首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H2O2 intensifies CN−-induced apoptosis in pea leaves   总被引:1,自引:0,他引:1  
H2O2 intensifies CN(-)-induced apoptosis in stoma guard cells and to lesser degree in basic epidermal cells in peels of the lower epidermis isolated from pea leaves. The maximum effect of H2O2 on guard cells was observed at 10(-4) M. By switching on non-cyclic electron transfer in chloroplasts menadione and methyl viologen intensified H2O2 generation in the light, but prevented the CN--induced apoptosis in guard cells. The light stimulation of CN- effect on guard cell apoptosis cannot be caused by disturbance of the ribulose-1,5-bisphosphate carboxylase function and associated OH* generation in chloroplasts with participation of free transition metals in the Fenton or Haber-Weiss type reactions as well as with participation of the FeS clusters of the electron acceptor side of Photosystem I. Menadione and methyl viologen did not suppress the CN(-)-induced apoptosis in epidermal cells that, unlike guard cells, contain mitochondria only, but not chloroplasts. Quinacrine and diphenylene iodonium, inhibitors of NAD(P)H oxidase of cell plasma membrane, had no effect on the respiration and photosynthetic O2 evolution by leaf slices, but prevented the CN(-)-induced guard cell death. The data suggest that NAD(P)H oxidase of guard cell plasma membrane is a source of reactive oxygen species (ROS) needed for execution of CN(-)-induced programmed cell death. Chloroplasts and mitochondria were inefficient as ROS sources in the programmed death of guard cells. When ROS generation is insufficient, exogenous H2O2 exhibits a stimulating effect on programmed cell death. H2O2 decreased the inhibitory effects of DCMU and DNP-INT on the CN(-)-induced apoptosis of guard cells. Quinacrine, DCMU, and DNP-INT had no effect on CN(-)-induced death of epidermal cells.  相似文献   

2.
Pea leaf epidermis incubated with cyanide displayed ultrastructural changes in guard cells that are typical of apoptosis. Cycloheximide, an inhibitor of cytoplasmic protein synthesis, and lincomycin, an inhibitor of protein synthesis in chloroplasts and mitochondria, produced different effects on the dynamics of programmed death of guard cells. According to light microscopy data, cycloheximide reinforced and lincomycin suppressed the CN(-)-induced destruction of cell nuclei. Lincomycin lowered the effect of cycloheximide in the light and prevented it in the dark. According to electron microscopy data, the most pronounced effects of cycloheximide in the presence of cyanide were autophagy and a lack of apoptotic condensation of nuclear chromatin, the prevention of chloroplast envelope rupturing and its invagination inside the stroma, and the appearance of particular compartments with granular inclusions in mitochondria. Lincomycin inhibited the CN(-)-induced ultrastructural changes in guard cell nuclei. The data show that programmed death of guard cells may have a combined scenario involving both apoptosis and autophagy and may depend on the action of both cytoplasm synthesized and chloroplast and mitochondrion synthesized proteins.  相似文献   

3.
The effect of cyanide, an apoptosis inducer, on pea leaf epidermal peels was investigated. Illumination stimulated the CN-induced destruction of guard cells (containing chloroplasts and mitochondria) but not of epidermal cells (containing mitochondria only). The process was prevented by antioxidants (-tocopherol, 2,5-di-tret-butyl-4-hydroxytoluene, and mannitol), by anaerobiosis, by the protein kinase C inhibitor staurosporine, and by cysteine and serine protease inhibitors. Electron acceptors (menadione, p-benzoquinone, diaminodurene, TMPD, DCPIP, and methyl viologen) suppressed CN-induced apoptosis of guard cells, but not epidermal cells. Methyl viologen had no influence on the removal of CN-induced nucleus destruction in guard cells under anaerobic conditions. The light activation of CN-induced apoptosis of guard cells was suppressed by DCMU (an inhibitor of the electron transfer in Photosystem II) and by DNP-INT (an antagonist of plastoquinol at the Qo site of the chloroplast cytochrome b 6 f complex). It is concluded that apoptosis initiation in guard cells depends on the simultaneous availability of two factors, ROS and reduced quinones of the electron transfer chain. The conditions for manifestation of programmed cell death in guard and epidermal cells of the pea leaf were significantly different.  相似文献   

