首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete mitochondrial genomes of two microbats, the horseshoe bat Rhinolophus pumilus, and the Japanese pipistrelle Pipistrellus abramus, and that of an insectivore, the long-clawed shrew Sorex unguiculatus, were sequenced and analyzed phylogenetically by a maximum likelihood method in an effort to enhance our understanding of mammalian evolution. Our analysis suggested that (1) a sister relationship exists between moles and shrews, which form an eulipotyphlan clade; (2) chiropterans have a sister-relationship with eulipotyphlans; and (3) the Eulipotyphla/Chiroptera clade is closely related to fereuungulates (Cetartiodactyla, Perissodactyla and Carnivora). Divergence times on the mammalian tree were estimated from consideration of a relaxed molecular clock, the amino acid sequences of 12 concatenated mitochondrial proteins and multiple reference criteria. Moles and shrews were estimated to have diverged approximately 48 MyrBP, and bats and eulipotyphlans to have diverged 68 MyrBP. Recent phylogenetic controversy over the polyphyly of microbats, the monophyly of rodents, and the position of hedgehogs is also examined. Received: 21 December 2000 / Accepted: 16 February 2001  相似文献   

2.
Complete sequences of mitochondrial DNA (mtDNA) are useful for the reconstruction of phylogenetic trees of mammals and, in particular, for inferring higher-order relationships in mammals. In this study, we determined the complete sequence (16,705 bp) of the mtDNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). We analyzed this sequence phylogenetically by comparing it with the complete sequence of mtDNAs of 35 mammals in an effort to reevaluate the enigmatic relationship between Megachiroptera and Microchiroptera and the relationships between them and other mammals. Maximum-likelihood analysis of 12 concatenated mitochondrial proteins from 36 mammals strongly suggested the monophyly of the order Chiroptera and its close relationship to Fereuungulata (Carnivora + Perissodactyla + Cetartiodactyla). We estimated that megabats and microbats diverged approximately 58 MyrBP and discussed the origin and early evolution of Chiroptera based on our findings. Received: 28 January 2000 / Accepted: 30 June 2000  相似文献   

3.
We sequenced the protamine P1 gene (ca. 450 bp) from 20 bats (order Chiroptera) and the flying lemur (order Dermoptera). We compared these sequences with published sequences from 19 other mammals representing seven orders (Artiodactyla, Carnivora, Cetacea, Perissodactyla, Primates, Proboscidea, and Rodentia) to assess structure, base compositional bias, and phylogenetic utility. Approximately 80% of second codon positions were guanine, resulting in protamine proteins containing a high frequency of arginine residues. Our data indicate that codon usage for arginine differs among higher mammalian taxa. Parsimony analysis of 40 species representing nine orders produced a well-resolved tree in which most nodes were supported strongly, except at the lowest taxonomic levels (e.g., within Artiodactyla and Vespertilionidae). These data support monophyly of several taxa proposed by morphologic and molecular studies (all nine orders: Laurasiatheria, Cetartiodactytla, Yangochiroptera, Noctilionoidea, Rhinolophoidea, Vespertilionoidea, Phyllostomidae, Natalidae, and Vespertilionidae) and, in agreement with recent molecular studies, reject monophyly of Archonta, Volitantia, and Microchiroptera. Bats were sister to a clade containing Perissodactyla, Carnivora, and Cetartiodactyla, and, although not unequivocally, rhinolophoid bats (traditional microchiropterans) were sister to megachiropterans. Sequences of the protamine P1 gene are useful for resolving relationships at and above the familial level in bats, and generally within and among mammalian orders, but with some drawbacks. The coding and intervening sequences are small, producing few phylogenetically informative characters, and aligning the intron is difficult, even among closely related families. Given these caveats, the protamine P1 gene may be important to future systematic studies because its functional and evolutionary constraints differ from other genes currently used in systematic studies.  相似文献   

4.
Zhou X  Xu S  Xu J  Chen B  Zhou K  Yang G 《Systematic biology》2012,61(1):150-164
Although great progress has been made in resolving the relationships of placental mammals, the position of several clades in Laurasiatheria remain controversial. In this study, we performed a phylogenetic analysis of 97 orthologs (46,152 bp) for 15 taxa, representing all laurasiatherian orders. Additionally, phylogenetic trees of laurasiatherian mammals with draft genome sequences were reconstructed based on 1608 exons (2,175,102 bp). Our reconstructions resolve the interordinal relationships within Laurasiatheria and corroborate the clades Scrotifera, Fereuungulata, and Cetartiodactyla. Furthermore, we tested alternative topologies within Laurasiatheria, and among alternatives for the phylogenetic position of Perissodactyla, a sister-group relationship with Cetartiodactyla receives the highest support. Thus, Pegasoferae (Perissodactyla + Carnivora + Pholidota + Chiroptera) does not appear to be a natural group. Divergence time estimates from these genes were compared with published estimates for splits within Laurasiatheria. Our estimates were similar to those of several studies and suggest that the divergences among these orders occurred within just a few million years.  相似文献   

