首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of O*- and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating O*- and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

2.
Xanthine/xanthine oxidase and H2O2 stimulated sugar transport. Application of superoxide dismutase and catalase to the cells showed an inhibitory effect on these agent-stimulated sugar transports. Addition of amiloride and 4-acetamide-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), which abolish the cytoplasmic alkalinization, inhibited the stimulation of sugar transport by xanthine/xanthine oxidase in the presence of catalase. The calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and trifluoperazine inhibited H2O2-stimulated sugar transport. These results suggest that O2- stimulates sugar transport in an intracellular pH-dependent manner and that H2O2 stimulates sugar transport in a calcium-calmodulin-dependent manner. These mechanisms may be involved in sugar-transport stimulation in mouse fibroblast BALB/3T3 cells by the tumor-promoting phorbol ester phorbol-12,13-dibutyrate and insulin, since the stimulatory effects of these agents were inhibited by scavengers of oxygen radicals.  相似文献   

3.
Vanadate-dependent oxidation of NADH by xanthine oxidase does not require the presence of xanthine and therefore is not due to cooxidation. Addition of NADH or xanthine had no effect on the oxidation of the other substrate. Oxidation of NADH was high at acid pH and oxidation of xanthine was high at alkaline pH. The specific activity was relatively very high with NADH. Concentration-dependent oxidation of NADH Concentration-dependent oxidation of NADH was obtained in the presence of the polymeric form of vanadate, but not orthovanadate or metavanadate. Both NADH and NADPH were oxidized, as in the nonenzymatic system. Oxidation of NADH, but not xanthine, was inhibited by KCN, ascorbate, MnCl2, cytochrome c, mannitol, Tris, epinephrine, norepinephrine, and triiodothyronine. Oxidation of NADH was accompanied by uptake of oxygen and generation of H2O2 with a stoichiometry of 1:1:1 for NADH:O2:H2O2. A 240-nm-absorbing species was formed during the reaction which was different from H2O2 or superoxide. A mechanism of NADH oxidation is suggested wherein Vv and O2 receive one electron each successively from NADH followed by VIV giving the second electron to superoxide and reducing it to H2O2.  相似文献   

4.
Kundu TK  Velayutham M  Zweier JL 《Biochemistry》2012,51(13):2930-2939
The enzyme aldehyde oxidase (AO) is a member of the molybdenum hydroxylase family that includes xanthine oxidoreductase (XOR); however, its physiological substrates and functions remain unclear. Moreover, little is known about its role in cellular redox stress. Utilizing electron paramagnetic resonance spin trapping, we measured the role of AO in the generation of reactive oxygen species (ROS) through the oxidation of NADH and the effects of inhibitors of AO on NADH-mediated superoxide (O(2)(??)) generation. NADH was found to be a good substrate for AO with apparent K(m) and V(max) values of 29 μM and 12 nmol min(-1) mg(-1), respectively. From O(2)(??) generation measurements by cytochrome c reduction the apparent K(m) and V(max) values of NADH for AO were 11 μM and 15 nmol min(-1) mg(-1), respectively. With NADH oxidation by AO, ≥65% of the total electron flux led to O(2)(??) generation. Diphenyleneiodonium completely inhibited AO-mediated O(2)(??) production, confirming that this occurs at the FAD site. Inhibitors of this NADH-derived O(2)(??) generation were studied with amidone the most potent exerting complete inhibition at 100 μM concentration, while 150 μM menadione, raloxifene, or β-estradiol led to 81%, 46%, or 26% inhibition, respectively. From the kinetic data, and the levels of AO and NADH, O(2)(??) production was estimated to be ~89 and ~4 nM/s in liver and heart, respectively, much higher than that estimated for XOR under similar conditions. Owing to the ubiquitous distribution of NADH, aldehydes, and other endogenous AO substrates, AO is predicted to have an important role in cellular redox stress and related disease pathogenesis.  相似文献   

5.
Oxygen radical generation in the xanthine- and NADH-oxygen reductase reactions by xanthine oxidase, was demonstrated using the ESR spin trap 5,5'-dimethyl-1- pyrroline-N-oxide. No xanthine-dependent oxygen radical formation was observed when allopurinol-treated xanthine oxidase was used. The significant superoxide generation in the NADH-oxygen reductase reaction by the enzyme was increased by the addition of menadione and adriamycin. The NADH-menadione and -adriamycin reductase activities of xanthine oxidase were assessed in terms of NADH oxidation. From Lineweaver-Burk plots, the Km and Vmax of xanthine oxidase were estimated to be respectively 51 microM and 5.5 s-1 for menadione and 12 microM and 0.4 s-1 for adriamycin. Allopurinol-inactivated xanthine oxidase generates superoxide and OH.radicals in the presence of NADH and menadione or adriamycin to the same extent as the native enzyme. Adriamycin radicals were observed when the reactions were carried out under an atmosphere of argon. The effects of superoxide dismutase and catalase revealed that OH.radicals were mainly generated through the direct reaction of H2O2 with semiquinoid forms of menadione and adriamycin.  相似文献   