4.
Guard-cell signalling for hydrogen peroxide and abscisic acid   总被引:5,自引:0,他引:5  
Wang P  Song CP 《The New phytologist》2008,178(4):703-718
Guard cells can integrate and process multiple complex signals from the environment and respond by opening and closing stomata in order to adapt to the environmental signal. Over the past several years, considerable research progress has been made in our understanding of the role of reactive oxygen species (ROS) as essential signal molecules that mediate abscisic acid (ABA)-induced stomatal closure. In this review, we discuss hydrogen peroxide (H2O2) generation and signalling, H2O2-induced gene expression, crosstalk and the specificity between ABA and H2O2 signalling, and the cellular mechanism for ROS sensing in guard cells. This review focuses especially on the points of connection between ABA and H2O2 signalling in guard cells. The fundamental progress in understanding the role of ABA and ROS in guard cells will continue to provide a rational basis for biotechnological improvements in the development of drought-tolerant crop plants with improved water-use efficiency.  相似文献   

5.
Mitochondria are known to participate in the initiation of programmed cell death (PCD) in animals and in plants. The role of chloroplasts in PCD is still unknown. We describe a new system to study PCD in plants; namely, leaf epidermal peels. The peel represents a monolayer consisting of cells of two types: phototrophic (guard cells) and chemotrophic (epidermal cells). The peels from pea (Pisum sativum L.) leaves were treated by cyanide as an inducer of PCD. We found an apoptosis-enhancing effect of illumination on chloroplast-containing guard cells, but not on chloroplastless epidermal cells. Antioxidants and anaerobiosis prevented the CN-induced apoptosis of cells of both types in the dark and in the light. On the other hand, methyl viologen and menadione known as ROS-generating reagents as well as the Hill reaction electron acceptors (BQ, DAD, TMPD, or DPIP) that are not oxidized spontaneously by O2 were shown to prevent the CN-induced nucleus destruction in guard cells. Apoptosis of epidermal cells was potentiated by these reagents, and they had no influence on the CN effect. The light-dependent activation of CN-induced apoptosis of guard cells was suppressed by DCMU, stigmatellin or DNP-INT, by a protein kinase inhibitor staurosporine as well as by cysteine and serine protease inhibitors. The above data suggest that apoptosis of guard cells is initiated upon a combined action of two factors, i.e., ROS and reduced plastoquinone of the photosynthetic electron transfer chain. As to reduction of ubiquinone in the mitochondrial respiratory chain, it seems to be antiapoptotic for the guard cell.  相似文献   

6.
Evidence that hydroxyl radicals mediate auxin-induced extension growth   总被引:17,自引:0,他引:17  
Schopfer P  Liszkay A  Bechtold M  Frahry G  Wagner A 《Planta》2002,214(6):821-828
Reactive oxygen intermediates, i.e. the superoxide radical (O*-)(2), hydrogen peroxide (H2O2) and the hydroxyl radical (*OH), are generally regarded as harmful products of oxygenic metabolism causing cell damage in plants, animals and microorganisms. However, oxygen radical chemistry may also play a useful role in polymer breakdown leading to wall loosening during extension growth of plant cells controlled by the phytohormone auxin. Backbone cleavage of cell wall polysaccharides can be accomplished in vitro by (*OH) produced from H2O2 in a Fenton reaction or in a reaction catalyzed by peroxidase supplied with O2 and NADH. Here, we show that coleoptile growth of maize seedlings is accompanied by the release of reactive oxygen intermediates in the cell wall. Auxin promotes release of (O*-)(2) and subsequent generation of (*OH)when inducing elongation growth. Experimental generation of (*OH) in the wall causes an increase in wall extensibility in vitro and replaces auxin in inducing growth. Auxin-induced growth can be inhibited by scavengers of (O*-)(2), H2O2 or (*OH), or inhibitors interfering with the formation of these molecules in the cell wall. These results provide the experimental background for a novel hypothesis on the mechanism of plant cell growth in which (*OH), produced from (O*-)(2) and H2O2 by cell wall peroxidase, acts as a wall-loosening agent.  相似文献   

7.
The aim of this work was to investigate the photodynamic action of electron-rich anthraquinones, viz., cynodontin (CYN) and cynodontin-5,8-dimethylether (CYNM). Both optical and EPR methods are used to detect the generation of singlet oxygen. Based on RNO bleaching, relative to rose bengal (RB), singlet oxygen generating efficiencies of CYN and CYNM are derived to be 0.055 and 0.254, respectively. The formation of superoxide anion via electron transfer to O2 was monitored by optical spectroscopy, using SOD-inhibitable cytochrome c reduction assay. The production of O2-* is enhanced in the presence of electron donors such as EDTA and NADH. Photolysis of CYN and CYNM in DMSO, in the presence of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), generates a multi-line EPR spectrum, characteristic of spin adduct mixture of O2-* and *OH. Both optical and ESR measurements indicate that O2-* (Type I) and 1O2 (Type II) paths are involved in CYN and CYNM photodynamic action.  相似文献   