5.
A data set of complete mitochondrial cytochrome b and 12S rDNA sequences is presented here for 17 representatives of Artiodactyla and Cetacea, together with potential outgroups (two Perissodactyla, two Carnivora, two Tethytheria, four Rodentia, and two Marsupialia). We include seven sequences not previously published from Hippopotamidae (Ancodonta) and Camelidae (Tylopoda), yielding a total of nearly 2.1 kb for both genes combined. Distance and parsimony analyses of each gene indicate that 11 clades are well supported, including the artiodactyl taxa Pecora, Ruminantia (with low 12S rRNA support), Tylopoda, Suina, and Ancodonta, as well as Cetacea, Perissodactyla, Carnivora, Tethytheria, Muridae, and Caviomorpha. Neither the cytochrome b nor the 12S rDNA genes resolve the relationships between these major clades. The combined analysis of the two genes suggests a monophyletic Cetacea +Artiodactyla clade (defined as "Cetartiodactyla"), whereas Perissodactyla, Carnivora, and Tethytheria fall outside this clade. Perissodactyla could represent the sister taxon of Cetartiodactyla, as deduced from resampling studies among outgroup lineages. Cetartiodactyla includes five major lineages: Ruminantia, Tylopoda, Suina, Ancodonta, and Cetacea, among which the phylogenetic relationships are not resolved. Thus, Suiformes do not appear to be monophyletic, justifying their split into the Suina and Ancodonta infraorders. An association between Cetacea and Hippopotamidae is supported by the cytochrome b gene but not by the 12S rRNA gene. Calculation of divergence dates suggests that the Cetartiodactyla could have diverged from other Ferungulata about 60 MYA.   相似文献   

6.
Some previous analysis of mitochondrial proteins strongly support the Carnivora/Perissodactyla grouping excluding Cetartiodactyla (Artiodactyla + Cetacea) as an outgroup, but the support of the hypothesis remains equivocal from the analysis of several nuclear-encoded proteins. In order to evaluate the strength of the support by mitochondrial proteins, phylogenetic relationship among Carnivora, Perissodactyla, and Cetartiodactyla was estimated with the ML method by using the updated data set of the 12 mitochondrial proteins with several alternative models. The analyses demonstrate that the phylogenetic inference depends on the model used in the ML analysis; i.e., whether the site-heterogeneity is taken into account and whether the rate parameters are estimated for each individual proteins or for the concatenated sequences. Although the analysis of concatenated sequences strongly supports the Carnivora/Perissodactyla grouping, the total evaluation of the separate analyses of individual proteins, which approximates the data better than the concatenated analysis, gives only ambiguous results, and therefore it is concluded that more data are needed to resolve this trichotomy.  相似文献   

