首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligand-induced receptor oligomerization is a widely accepted mechanism for activation of cell-surface receptors. We investigated ligand-receptor interactions in the glial cell-line derived neurotrophic factor (GDNF) receptor complex, formed by the c-Ret receptor tyrosine kinase and the glycosylphosphatidylinositol (GPI)-anchored subunit GDNF family receptor alpha-1 (GFRalpha1). As only GFRalpha1 can bind GDNF directly, receptor complex formation is thought to be initiated by GDNF binding to this receptor. Here we identify an interface in GDNF formed by exposed acidic and hydrophobic residues that is critical for binding to GFRalpha1. Unexpectedly, several GDNF mutants deficient in GFRalpha1 binding retained the ability to bind and activate c-Ret at normal levels. Although impaired in binding GFRalpha1 efficiently, these mutants still required GFRalpha1 for c-Ret activation. These findings support a role for c-Ret in ligand binding and indicate that GDNF does not initiate receptor complex formation, but rather interacts with a pre-assembled GFRalpha1- c-Ret complex.  相似文献   

2.
Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6-hydroxydopamine (6-OHDA) transiently increased c-Ret and GFRalpha1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c-Ret and GFRalpha1 was downregulated. GFRalpha2 expression was differentially regulated, as it decreased only 6 days after 6-OHDA injection. Triple-labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6-OHDA lesion.  相似文献   

3.
The GDNF family ligands (GFLs: GDNF, neurturin, persephin, and artemin) signal through RET and a gly-cosyl-phosphatidylinositol (GPI)-anchored coreceptor (GFRalpha1-alpha4) that binds ligand with high affinity and provides specificity. The importance of the GPI anchor is not fully understood; however, GPI-linked proteins cluster into lipid rafts, structures that may represent highly specialized signaling organelles. Here, we report that GPI-anchored GFRalpha1 recruits RET to lipid rafts after GDNF stimulation and results in RET/Src association. Disruption of RET localization using either transmembrane-anchored or soluble GFRalpha1 results in RET phosphorylation, but GDNF-induced intracellular signaling events are markedly attenuated as are neuronal differentiation and survival responses. Therefore, proper membrane localization of RET via interaction with a raft-localized, GPI-linked coreceptor is of fundamental importance in GFL signaling.  相似文献   

4.
Glial cell line-derived neurotrophic factor (GDNF) family, consisting of GDNF, neurturin, artemin and persephin are distant members of the transforming growth factor-beta (TGF-beta) superfamily. Unlike other members of the TGF-beta superfamily, which signal through the receptor serine-threonine kinases, GDNF family ligands activate intracellular signalling cascades via the receptor tyrosine kinase Ret. GDNF family ligands first bind to the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor alpha (GFRalpha) and then the GDNF family ligand-GFRalpha complex binds to and stimulates autophosphorylation of Ret. Alternatively, a preassociated complex between GFRalpha and Ret could form the binding site for the GDNF family ligand. GFRalpha1, GFRalpha2, GFRalpha3 and GFRalpha4 are the physiological coreceptors for GDNF, neurturin, artemin and persephin, respectively. Although all GDNF family ligands signal via activated Ret, GDNF can signal also via GFRalpha1 in the absence of Ret. GPI-anchored GFRalpha receptors are localized in plasma membrane to lipid rafts. GDNF binding to GFRalpha1 also recruits Ret to the lipid rafts and triggers association with Src, which is required for effective downstream signalling, leading to differentiation and neuronal survival. GDNF family ligands are potent survival factors for midbrain dopamine neurons, motoneurons, noradrenergic neurons, as well as for sympathetic, parasympathetic and sensory neurons. However, for most neuronal populations, except for motoneurons, TGF-beta is required as a cofactor for GDNF family ligand signalling. Because GDNF and neurturin can rescue dopamine neurons in the animal models of Parkinson disease, as well as motoneurons in vivo, hopes have been raised that GDNF family ligands may be new drugs for the treatment of neurodegenerative diseases. GDNF also has distinct functions outside the nervous system, promoting ureteric branching in kidney development and regulating spermatogenesis.  相似文献   