8.
Rotenone, an inhibitor of NADH dehydrogenase complex, is a naturally occurring insecticide, which is capable of inducing apoptosis. Rotenone-induced apoptosis is considered to contribute to its anticancer effect and the etiology of Parkinson's disease (PD). We demonstrated that rotenone induced internucleosomal DNA fragmentation, DNA ladder formation, in human cultured cells, HL-60 (promyelocytic leukemia) and BJAB cells (B-cell lymphoma). Flow cytometry showed that rotenone induced H2O2 generation, followed by significant changes in the mitochondrial membrane potential (DeltaPsim). Caspase-3 activity increased in HL-60 cells in a time-dependent manner. These apoptotic events were delayed in HP100 cells, an H2O2-resistant clone of HL-60, confirming the involvement of H2O2 in apoptosis. Expression of anti-apoptotic protein, Bcl-2, in BJAB cells drastically inhibited DeltaPsim change and DNA ladder formation but not H2O2 generation, confirming the participation of mitochondrial dysfunction in apoptosis. NAD(P)H oxidase inhibitors prevented H2O2 generation and DNA ladder formation. These results suggest that rotenone induces O2(-)-derived H2O2 generation through inhibition of NADH dehydrogenase complex and/or activation of NAD(P)H oxidase, and H2O2 generation causes the disruption of mitochondrial membrane in rotenone-induced apoptosis.  相似文献   

9.
Beta-thujaplicin Is a natural troponoid with strong antifungal, antiviral, and anticancer activities. Beta-thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. Superoxide anion radical (O2*-) induced cell death and inhibited beta-thujaplicin accumulation, whereas hydrogen peroxide (H2O2) induced beta-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2*- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced beta-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. Interaction among NO, H2O2, and O2*- shows that NO production and H2O2 production are interdependent, but NO and O2*- accumulation were negatively related because of coconsumption of NO and O2*-. NO- and O2*- -induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2*- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.  相似文献   

10.
11.
* The hypothesis was tested that flavonoids may scavenge singlet oxygen ((1)O(2)) in mesophyll cells of Phillyrea latifolia exposed to excess-light stress. * In cross-sections taken from leaves developed at 10% (shade) or 100% (sun) solar irradiance, we evaluated the excess photosynthetically active radiation (PAR)-induced accumulation of (1)O(2) in mesophyll cells by imaging the fluorescence quenching of the specific (1)O(2) probe N-[2-(diethylamino)ethyl]-N-[(2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrol-3-yl)methyl]-5-(dimethylamino)-1-naphthalenesulfonamide (DanePy). The intracellular location of flavonoids was also analyzed using three-dimensional deconvolution microscopy. * Photo-induced quenching of DanePy fluorescence was markedly greater in the mesophyll of shade leaves than in that of sun leaves, the former showing a negligible accumulation of mesophyll flavonoids. The photo-induced generation of (1)O(2) was inversely related to the content of flavonoids in the mesophyll cells of sun leaves. Flavonoids were located in the chloroplasts, and were likely associated with the chloroplast envelope. * Here we provide relevant evidence for the potential scavenger activity of chloroplast-located flavonoids against (1)O(2) and new insights into the photo-protective role of flavonoids in higher plants.  相似文献   

