 12-O-tetradecanoylphorbol 13-acetate but did not alter stimulation by any agonist that increases cellular cAMP. Carbachol pretreatment of Fura-loaded chief cells caused a threefold increase in the EC50 for carbachol-stimulated [Ca2+]i and approximately a 30% reduction in the maximal rise in [Ca2+]i in response to carbachol or CCK-8. Inhibition of [N-methyl-3H] scopolamine binding by carbachol following carbachol pretreatment indicated that modulation of receptor affinity or number did not account for functional desensitization. These data indicate that carbachol causes heterologous desensitization of pepsinogen secretion stimulated by agonists that mobilize cellular Ca2+ or activate protein kinase C through a postreceptor action and suggest that an attenuated rise in chief cell calcium is one mechanism mediating the desensitization of enzyme secretion.  相似文献   

18.
We have used microspectrofluorometry and video imaging techniques in order to study and compare the changes in intracellular calcium concentrations [( Ca2+]i) of individual Fura-2 loaded glomerulosa cells cultured for three days and stimulated either with angiotensin II (AT), K+, or adrenocorticotropin (ACTH). As previously demonstrated for freshly isolated cells, K+ ion induces an immediate increase in [Ca2+]i, although AT induces a biphasic response, characterized by an initial transient spike, followed by a sustained plateau. In this study, we demonstrate, for the first time, that ACTH is able to induce a [Ca2+]i increase in cultured glomerulosa cells from rat and bovine sources. Moreover, it is clear that the pattern of [Ca2+]i increase elicited by ACTH is different from that observed with AT. In most cases, addition of ACTH leads to a slow increase in [Ca2+]i after a long latency period ranging from 10-15 min, which could be correlated to cAMP time-production. The present results show that: (a) in the absence of extracellular Ca2+, ACTH does not increase [Ca2+]i; (b) the response develops slowly and cases immediately after [Ca2+]e depletion or addition of calcium channel blockers, such as nifedipine or omega-conotoxin; (c) the addition of the calcium channel agonist Bay K 8644 enhances the ACTH response; (d) the cAMP analog, 8-Br-cAMP, induces an increase in [Ca2+]i similar to that observed with ACTH, which is also dependent of the presence of calcium in the extracellular medium; (e) time-production of ACTH-induced cAMP follows quite well the increase in [Ca2+]i; (f) Bay K 8644 also enhances the 8-Br-cAMP induced increase in [Ca2+]i; and (g) ACTH-induced Cai response is inhibited by the specific protein kinase A blocker, HA1004. These observations, combined with previous results obtained on the effects of ACTH on calcium currents and action potentials, suggest that the [Ca2+]i increase induced by ACTH results from a calcium influx through dihydropyridine and omega-conotoxin sensitive calcium channels, which need to be phosphorylated by cAMP for full activation. The use of video-imaging techniques has allowed us to examine the spatial distribution of changes in [Ca2+]i in single cells. The ability to simultaneously record images of a number of cells confirm the heterogeneity of cellular responses, and corroborate results obtained through photocounting only. Our results indicate that ACTH initially increases [Ca2+]i locally beneath the cell membrane and throughout the cell thereafter, whereas angiotensin II elicits a more prominent effect in certain regions of the cell and eventually extends to the entire cell surface.  相似文献   

19.
12(R)-hydroxyeicosatetraenoic acid (HETE) shows biphasic increase in cytosolic free calcium concentration ([Ca2+]i) in rabbit and human neutrophils; the initial transient phase and the continuous falling phase. 12(S)-HETE was less potent in both species. BN50739, a platelet-activating factor (PAF) receptor antagonist, inhibited both phases of 12(R)-HETE-induced [Ca2+]i rise but did not affect leukotriene B4 (LTB4)-induced [Ca2+]i rise. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a PAF synthesis inhibitor, and manoalide, a phospholipase A2 inhibitor, reduced 12(R)-HETE-induced [Ca2+]i rise. These blockers inhibited the continuous phase of [Ca2+]i rise induced by N-formyl-methionyl-leucyl-phenylalanine (FMLP) with little effect on the initial phase. It had no significant effect on LTB4-induced [Ca2+]i rise. SC-41930, a LTB4-receptor antagonist, did not block 12-HETE-induced [Ca2+]i rise. In 12(R)-HETE-, FMLP- and LTB4-stimulated cells, accumulations of cell-associated PAF and released PAF were detected but not in unstimulated cells. BN50739 did not affect the accumulation of cell-associated PAF and release of PAF in 12(R)-HETE-stimulated cells. These results suggest that 12(R)-HETE-induced and partially, FMLP-induced, but not LTB4-induced [Ca2+]i rise are mediated by PAF, which is produced and released by stimulation of the cells by 12(R)-HETE and FMLP, respectively.  相似文献   

20.
Beauvericin, a cyclic hexadepsipeptide, is a mycotoxin that can induce cell death in human lymphoblastic leukemia CCRF-CEM cells. Our previous data have shown that beauvericin induces cell death in CCRF-CEM cells in a dose- and time-dependent manner, and that this beauvericin-induced cell death can be prevented by administration of intracellular calcium chelator-BAPTA. Therefore, the intracellular Ca2+ concentration ([Ca2+]i) may play an important role in beauvericin-induced cell death in CCRF-CEM cells. In this study, the effect of beauvericin on [Ca2+]i and the possible mechanism responsible for the changes of [Ca2+]i in CCRF-CEM cells were investigated. Beauvericin caused a rapid and sustained [Ca2+]i rise in a dose-dependent manner. Excess extracellular Ca2+ facilitated beauvericin-induced [Ca2+]i rise by adding 1 mM CaCl2 in the bathing medium. On the other hand, beauvericin-induced [Ca2+]i rise was prevented in Ca2+-free Tyrode's solution by 200 microM EGTA. In addition, beauvericin-induced [Ca2+]i rise was also attenuated by intracellular Ca2+ chelator-BAPTA/AM. It is worthy to note that neither the voltage-dependent Ca2+ channel blocker, nimodipine, nor depletion of intracellular Ca2+ with thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, has any effect on beauvericin-induced [Ca2+]i rise. The data from present study indicate that beauvericin acts as a potent Ca2+ mobilizer by stimulating extracellular Ca2+ influx CCRF-CEM cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号