7.
Higher-level relationships within, and the root of Placentalia, remain contentious issues. Resolution of the placental tree is important to the choice of mammalian genome projects and model organisms, as well as for understanding the biogeography of the eutherian radiation. We present phylogenetic analyses of 63 species representing all extant eutherian mammal orders for a new molecular phylogenetic marker, a 1.3kb portion of exon 26 of the apolipoprotein B (APOB) gene. In addition, we analyzed a multigene concatenation that included APOB sequences and a previously published data set (Murphy et al., 2001b) of three mitochondrial and 19 nuclear genes, resulting in an alignment of over 17kb for 42 placentals and two marsupials. Due to computational difficulties, previous maximum likelihood analyses of large, multigene concatenations for placental mammals have used quartet puzzling, less complex models of sequence evolution, or phylogenetic constraints to approximate a full maximum likelihood bootstrap. Here, we utilize a Unix load sharing facility to perform maximum likelihood bootstrap analyses for both the APOB and concatenated data sets with a GTR+Gamma+I model of sequence evolution, tree-bisection and reconnection branch-swapping, and no phylogenetic constraints. Maximum likelihood and Bayesian analyses of both data sets provide support for the superordinal clades Boreoeutheria, Euarchontoglires, Laurasiatheria, Xenarthra, Afrotheria, and Ostentoria (pangolins+carnivores), as well as for the monophyly of the orders Eulipotyphla, Primates, and Rodentia, all of which have recently been questioned. Both data sets recovered an association of Hippopotamidae and Cetacea within Cetartiodactyla, as well as hedgehog and shrew within Eulipotyphla. APOB showed strong support for an association of tarsier and Anthropoidea within Primates. Parsimony, maximum likelihood and Bayesian analyses with both data sets placed Afrotheria at the base of the placental radiation. Statistical tests that employed APOB to examine a priori hypotheses for the root of the placental tree rejected rooting on myomorphs and hedgehog, but did not discriminate between rooting at the base of Afrotheria, at the base of Xenarthra, or between Atlantogenata (Xenarthra+Afrotheria) and Boreoeutheria. An orthologous deletion of 363bp in the aligned APOB sequences proved phylogenetically informative for the grouping of the order Carnivora with the order Pholidota into the superordinal clade Ostentoria. A smaller deletion of 237-246bp was diagnostic of the superordinal clade Afrotheria.  相似文献   

8.
Despite great progress over the past decade, some portions of the mammalian tree of life remain unresolved. In particular, relationships among the different orders included within the supraordinal group Laurasiatheria have been proven difficult to determine, and have received poor support in the vast majority of phylogenomic studies of mammalian systematics. We estimated interordinal relationships within Laurasiatheria using sequence data from 3733 protein-coding genes. Our study included data from from 11 placental mammals, corresponding to five of the six orders of Laurasiatheria, plus five outgroup species. Ingroup and outgroup species were chosen to maximize the number single-copy ortholog genes for which sequence data was available for all species in our study. Phylogenetic analyses of the concatenated dataset using maximum likelihood and Bayesian methods resulted on an identical and well supported topology in all alignment strategies compared. Our analyses provide high support for the sister relationship between Chiroptera and Cetartiodactyla and also provide support for placing Perissodactyla as sister to Carnivora. We obtained maximal estimates of bootstrap support (100%) and posterior probability (1.00) for all nodes within Laurasiatheria. Our study provides a further demonstration of the utility of very large and conserved genomic dataset to clarify our understanding of the evolutionary relationships among mammals.  相似文献   

9.
The evolutionary relationships of the various orders of placental mammals remain an issue of uncertainty and controversy. Molecular studies of mammalian phylogeny at the DNA level that include more than just a few orders are still relatively meager. Here we report results on mammalian phylogeny deduced from the coding sequence of the single-copy nuclear gene for the interphotoreceptor retinoid binding protein (IRBP). Analysis of 13 species representing eight eutherian orders and one marsupial yielded results that falsify the hypothesis that megachiropteran bats are "flying primates," only convergently resembling microchiropteran bats. Instead, in agreement with more traditional views, as well as those from other recent molecular studies, the results strongly support a monophyletic Chiroptera (micro- and megabats grouped together). The IRBP results also offer some rare molecular support for the Glires concept, in which rodents and lagomorphs form a superordinal grouping. Also in congruence with other recent molecular evidence, IRBP sequences do not support the view of a superorder Archonta that includes Chiroptera along with Dermoptera (flying lemur), Scandentia (tree shrew), and Primates. IRBP was not however, without its shortcomings as a molecular phylogenetic system: high levels of homoplasy, evident in the marsupial outgroup, did not allow us to properly root the tree, and several of the higher level eutherian clades were only weakly supported (e.g., a Carnivora/Chiroptera clade and an Artiodactyla/Carnivora/Chiroptera clade). We suggest that these shortcomings may be diminished as the phylogenetic density of the data set is increased.  相似文献   

10.
The sequence (16,829 nt) of the complete mitochondrial genome of the greater Indian rhinoceros, Rhinoceros unicornis, was determined. Like other perissodactyls studied (horse and donkey) the rhinoceros demonstrates length variation (heteroplasmy) associated with different numbers of repetitive motifs in the control region. The 16,829-nt variety of the molecule includes 36 identical control region motifs. The evolution of individual peptide-coding genes was examined by comparison with a distantly related perissodactyl, the horse, and the relationships among the orders Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) were examined on the basis of concatenated sequences of 12 mitochondrial peptide-coding genes. The phylogenetic analyses grouped Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) into a superordinal clade and within this clade a sister group relationship was recognized between Carnivora and Perissodactyla to the exclusion of Artiodactyla (+ Cetacea) . On the basis of the molecular difference between the rhinoceros and the horse and by applying as a reference to Artiodactyl/Cetacean divergence set at 60 million years ago (MYA), the evolutionary divergence between the families Rhinocerotidae and Equidae was dated to approximately 50 MYA.   相似文献   