12.
Mitogenic growth factors and transforming growth factor beta1 (TGF-beta1) induce the generation of reactive oxygen species (ROS) in nonphagocytic cells, but their enzymatic source(s) and regulatory mechanisms are largely unknown. We previously reported on the ability of TGF-beta1 to activate a cell surface-associated NADH:flavin:O(2) oxidoreductase (NADH oxidase) that generates extracellular H(2)O(2). In this study, we compared the ROS-generating enzymatic systems activated by mitogenic growth factors and TGF-beta1 with respect to the primary reactive species produced (O(2)(.-) vs. H(2)O(2)), the site of generation (intracellular vs. extracellular) and regulation by Ras. We find that the mitogenic growth factors PDGF-BB, FGF-2, and TGF-alpha (an EGF receptor ligand) are able to rapidly (within 5 min) induce the generation of intracellular O(2)(.-) without detectable NADH oxidase activity or extracellular H(2)O(2) release. In contrast, TGF-beta1 does not stimulate intracellular O(2)(.-) production and the delayed induction of extracellular H(2)O(2) release is not associated with O(2)(.-) production. Expression of dominant-negative Ras (N17Ras) protein by herpes simplex virus-mediated gene transfer blocks mitogen-stimulated intracellular O(2)(.-) generation but has no effect on TGF-beta1-induced NADH oxidase activation/H(2)O(2) production. These results demonstrate that there are at least two distinctly different ROS-generating enzymatic systems in lung fibroblasts regulated by mitogenic growth factors and TGF-beta1 via Ras-dependent and -independent mechanisms, respectively. In addition, these findings suggest that endogenous production of ROS by growth factors/cytokines may have different biological effects depending on the primary reactive species generated and site of production.  相似文献   

13.
Zhang X  Dong FC  Gao JF  Song CP 《Cell research》2001,11(1):37-43
INTRODUCTIONEven under optimal conditions, many metabolicprocesses, including chloroplastic, mitochondrial,and plasma membrane-linked electron transportsystems, produce reactive oxygen species (ROS)such as the superoxide radical (OZ--), hydrogenperoxide (HZOZ), and the hydroxyl free radical(OH--)[1, 2]. Furthermore, the imposition of bioticand abiotic stress conditions can give rise to ex-cess concentrations of ROS, resulting in oxidativedamage at the cellular level. Interestingly, R…  相似文献   

14.
Salicylhydroxamic acid (SHAM), an alternative oxidase inhibitor of plant mitochondria, enhances the NADH-oxidase activity in mitochondrial and chloroplast suspensions obtained from pea roots or leaves, respectively. This reaction is inhibited by the washing of mitochondria or chloroplasts and is observed in supernatants after the removal of the organelles by centrifugation. The reaction is sensitive to CN and to antioxidant propyl gallate. The NADH oxidation is also enhanced by 2,4-dichlorophenol or phenol, but not salicylic acid. The acceleration of NADH oxidation by phenolic compounds is observed with presence of commercial horseradish peroxidase and is connected with the involvement of these compounds in NADH-dependent peroxidase reaction. SHAM and 2,4-dichlorophenol significantly enhance the destruction of nuclei in guard cells of pea leaf epidermis caused by the generation of reactive oxygen species during the oxidation of exogenous NADH by apoplastic peroxidase.  相似文献   

15.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of O*- and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating O*- and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

16.
Airway epithelial cells are constantly exposed to environmental insults such as air pollution or tobacco smoke that may contain high levels of reactive nitrogen and reactive oxygen species. Previous work from our laboratory demonstrated that the reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)), specifically activates neutral sphingomyelinase 2 (nSMase2) to generate ceramide and induce apoptosis in airway epithelial cells. In the current study we examine the biological consequence of exposure of human airway epithelial (HAE) cells to reactive nitrogen species (RNS). Similar to ROS, we hypothesized that RNS may modulate ceramide levels in HAE cells and induce apoptosis. We found that nitric oxide (NO) exposure via the NO donor papa-NONOate, failed to induce apoptosis in HAE cells. However, when papa-NONOate was combined with a superoxide anion donor (DMNQ) to generate peroxynitrite (ONOO(-)), apoptosis was observed. Similarly pure ONOO(-)-induced apoptosis, and ONOO(-)-induced apoptosis was associated with an increase in cellular ceramide levels. Pretreatment with the antioxidant glutathione did not prevent ONOO(-)-induced apoptosis, but did prevent H(2)O(2)-induced apoptosis. Analysis of the ceramide generating enzymes revealed a differential response by the oxidants. We confirmed our findings that H(2)O(2) specifically activated a neutral sphingomyelinase (nSMase2). However, ONOO(-) exposure did not affect neutral sphingomyelinase activity; rather, ONOO(-) specifically activated an acidic sphingomyelinase (aSMase). The specificity of each enzyme was confirmed using siRNA to knockdown both nSMase2 and aSMase. Silencing nSMase2 prevented H(2)O(2)-induced apoptosis, but had no effect on ONOO(-)-induced apoptosis. On the other hand, silencing of aSMase markedly impaired ONOO(-)-induced apoptosis, but did not affect H(2)O(2)-induced apoptosis. These findings support our hypothesis that ROS and RNS modulate ceramide levels to induce apoptosis in HAE cells. However, we found that different oxidants modulate different enzymes of the ceramide generating machinery to induce apoptosis in airway epithelial cells. These findings add to the complexity of how oxidative stress promotes lung cell injury.  相似文献   