6.
Vanadate or molybdate strongly accelerate the cooxidation of NADH, or of reduced nicotinamide mononucleotide, by the xanthine oxidase plus xanthine reaction. Superoxide dismutase eliminated the effect of vanadate or molybdate, while catalase was without effect. It follows that vanadate or molybdate accelerate the oxidation of dihydropyridines by O-2. A stoichiometry of 4 NADH oxidized per O-2 introduced suggests a chain reaction for which a mechanism is proposed. These results provide an explanation for the reported stimulation, by vanadate, of NADH oxidation by biological membranes.  相似文献   

7.
Vanadate V(V) markedly stimulated the oxidation of NADPH by GSSG reductase and this oxidation was accompanied by the consumption of O2 and the accumulation of H2O2. Superoxide dismutases completely eliminated this effect of V(V), whereas catalase was without effect, as was exogenous H2O2 added to 0.1 mM. These effects could be seen equally well in phosphate- or in 4-(2-hydroxyethyl)1-piperazineethanesulfonic acid-buffered solutions. Under anaerobic conditions there was no V(V)-stimulated oxidation of NADPH. Approximately 4% of the electrons flowing from NADPH to O2, through GSSG reductase, resulted in release of O2-. The average length of the free radical chains causing the oxidation of NADPH, initiated by O2- plus V(V), was calculated to be in the range 140-200 NADPH oxidized per O2- introduced. We conclude that GSSG reductase, and by extension other O2(-)-producing flavoprotein dehydrogenases such as lipoyl dehydrogenase and ferredoxin reductase, catalyze V(V)-stimulated oxidation of NAD(P)H because they release O2- and because O2- plus V(V) initiate a free radical chain oxidation of NAD(P)H. There is no reason to suppose that these enzymes can act as NAD(P)H:V(V) oxidoreductases.  相似文献   

8.
V(IV) decomposed H2O2, with evolution of O2, in a free radical chain process involving O2- and HO(.). When V(IV) was limiting, the presence of V(V) augmented O2 evolution because it allowed production of additional V(IV) from the reduction of V(V) by O2-. Gradual addition of V(IV) increased the yield of O2 evolved, per V(IV) added, to greater than 1--a clear indication of a free radical chain reaction. Reductants such as ethanol, Hepes, and NADH imposed a phase of O2 consumption because of HO.-initiated oxidation reactions. The radical produced from the reaction of HO. with ethanol was unable to directly oxidize NADH, whereas that produced from Hepes was able to do so. Ethanol consequently inhibited the oxidation of NADH by anaerobic V(IV) + H2O2, whereas Hepes did not. These results, and others reported herein, are explained on the basis of a coherent set of reactions. Data already in the literature are also clarified on the basis of these reactions.  相似文献   

9.
The superoxide radical O2.-, whether produced by the xanthine/xanthine oxidase reaction or infused as KO2, solubilized by a crown ether in dry dimethyl sulphoxide, initiated a free-radical chain oxidation of anionic 2-nitropropane. Superoxide dismutase, but not catalase, inhibited oxidation of the nitroalkane. Xanthine oxidase suffered a syncatalytic inactivation, during the co-oxidation of 2-nitropropane, which was reversed by dialysis. Cyanide exacerbated this syncatalytic inactivation and rendered it irreversible. The frequently observed oxidations of nitroalkanes by flavoenzymes now need to be re-examined to clarify the extent to which O2.--initiated free-radical chain oxidation contributed to the overall nitroalkane oxidation.  相似文献   