11.
Although to date the phylogenetic position of the provisional order Eulipotyphla has been assessed by various molecular markers, it has not been conclusively clarified due to low statistical supporting values and inconsistent results. To clarify the phylogenetic position of Eulipotyphla, we cloned cDNAs for pepsinogens A and C from five mammalian species belonging to four different orders and determined their nucleotide sequences. Molecular phylogenetic analysis based on the 1st and 2nd codon positions of the protein-coding region of cDNA sequences strongly supported the close relationship between Eulipotyphla and Chiroptera. Carnivora was found to be a sister group to these two orders. The monophyly of the order Rodentia and that of the cohort Glires (Rodentia and Lagomorpha) was also shown by the present phylogenetic trees of pepsinogens.  相似文献   

12.
The complete mitochondrial (mt) genome of the mole Talpa europaea was sequenced and included in phylogenetic analyses together with another lipotyphlan (insectivore) species, the hedgehog Erinaceus europaeus, and 22 other eutherian species plus three outgroup taxa (two marsupials and a monotreme). The phylogenetic analyses reconstructed a sister group relationship between the mole and fruit bat Artibeus jamaicensis (order Chiroptera). The Talpa/Artibeus clade constitutes a sister clade of the cetferungulates, a clade including Cetacea, Artiodactyla, Perissodactyla, and Carnivora. A monophyletic relationship between the hedgehog and the mole was significantly rejected by maximum parsimony and maximum likelihood. Consistent with current systematic schemes, analyses of complete cytochrome b genes including the shrew Sorex araneus (family Soricidae) revealed a close relationship between Talpidae and Soricidae. The analyses of complete mtDNAs, along with the findings of other insectivore studies, challenge the maintenance of the order Lipotyphla as a taxonomic unit and support the elevation of the Soricomorpha (with the families Talpidae and Soricidae and possibly also the Solenodontidae and Tenrecidae) to the level of an order, as previously proposed in some morphological studies.  相似文献   

13.
Reasonably correct phylogenies are fundamental to the testing of evolutionary hypotheses. Here, we present phylogenetic findings based on analyses of 67 complete mammalian mitochondrial (mt) genomes. The analyses, irrespective of whether they were performed at the amino acid (aa) level or on nucleotides (nt) of first and second codon positions, placed Erinaceomorpha (hedgehogs and their kin) as the sister group of remaining eutherians. Thus, the analyses separated Erinaceomorpha from other traditional lipotyphlans (e.g., tenrecs, moles, and shrews), making traditional Lipotyphla polyphyletic. Both the aa and nt data sets identified the two order-rich eutherian clades, the Cetferungulata (comprising Pholidota, Carnivora, Perissodactyla, Artiodactyla, and Cetacea) and the African clade (Tenrecomorpha, Macroscelidea, Tubulidentata, Hyracoidea, Proboscidea, and Sirenia). The study corroborated recent findings that have identified a sister-group relationship between Anthropoidea and Dermoptera (flying lemurs), thereby making our own order, Primates, a paraphyletic assembly. Molecular estimates using paleontologically well-established calibration points, placed the origin of most eutherian orders in Cretaceous times, 70-100 million years before present (MYBP). The same estimates place all primate divergences much earlier than traditionally believed. For example, the divergence between Homo and Pan is estimated to have taken place approximately 10 MYBP, a dating consistent with recent findings in primate paleontology.  相似文献   