5.
The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling receptor, whereas specificity is conferred by differential binding to four distinct GFRalpha homologues. To understand how the different GFRalphas discriminate ligands, we have constructed a large set of chimeric and truncated receptors and analyzed their ligand binding and signaling capabilities. The major determinant of ligand binding was found in the most conserved region of the molecule, a central domain predicted to contain four conserved alpha helices and two beta strands. Distinct hydrophobic and positively charged residues in this central region were required for binding of GFRalpha1 to GDNF. Interaction of GFRalpha1 and GFRalpha2 with GDNF and neurturin required distinct subsegments within this central domain, which allowed the construction of chimeric receptors that responded equally well to both ligands. C-terminal segments adjacent to the central domain are necessary and have modulatory function in ligand binding. In contrast, the N-terminal domain was dispensable without compromising ligand binding specificity. Ligand-independent interaction with c-Ret also resides in the central domain of GFRalpha1, albeit within a distinct and smaller region than that required for ligand binding. Our results indicate that the central region of this class of receptors constitutes a novel binding domain for cystine-knot superfamily ligands.  相似文献   

6.
Previously, it was shown that the recruitment of RET into lipid rafts by glial cell line-derived neurotrophic factor (GDNF)/GFRalpha1 is crucial for efficient signal transduction. Here, we show that the mouse GFRalpha4 is a functional, N-glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein, which mediates persephin (PSPN)-induced phosphorylation of RET, but has an almost undetectable capacity to recruit RET into the 0.1% Triton X-100 insoluble membrane fraction. In spite of this, PSPN/mGFRalpha4 promotes neurite outgrowth in PC6-3 cells and survival of cerebellar granule neurons. As we show that also human PSPN/GFRalpha4 is unable to recruit RET into lipid rafts, we propose that the mammalian GFRalpha4 in this respect differs from GFRalpha1.  相似文献   

7.
Ledda F  Paratcha G  Ibáñez CF 《Neuron》2002,36(3):387-401
Immobilized and diffusible molecular cues regulate axon guidance during development. GFRalpha1, a GPI-anchored receptor for GDNF, is expressed as both membrane bound and secreted forms by accessory nerve cells and peripheral targets of developing sensory and sympathetic neurons during the period of target innervation. A relative deficit of GFRalpha1 in developing axons allows exogenous GFRalpha1 to capture GDNF and present it for recognition by axonal c-Ret receptors. Exogenous GFRalpha1 potentiates neurite outgrowth and acts as a long-range directional cue by creating positional information for c-Ret-expressing axons in the presence of a uniform concentration of GDNF. Soluble GFRalpha1 prolongs GDNF-mediated activation of cyclin-dependent kinase 5 (Cdk5), an event required for GFRalpha1-induced neurite outgrowth and axon guidance. Together with GDNF, target-derived GFRalpha1 can function in a non-cell-autonomous fashion as a chemoattractant cue with outgrowth promoting activity for peripheral neurons.  相似文献   

8.
The glial cell line-derived neurotrophic factor (GDNF) family coreceptor alpha1 (GFRalpha1) is a critical component of the RET receptor kinase signal-transducing complex. The activity of this multicomponent receptor is stimulated by the glial cell line-derived neurotrophic factor (GDNF) and is involved in neuronal cells survival and kidney development. GFRalpha1 pre-mRNA is alternatively spliced and produces two isoforms: GFRalpha1a, which includes the exon 5; and GFRalpha1b, which excludes it. Here we show that the Gfralpha1a isoform is predominantly expressed in neuronal tissues and in PC12 cells differentiated toward a neuronal phenotype. GFRalpha1 splicing is also regulated during kidney development, GFRalpha1a is the minor isoform before birth and then rapidly becomes the major form after birth. We established cell lines expressing either GFRalpha1 isoforms and demonstrated that the GFRalpha1b isoform binds GDNF more efficiently than GFRalpha1a. Consistently, GFRalpha1b promotes a stronger RET phosphorylation than GFRalpha1a. These results indicate that specific inclusion of the GFRalpha1 exon 5 in neuronal tissues or during kidney development may alter the binding properties of GDNF to GFRalpha1, and thus could constitute an additional regulatory mechanism of the RET signaling pathway.  相似文献   