10.
Membranes isolated from Bacillus cereus ATCC 4342 during vegetative growth and during sporulation contained cytochromes b, c and a + a(3) as well as flavoprotein as determined from reduced-minus-oxidized difference spectra. Although there appeared to be no qualitative change in the cytochromes, there was a significant increase in the amount of cytochromes associated with membranes isolated from sporulating cells. Succinate and nicotinamide adenine dinucleotide (reduced form) (NADH) reduced the same cytochromes indicating similar pathways of electron transport. The electron transport inhibitors-cyanide, azide, 2-heptyl-4-hydroxyquinoline-N-oxide, dicumarol and atebrine-were examined for their effect on succinate oxidase (succinate: [O(2)] oxidoreductase) and NADH oxidase (NADH: [O(2)] oxidoreductase). NADH oxidase associated with vegetative cell membranes was less sensitive to certain inhibitors than was succinate oxidase, suggesting a branched electron transport pathway for NADH oxidation. In addition to electrons being passed to O(2) through a quinone-cytochrome chain, it appears that these intermediate carriers can be bypassed such that O(2) is reduced by electrons mediated by NADH dehydrogenase. Both oxidases associated with sporulating cell membranes were inhibited to a lesser degree than were the oxidases associated with vegetative cell membranes.  相似文献   

11.
Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase   总被引:10,自引:0,他引:10  
Xanthine oxidase (XO) was shown to catalyze the reduction of nitrite to nitric oxide (NO), under anaerobic conditions, in the presence of either NADH or xanthine as reducing substrate. NO production was directly demonstrated by ozone chemiluminescence and showed stoichiometry of approximately 2:1 versus NADH depletion. With xanthine as reducing substrate, the kinetics of NO production were complicated by enzyme inactivation, resulting from NO-induced conversion of XO to its relatively inactive desulfo-form. Steady-state kinetic parameters were determined spectrophotometrically for urate production and NADH oxidation catalyzed by XO and xanthine dehydrogenase in the presence of nitrite under anaerobic conditions. pH optima for anaerobic NO production catalyzed by XO in the presence of nitrite were 7.0 for NADH and 相似文献   

12.
Myocardial ischemia-reperfusion is associated with bursts of reactive oxygen species (ROS) such as superoxide radicals (O(2)(-).). Membrane-associated NADH oxidase (NADHox) activity is a hypothetical source of O(2)(-)., implying the NADH concentration-to-NAD(+) concentration ratio ([NADH]/[NAD(+)]) as a determinant of ROS. To test this hypothesis, cardiac NADHox and ROS formation were measured as influenced by pyruvate or L-lactate. Pre- and postischemic Langendorff guinea pig hearts were perfused at different pyruvate/L-lactate concentrations to alter cytosolic [NADH]/[NAD(+)]. NADHox and ROS were measured with the use of lucigenin chemiluminescence and electron spin resonance, respectively. In myocardial homogenates, pyruvate (0.05, 0.5 mM) and the NADHox blocker hydralazine markedly inhibited NADHox (16 +/- 2%, 58 +/- 9%). In postischemic hearts, pyruvate (0.1-5.0 mM) dose dependently inhibited ROS up to 80%. However, L-lactate (1.0-15.0 mM) stimulated both basal and postischemic ROS severalfold. Furthermore, L-lactate-induced basal ROS was dose dependently inhibited by pyruvate (0.1-5.0 mM) and not the xanthine oxidase inhibitor oxypurinol. Pyruvate did not inhibit ROS from xanthine oxidase. The data suggest a substantial influence of cytosolic NADH on cardiac O(2)(-). formation that can be inhibited by submillimolar pyruvate. Thus cytotoxicities due to cardiac ischemia-reperfusion ROS may be alleviated by redox reactants such as pyruvate.  相似文献   

13.
The xanthine-oxidizing enzyme of rat liver has been purified as an NAD+-dependent dehydrogenase (type D) and as the O2-dependent oxidase (type O). The purified D and O variants are nearly homogenous as judged by polyacrylamide discontinuous gel electrophoresis and are indistinguishable on sodium dodecyl sulfate-urea gels. The absorption spectrum of the type D enzyme is indistinguishable from that of the type O enzyme and closely resembles the spectra of xanthine-oxidizing enzymes from other sources. The types D and O enzymes have essentially the same cofactor composition. Oxidation of xanthine by type D is stimulated by NAD+ with concomitant NADH formation. Type D is able to utilize NADH as well as xanthine as electron donor to various acceptors, in contrast to type O that is unable to oxidize NADH. Arsenite, cyanide and methanol completely abolish xanthine oxidation by the type D enzyme while affecting the activities with NADH to varying extents. In these respects rat liver xanthine dehydrogenase closely resembles chicken liver xanthine dehydrogenase. However, in contrast to the avian enzyme, the purified rat liver enzyme is unstable as a dehydrogenase and is gradually converted to an oxidase. This conversion is accompanied by an increase in the aerobic xanthine → cytochrome c activity. The native type D enzyme in rat liver extracts is precipitable with antibody prepared against purified type O. The Km for xanthine is not significantly different for the two forms.  相似文献   