14.
Higher-level relationships among placental mammals, as well as the historical biogeography of this group against the backdrop of continental fragmentation and reassembly, remain poorly understood. Here, we analyze two independent molecular data sets that represent all placental orders. The first data set includes six genes (A2AB, IRBP, vWF, 12S rRNA, tRNA valine, 16S rRNA; total = 5.71 kb) for 26 placental taxa and two marsupials; the second data set includes 2.95 kb of exon 11 of the BRCA1 gene for 51 placental taxa and four marsupials. We also analyzed a concatenation of these data sets (8.66 kb) for 26 placentals and one marsupial. Unrooted and rooted analyses were performed with parsimony, distance methods, maximum likelihood, and a Bayesian approach. Unrooted analyses provide convincing support for a fundamental separation of placental orders into groups with southern and northern hemispheric origins according to the current fossil record. On rooted trees, one or both of these groups are monophyletic depending on the position of the root. Maximum likelihood and Bayesian analyses with the BRCA1 and combined 8.66 kb data sets provide strong support for the monophyly of the northern hemisphere group (Boreoeutheria). Boreoeutheria is divided into Laurasiatheria (Carnivora + Cetartiodactyla + Chiroptera + Eulipotyphla + Perissodactyla + Pholidota) and Euarchonta (Dermoptera + Primates + Scandentia) + Glires (Lagomorpha + Rodentia). The southern hemisphere group is either monophyletic or paraphyletic, depending on the method of analysis used. Within this group, Afrotheria (Proboscidea + Sirenia + Hyracoidea + Tubulidentata + Macroscelidea + Afrosoricida) is monophyletic. A unique nine base-pair deletion in exon 11 of the BRCA1 gene also supports Afrotheria monophyly. Given molecular dates that suggest that the southern hemisphere group and Boreoeutheria diverged in the Early Cretaceous, a single trans-hemispheric dispersal event may have been of fundamental importance in the early history of crown-group Eutheria. Parallel adaptive radiations have subsequently occurred in the four major groups: Laurasiatheria, Euarchonta + Glires, Afrotheria, and Xenarthra.  相似文献   

15.
Phylogenetic relationships of 25 mammalian species representing 17 of the 18 eutherian orders were examined using DNA sequences from a 1.2-kb region of the 5′ end of exon 1 of the single-copy nuclear gene known as interphotoreceptor retinoid binding protein (IRBP). A wide variety of methods of analysis of the DNA sequence, and of the translated products, all supported a five-order clade consisting of elephant shrew (Macroscelidea)/aardvark (Tubulidentata)/and the paenungulates (hyracoids, sirenians, and elephants), with bootstrap support in all cases of 100%. The Paenungulata was also strongly supported by these IRBP data. In the majority of analyses this monophyletic five-order grouping was the first branch off the tree after the Edentata. These results are highly congruent with two other recent sources of molecular data. Another superordinal grouping, with similar 100% bootstrap support in all of the same wide-ranging types of analyses, was Artiodactyla/Cetacea. Other superordinal affinities, suggested by the analyses, but with less convincing support, included a Perissodactyla/Artiodactyla/Cetacea clade, an Insectivora/Chiroptera clade, and Glires (an association of rodents and lagomorphs). Correspondence to: M. J. Stanhope  相似文献   

16.
The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of suborder Suiformes. However, the monophyly of the suborder Ruminantia was not supported, and the branching pattern between Cetacea and the artiodactyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced, but the relationships between Artiodactyla, Cetacea, and Perissodactyla remained unresolved. Nevertheless, we found no support for a Perissodactyla + Hyracoidea clade, neither with distance approach, nor with parsimony reconstruction. The 12S rRNA was useful to solve intraordinal relationships among Ungulata, but it seemed to harbor too few informative positions to decipher the bushlike radiation of some Ungulata orders, an event which has most probably occurred in a short span of time between 55 and 70 MYA. Correspondence to: E. Douzery  相似文献   

17.
Molecular phylogenetic study on the origin and evolution of Mustelidae   总被引:3,自引:0,他引:3  
The family Mustelidae, which consists of Mustelinae, Lutrinae, Melinae, and Taxidiinae, is the largest family among Carnivora and is a highly diverse group. Recent molecular phylogenetic studies have clarified the phylogenetic relations among Mustelidae, but there remain several unresolved problems, particularly concerning the deep branchings. Whereas many studies support the monophyly of Mustelidae+Procyonidae among Musteloidea, the relations between Mustelidae+Procyonidae, Ailuridae, and Miphitidae are still unclear. To address these problems, we inferred a tree on the basis of the sequences of mitochondrial genomes and of multiple nuclear genes using the maximum likelihood method. Our results strongly support the hypothesis that the Taxidiinae branched at first, followed by the branching of the Melinae. After that, Mustelinae diversified, and Lutrinae evolved within Mustelinae. With respect to the deep branchings in Musteloidea, the Ailuridae/Mephitidae monophyly tree and the Mephitidae-basal tree are indistinguishable in log-likelihood score, and this problem remains unresolved.  相似文献   