9.
Glial cell line-derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are multifunctional signaling molecules in embryogenesis. HGF binds to and activates Met receptor tyrosine kinase. The signaling receptor complex for GDNF typically includes both GDNF family receptor alpha1 (GFRalpha1) and Ret receptor tyrosine kinase. GDNF can also signal independently of Ret via GFRalpha1, although the mechanism has remained unclear. We now show that GDNF partially restores ureteric branching morphogenesis in ret-deficient mice with severe renal hypodysplasia. The mechanism of Ret-independent effect of GDNF was therefore studied by the MDCK cell model. In MDCK cells expressing GFRalpha1 but no Ret, GDNF stimulates branching but not chemotactic migration, whereas both branching and chemotaxis are promoted by GDNF in the cells coexpressing Ret and GFRalpha1, mimicking HGF/Met responses in wild-type MDCK cells. Indeed, GDNF induces Met phosphorylation in several ret-deficient/GFRalpha1-positive and GFRalpha1/Ret-coexpressing cell lines. However, GDNF does not immunoprecipite Met, making a direct interaction between GDNF and Met highly improbable. Met activation is mediated by Src family kinases. The GDNF-induced branching of MDCK cells requires Src activation, whereas the HGF-induced branching does not. Our data show a mechanism for the GDNF-induced branching morphogenesis in non-Ret signaling.  相似文献   

10.
Pozas E  Ibáñez CF 《Neuron》2005,45(5):701-713
Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFRalpha1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant of GABAergic cells. These effects required GFRalpha1 but neither RET nor NCAM, the two transmembrane signaling receptors known for GDNF. Mutant mice lacking GDNF or GFRalpha1, but neither RET nor NCAM, showed reduced numbers of GABAergic cells in the cerebral cortex and hippocampus. We conclude that one of the normal functions of GDNF signaling via GFRalpha1 in the developing brain is to promote the differentiation and migration of cortical GABAergic neurons. The lack of involvement of RET or NCAM in these processes suggests the existence of additional transmembrane effectors for GDNF.  相似文献   

11.
To clarify whether glial cell line-derived neurotrophic factor (GDNF) receptor alpha-1 (GFRalpha1), the glycosylphosphatidylinositol (GPI)-linked coreceptor for GDNF, is also a functional coreceptor for artemin (ART), we have studied receptor binding, signaling, and neuronal survival. In cell-free binding studies, GFRalpha1-Ig displayed strong preferential binding to GDNF, though in the presence of soluble RET, weak binding to ART could also be detected. However, using GFRalpha1-transfected NB41A3 cells, ART showed no detectable competition against the binding of (125)I-labeled GDNF. Moreover, ART failed to induce phosphorylation of extracellular signal-related kinase (ERK) and Akt in these cells and was >10(4)-fold less potent than GDNF in stimulating RET phosphorylation. When rat primary dorsal root ganglion (DRG) neurons were used, only the survival promoting activity of GDNF and not that of ART was blocked by an anti-GFRalpha1 antibody. These results indicate that although ART can interact weakly with soluble GFRalpha1 constructs under certain circumstances in vitro, in cell-based functional assays GFRalpha1 is at least 10 000-fold selective for GDNF over ART. The extremely high selectivity of GFRalpha1 for GDNF over ART and the low reactivity of ART for this receptor suggest that GFRalpha1 is not likely to be a functional coreceptor for ART in vivo.  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to signal through a multicomponent receptor complex consisting of the Ret receptor tyrosine kinase and a member of the GFRalpha family of glycosylphosphatidylinositol-anchored receptors. In the current model of GDNF signaling, Ret delivers the intracellular signal but cannot bind ligand on its own, while GFRalphas bind ligand but are thought not to signal in the absence of Ret. We have compared signaling pathways activated by GDNF in two neuronal cell lines expressing different complements of GDNF receptors. In a motorneuron-derived cell line expressing Ret and GFRalphas, GDNF stimulated sustained activation of the Ras/ERK and phosphatidylinositol 3-kinase/Akt pathways, cAMP response element-binding protein phosphorylation, and increased c-fos expression. Unexpectedly, GDNF also promoted biochemical and biological responses in a line of conditionally immortalized neuronal precursors that express high levels of GFRalphas but not Ret. GDNF treatment did not activate the Ras/ERK pathway in these cells, but stimulated a GFRalpha1-associated Src-like kinase activity in detergent-insoluble membrane compartments, rapid phosphorylation of cAMP response element-binding protein, up-regulation of c-fos mRNA, and cell survival. Together, these results offer new insights into the dynamics of GDNF signaling in neuronal cells, and indicate the existence of novel signaling mechanisms directly or indirectly mediated by GFRalpha receptors acting in a cell-autonomous manner independently of Ret.  相似文献   