14.
1. Rat liver xanthine oxidase type D (NAD(+)-dependent) and chick liver xanthine oxidase are inhibited by NADH, which competes with NAD(+). 2. The addition of a NADH-reoxidizing system in the assay of these enzyme activities is proposed. 3. Rat liver xanthine oxidase type O (oxygen-dependent) is not affected by NADH.  相似文献   

15.
The relevance of lucigenin (bis-N-methylacridinium nitrate)-amplified chemiluminescence (CL) as a specific assay for superoxide ion has recently been disputed (S. I. Liochev and I. Fridovich, Arch. Biochem. Biophys. 337, 115-120, 1997). These authors suggested that the redox cycling of lucigenin can lead to the formation of additional amount of superoxide ion. However, thermodynamic consideration shows that the equilibrium for the reaction O*-2 + Luc2+ if O2 + Luc*+ is completely shifted to the right (Keq = 10(6)); therefore, the redox cycling of lucigenin is of no importance. This conclusion is supported by the study of the effects of lucigenin on cytochrome c reduction by xanthine oxidase. It was found that lucigenin did enhance the rate of cytochrome c reduction with xanthine as a substrate, but it did not increase the rate of xanthine oxidation. When NADH was used as a substrate, lucigenin inhibited the SOD-dependent component of cytochrome c reduction and enhanced both the SOD-independent cytochrome c reduction and NADH oxidation, being a sole acceptor of an electron from the enzyme. All these findings indicate the extremely low probability of lucigenin redox cycling. In our opinion, lucigenin-amplified CL remains the most sensitive and highly specific test for superoxide formation in biological systems.  相似文献   

16.
Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide   总被引:11,自引:0,他引:11  
Arachidonic acid was co-oxidized by xanthine oxidase. Both superoxide radical and hydrogen peroxide were required for oxidation, as shown by essentially complete inhibition caused by superoxide dismutase or by catalase. Pure arachidonate, free of lipid hydroperoxides, was susceptible to this co-oxidation, and the presence of lipid hydroperoxides did not accelerate the process. The role of trace metals was indicated by the stimulatory effect of EDTA-Fe and by the inhibitory effect of diethylenetriamine pentaacetate. Initiation of arachidonate co-oxidation was due to a potent oxidant generated by the interaction of H2O2 and O2- in the presence of Fe, rather than to either O2- or H2O2 per se. Hence, mannitol, a scavenger of OH ., but not of O2- or H2O2, also inhibited oxidation. Arachidonic acid autoxidation, a much slower process than xanthine oxidase co-oxidation, was barely detectable on the time scale of these observations. Unlike the co-oxidation, autoxidation was autocatalytic and therefore accelerated by hydroperoxide products. Marked quantitative differences in the distribution of isomeric hydroperoxide products of enzymic co-oxidation, as compared to the autoxidation, were noted and their significance was discussed.  相似文献   

17.
Peroxynitrite (ONOO(-)/ONOOH), the product of the diffusion-limited reaction of nitric oxide (*NO) with superoxide (O(-*)(2)), has been implicated as an important mediator of tissue injury during conditions associated with enhanced *NO and O(-*)(2) production. Although several groups of investigators have demonstrated substantial oxidizing and cytotoxic activities of chemically synthesized peroxynitrite, others have proposed that the relative rates of *NO and production may be critical in determining the reactivity of peroxynitrite formed in situ (Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) J. Biol. Chem. 271, 40-47). In the present study, we examined the mechanisms by which excess O(-*)(2) or *NO production inhibits peroxynitrite-mediated oxidation reactions. Peroxynitrite was generated in situ by the co-addition of a chemical source of *NO, spermineNONOate, and an enzymatic source of O(-*)(2), xanthine oxidase, with either hypoxanthine or lumazine as a substrate. We found that the oxidation of the model compound dihydrorhodamine by peroxynitrite occurred via the free radical intermediates OH and NO(2), formed during the spontaneous decomposition of peroxynitrite and not via direct reaction with peroxynitrite. The inhibitory effect of excess O(-*)(2) on the oxidation of dihydrorhodamine could not be ascribed to the accumulation of the peroxynitrite scavenger urate produced from the oxidation of hypoxanthine by xanthine oxidase. A biphasic oxidation profile was also observed upon oxidation of NADH by the simultaneous generation of *NO and O(-*)(2). Conversely, the oxidation of glutathione, which occurs via direct reaction with peroxynitrite, was not affected by excess production of *NO. We conclude that the oxidative processes initiated by the free radical intermediates formed from the decomposition of peroxynitrite are inhibited by excess production of *NO or O(-*)(2), whereas oxidative pathways involving a direct reaction with peroxynitrite are not altered. The physiological implications of these findings are discussed.  相似文献   