18.
Novel members of the subfamily Gammaherpesvirinae, hosted by eight mammalian species from six orders (Primates, Artiodactyla, Perissodactyla, Carnivora, Scandentia, and Eulipotyphla), were discovered using PCR with pan-herpesvirus DNA polymerase (DPOL) gene primers and genus-specific glycoprotein B (gB) gene primers. The gB and DPOL sequences of each virus species were connected by long-distance PCR, and contiguous sequences of approximately 3.4 kbp were compiled. Six additional gammaherpesviruses from four mammalian host orders (Artiodactyla, Perissodactyla, Primates, and Proboscidea), for which only short DPOL sequences were known, were analyzed in the same manner. Together with available corresponding sequences for 31 other gammaherpesviruses, alignments of encoded amino acid sequences were made and used for phylogenetic analyses by maximum-likelihood and Bayesian Monte Carlo Markov chain methods to derive a tree which contained two major loci of unresolved branching details. The tree was rooted by parallel analyses that included alpha- and betaherpesvirus sequences. This gammaherpesvirus tree contains 11 major lineages and presents the widest view to date of phylogenetic relationships in any subfamily of the Herpesviridae, as well as the most complex in the number of deep lineages. The tree's branching pattern can be interpreted only in part in terms of the cospeciation of virus and host lineages, and a substantial incidence of the interspecies transfer of viruses must also be invoked.  相似文献   

19.
Recent large-scale nuclear DNA phylogenies have supported unconventional interordinal relationships among modern eutherians as well as divergence dates (100 mya) that substantially predate the first appearance of fossils from modern eutherians near the Cretaceous/Cenozoic (K/T) boundary (65-70 mya). For comparison to the nuclear data, I analyzed 12 complete mitochondrial DNA (mtDNA) protein-coding genes (10,677 bp) from 53 eutherian taxa, using maximum-likelihood methods to estimate model parameters (GTR + I + ) and to optimize topology and branch-length estimates. Although closely resembling the nuclear DNA trees, the mtDNA maximum-likelihood tree is just one of seven statistically indistinguishable ( lnL 1.747) trees, each suggesting different evolutionary relationships. This 53-taxon data set and another including 56 taxa provide no statistically significant support for a monophyletic afrotherian clade. In fact, these mitochondrial DNA sequences fail to support the monophyly of three putative eutherian divisions suggested by the nuclear data (Afrotheria, Laurasiatheria or Euarchontoglires). By comparison to well-supported branches describing relationships among families, those describing interordinal relationships are extremely short and only tenuously supported. Neither these sequences, nor sequences simulated under a known tree, fully resolve any interordinal relationship. Even simulated sequences that are twice as long (22kb) as mtDNA protein-coding genes are too short and too saturated to resolve the deepest and shortest interordinal relationships. Further, the mammalian mtDNA sequences appear to depart significantly from molecular-clock and quartet dating assumptions. Unlike recent nuclear DNA studies, I find that mtDNA genes, by themselves, are inadequate to describe relationships or divergence times at the base of the eutherian tree.  相似文献   

20.
Abstract— Genealogical reconstructions carried out by the parsimony method on protein amino acid and DNA nucleotide sequence data are providing fresh evidence on cladistic branching patterns at taxonomic levels from the classes of Vertebrata and orders of Eutheria to the genera of Hominoidea. Minimum length trees constructed from amino acid sequence data group Mammalia with Archosauria (i.e., Aves plus Crocodilia), Amniota with Amphibia, and Tetrapoda with Teleostei. Within Mammalia, Edentata and Paenungulata (e.g., Proboscidea) appear as the most anciently separated from other eutherians. Another superordinal eutherian clade consists of Artiodactyla, Cetacea, and Perissodactyla. A third consistently contains Primates, Lagomorpha, and Tupaia. The cladistic positions of such orders as Carnivora, Chiroptera, Insectivora, and Rodentia are not well resolved by the currently still sparse body of sequence data. However, recent dramatic progress in the technology of gene cloning and nucleotide sequencing has opened the way for so enlarging the body of sequence data that it should become possible to solve almost any problem concerning the phylogenetic systematice of extant mammals. An example is provided by hominoid genera. Minimum length trees constructed from mitochondrial DNA nucleotide sequence data very strongly group Pan, Homo , and Gorilla into Homininae and then join Homininae and Ponginae (pongo) into Hominidae as the sister family of Hylobatidae (Hylobates). Resolution of the hominine trichotomy into two dichotomous branchings should be forthcoming as kilobase sequencing of nuclear genes progresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号