13.
目的:探讨GDNF的生物学效应对胞膜蛋白在脂筏的定位的影响。方法:首先以PBS或GDNF预处理体外培养的真核细胞,提取脂筏,以免疫印迹方法检测三种胞膜蛋白(RET,NCAMl40及integrinβ1)在脂筏的含量变化。结果:GDNF预处理组RET和NCAMl40蛋白在脂筏的含量增加,而integrinlM蛋白的含量无显著性变化。在脂筏中也可检测到integrinβ1蛋白。结论:GDNF可影响某些胞膜蛋白在细胞膜上的定位,使其招募到脂筏,这可能是GDNF的一种重要生物学效应。  相似文献   

14.
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are neurotrophic factors that influence several aspects of the developing and injured nervous system. GFLs signal through a common receptor tyrosine kinase (Ret) and one of the four ligand-binding co-receptors (GFRalpha1 to 4). Ligand-induced translocation of Ret to lipid rafts, where it interacts with the nonreceptor tyrosine kinase Src, is a prerequisite for full biological activity of these neurotrophic factors. This interaction and subsequent activation of Src are required for GFL-mediated neuronal survival, neurite outgrowth, or cell proliferation. Here we show by multiple approaches that Ret tyrosine 981 constitutes the major binding site of the Src homology 2 domain of Src and therefore the primary residue responsible for Src activation upon Ret engagement. Other tyrosines such as 1015 and 1029 may contribute to the overall interaction between Ret and Src, as judged by overexpression experiments. By generating a phosphospecific antibody, we demonstrate that tyrosine 981 is a novel autophosphorylation site in Ret. Importantly, we also show that this tyrosine becomes phosphorylated in dissociated sympathetic neurons after ligand stimulation. Mutation of tyrosine 981 to phenylalanine reduces GDNF-mediated survival in a transfected cerebellar granule neuron paradigm.  相似文献   

15.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

16.
Glial cell line-derived neurotrophic factor (GDNF), a known survival factor for neurons, has recently been shown to stimulate the migration of Schwann cells (SCs) and to enhance myelination. GDNF exerts its biological effects by activating the Ret tyrosine kinase in the presence of glycosylphosphatidylinositol-linked receptor, GDNF family receptor (GFR) alpha1. In Ret-negative cells, the alternative transmembrane coreceptor is the 140-kDa isoform of neural cell adhesion molecule (NCAM) associated with a non-receptor tyrosine kinase Fyn. We confirmed that GDNF, GFRalpha1 and NCAM are expressed in neonatal rat SCs. We found that GDNF induces an increase in the partitioning of NCAM and heparan sulfate proteoglycan agrin into lipid rafts and that heparinase inhibits GDNF-signaling in SCs. In addition to activation of extracellular signal-regulated kinases, and phosphorylation of cAMP response element binding protein, we found that cAMP-dependent protein kinase A and protein kinase C are involved in GDNF-mediated signaling in SCs. Although GDNF did not promote the differentiation of purified SCs into the myelinating phenotype, it enhanced myelination in neuron-SC cocultures. We conclude that GDNF utilizes NCAM signaling pathways to regulate SC function prior to myelination and at early stages of myelin formation.  相似文献   

17.
The glial-cell-line-derived neurotrophic factor (GDNF) ligand activates the Ret receptor through the assembly of a multiprotein complex, including the GDNF family receptor alpha1 (GFRalpha1) molecule. Given the neuroprotective role of GDNF, there is an obvious need to precisely identify the structural regions engaged in direct interactions between the three molecules. Here, we combined a functional approach for Ret activity (in PC12 cells) to cross-linking experiments followed by MS-MALDI to study the interactions among the purified extracellular region of the human Ret, GDNF and GFRalpha1 molecules. This procedure allowed us to identify distinct regions of Ret that are physically engaged in the interaction with GDNF and GFRalpha1. The lack of these regions in a recombinant Ret form results in the failure of both structural and functional binding of Ret to GFRalpha1/GDNF complex. Furthermore, a model for the assembly of a transducing-competent Ret complex is suggested.  相似文献   