18.
The effect of isotopic substitution of the 8-H of xanthine (with 2H and 3H) on the rate of oxidation by bovine xanthine oxidase and by chicken xanthine dehydrogenase has been measured. V/K isotope effects were determined from competition experiments. No difference in H/T(V/K) values was observed between xanthine oxidase (3.59 +/- 0.1) and xanthine dehydrogenase (3.60 +/- 0.09). Xanthine dehydrogenase exhibited a larger T/D(V/K) value (0.616 +/- 0.028) than that observed for xanthine oxidase (0.551 +/- 0.016). Observed H/T(V/K) values for either enzyme are less than those H/T(V/K) values calculated with D/T(V/K) data. These discrepancies are suggested to arise from the presence of a rate-limiting step(s) prior to the irreversible C-H bond cleavage step in the mechanistic pathways of both enzymes. These kinetic complexities preclude examination of whether tunneling contributes to the reaction coordinate for the H-transfer step in each enzyme. No observable exchange of tritium with solvent is observed during the anaerobic incubation of [8-3H]xanthine with either enzyme, which suggests the reverse commitment to catalysis (Cr) is essentially zero. With the assumption of adherence to reduced mass relationships, the intrinsic deuterium isotope effect (Dk) for xanthine oxidation is calculated to be 7.4 +/- 0.7 for xanthine oxidase and 4.2 +/- 0.2 for xanthine dehydrogenase. By use of these values and steady-state kinetic data, the minimal rate for the hydrogen-transfer step is calculated to be approximately 75-fold faster than kcat for xanthine oxidase and approximately 10-fold faster than kcat for xanthine dehydrogenase. This calculated rate is consistent with data obtained by rapid-quench experiments with XO. A stoichiometry of 1.0 +/- 0.3 mol of uric acid/mol of functional enzyme is formed within the mixing time of the instrument (5-10 ms). The kinetic isotope effect data also permitted the calculation of the Kd values [Klinman, J. P., & Mathews, R. G. (1985) J. Am. Chem. Soc. 107, 1058-1060] for substrate dissociation, including all reversible steps prior to C-H bond cleavage. Values calculated for each enzyme (Kd = 120 microM) were found to be identical within experimental uncertainty.  相似文献   

19.
Pulse radiolysis studies show that the spin trap 3,5,dibromo-4-nitrosobenzene sulphonate (I) reacts rapidly with O2.- but the product formed is very unstable. No radicals were detected in ESR studies of solutions of I after reaction with O2.- formed by gamma-radiolysis. Evidence is presented that the stable radical observed by some, but not all workers, following exposure of I to the O2.(-)-generating xanthine/xanthine oxidase system, is produced by a peroxidatic oxidation using hydrogen peroxide formed by O2-. dismutation and that formation of this radical depends on the presence of peroxidase activity in the xanthine oxidase sample employed.  相似文献   

20.
1. The catalytic properties of xanthine oxidase in bovine milk (EC 1.2.3.2) are dependent on the state of the enzyme, i.e. whether free or bound to the fat-globule membrane. Oxidase activity of the membrane-bound enzyme towards NADH is enhanced relative to that towards xanthine. This reflects a change in the relative K(m) values and enables the ratio of xanthine to NADH oxidase activities (X/N) to be used as a parameter for the relative amounts of free and membrane-bound xanthine oxidase in milk fractions. 2. Chromatography of buttermilk on Sepharose 2B yielded an excluded fraction, BM(1), with xanthine oxidase activity. The remaining xanthine oxidase activity was eluted as a single broad peak. This was further resolved on Sephadex G-200 into an excluded fraction, BM(2), and free xanthine oxidase. Fractions BM(1) and BM(2) had X/N values in the range 45-65, which is characteristic of membrane-bound xanthine oxidase. Purified xanthine oxidase has a mean X/N value of 110.3. Addition of fraction BM(1), heated to remove associated enzyme activities, to purified xanthine oxidase progressively enhanced its NADH oxidase activity to a value where its X/N value was characteristic of membrane-bound xanthine oxidase. This was shown to be due to binding of free enzyme to heated fraction BM(1). The binding constant and stoicheiometry were determined. 4. Proteolytic digestion of fraction BM(1) liberated free xanthine oxidase from the fat-globule membrane with a corresponding alteration in X/N value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号