18.
Glial cell line-derived growth factor (GDNF) is a cytokine of the transforming growth factor (TGF)-beta family with potent neuroprotective activity. Clinical trials of recombinant GDNF in advanced Parkinson's disease are currently under way. It is known that mice homozygous for disruption of the gene encoding heparan sulphate 2-O-sulphotransferase die perinatally, due to the complete absence of kidneys. Similar phenotypes arise from targeted disruption of the genes encoding either GDNF, or its receptors, GFRalpha1 and c-Ret. It may therefore be proposed that GDNF normally binds to 2-O-sulphate-rich heparan sulphate within kidney progenitor tissues, and that this interaction is essential for its activity in kidney development. In support of this hypothesis we have shown in ELISA studies that GNDF binds to heparin and heparan sulphate. This binding is unusually sensitive to the chemical 2-O-desulphation, and promotes the binding of GNDF to GFRalpha1.  相似文献   

19.
Glial cell line-derived neurotrophic factor (GDNF) plays a critical role in neurodevelopment and survival of midbrain dopaminergic and spinal motor neurons in vitro and in vivo. The biological actions of GDNF are mediated by a two-receptor complex consisting of a glycosylphosphatidylinositol-linked cell surface molecule, the GDNF family receptor alpha1 (GFRalpha1), and receptor protein tyrosine kinase Ret. Although structural analysis of GDNF has been extensively examined, less is known about the structural basis of GFRalpha1 function. In this study, based on evolutionary trace method and relative solvent accessibility prediction of residues, a set of trace residues that are solvent-accessible was selected for site-directed mutagenesis. A series of GFRalpha1 mutations was made, and PC12 cell lines stably expressing different GFRalpha1 mutants were generated. According to the survival and differentiation responses of these stable PC12 cells upon GDNF stimulation and the GDNF-GFRalpha1-Ret interaction assay, residues 152NN153, Arg259, and 316SNS318 in the GFRalpha1 central region were found to be critical for GFRalpha1 binding to GDNF and eliciting downstream signal transduction. The single mutation R259A in the GFRalpha1 molecule simultaneously lost its binding ability to GDNF and Ret. However N152A/N153A or S316A/N317A/S318A mutation in the GFRalpha1 molecule still retained the ability to bind with Ret. These findings suggest that distinct structural elements in GFRalpha1 may be involved in binding to GDNF and Ret.  相似文献   

20.
The neural cell adhesion molecule NCAM binds glial cell line-derived neurotrophic factor (GDNF) through specific determinants located in its third immunoglobulin (Ig) domain. However, high affinity GDNF binding and downstream signaling depend upon NCAM co-expression with the GDNF co-receptor GFRalpha1. GFRalpha1 promotes high affinity GDNF binding to NCAM and down-regulates NCAM-mediated homophilic cell adhesion, but the mechanisms underlying these effects are unknown. NCAM and GFRalpha1 interact at the plasma membrane, but the molecular determinants involved have not been characterized nor is it clear whether their interaction is required for GFRalpha1 regulation of NCAM function. We have investigated the structure-function relationships underlying GFRalpha1 binding to NCAM in intact cells. The fourth Ig domain of NCAM was both necessary and sufficient for the interaction of NCAM with GFRalpha1. Moreover, although the N-terminal domain of GFRalpha1 had previously been shown to be dispensable for GDNF binding, we found that it was both necessary and sufficient for the efficient interaction of this receptor with NCAM. GFRalpha1 lacking its N-terminal domain was still able to potentiate GDNF binding to NCAM and assemble into a tripartite receptor complex but showed a reduced capacity to attenuate NCAM-mediated cell adhesion. On its own, the GFRalpha1 N-terminal domain was sufficient to decrease NCAM-mediated cell adhesion. These results indicate that direct receptor-receptor interactions are not required for high affinity GDNF binding to NCAM but play an important role in the regulation of NCAM-mediated cell adhesion by GFRalpha1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号