17.
From 1 to 3 h after the onset of cerebellar granule cells (CGC) apoptosis in a low-K+(5 mm KCl) medium there was a large decay of NADH and a 2.5-fold increase of the rate of reactive oxygen species (ROS) production (measured using CGC loaded with dichlorodihydrofluorescein). During the same time period, the ascorbate-dependent NADH oxidase activity, which accounted for more than 90% of both total NADH oxidase activity and NADH-dependent *O2- production of CGC lysates, increased 2.5- to threefold. The stimulation of the ascorbate-dependent NADH oxidase activity by oxidized cytochrome c, 2.5-fold at saturation with a K(0.5) of 4-5 microm cytochrome c, can at least partially explain this activation. The plasma membrane ascorbate-dependent NADH oxidase activity accounted for more than 70% of the total activity (both in terms of NADH oxidase and *O2- release) of CGC lysates. 4-Hydroxyquinazoline (4-HQ), which was found to block this apoptotic process, prevented the increase of ROS production. 4-HQ protection against cell viability loss and DNA fragmentation correlated with the inhibition by 4-HQ of the ascorbate-dependent NADH oxidase activity of CGC lysates, showing the same K(0.5)-value (4-5 mm 4-HQ). The efficient blockade of CGC apoptosis by addition of superoxide dismutase to the medium further supports the neurotoxic role of *O2- overproduction by the plasma membrane ascorbate-dependent NADH oxidase.  相似文献   

18.
Degradation of nuclei in epidermal and guard cells of pea leaves was induced by NaCN. Guard cells were considerably more resistant to CN- than epidermal cells. CN--induced nucleus degradation in guard cells was accelerated by illumination. The effect of illumination was negligible in epidermal cells that, unlike guard cells, do not contain chloroplasts. These data may indicate a role of chloroplasts in CN--induced cell death. CN--induced nucleus degradation in epidermal cells was retarded by antioxidants (butylated hydroxytoluene and vitamin E). The effect of CN- in guard cells was largely removed by vitamin E. Salicylic acid, an inhibitor of catalase and ascorbate peroxidase, induced 100% degradation of nuclei in epidermal cells but did not significantly affect nuclei in guard cells. CN--induced inhibition of catalase and peroxidase is assumed to lead to generation and accumulation of reactive oxygen species inducing apoptosis. Like mitochondria, which play an important role in animal cell apoptosis, chloroplasts may take part in apoptosis in plant cells.  相似文献   

19.
SB202190 调节蚕豆保卫细胞中SA 诱导H2O2 产生   总被引:1,自引:0,他引:1  
运用激光共聚焦扫描技术, 在p38 MAP激酶专一抑制剂SB202190处理下, 探索植物促分裂原活化蛋白激酶(mitogenactivated protein kinase, MAP激酶)介导蚕豆(Vicia faba)保卫细胞中H2O2为代表的活性氧(reactive oxygen species, ROS)信号机制, 发现: p38 MAP激酶专一抑制剂SB202190处理没有导致蚕豆保卫细胞中H2O2和Ca2+探针荧光强度增强, 与水杨酸 (salicylic acid, SA) 或脱落酸 (abscisic acid, ABA) 迅速加强2种探针荧光强度形成鲜明对比; 而该抑制剂分别与SA和ABA共同处理, 前者H2O2探针荧光强度没有增加, 而后者荧光强度仍然能够增加; 而进一步使用Ca2+螯合剂BAPTA和SB202190 +SA共同处理, H2O2探针荧光强度没有增加。这些结果初步表明: 无论胞质Ca2+浓度高低, SB202190调节蚕豆保卫细胞中SA诱导H2O2产生, 但是不调节植物逆境信使分子ABA 此类的反应。因此推测, 植物细胞中可能有类似动物和酵母细胞中的p38MAP激酶类, 并可能专一调节植物保卫细胞中H2O2信号通路。据我们所知, 这是首次报道SB202190和SA共同调节植物保卫细胞中ROS信号过程。  相似文献   

20.
TAS-103, a new anticancer drug, induces DNA cleavage by inhibiting the activities of topoisomerases I and II. We investigated the mechanism of TAS-103-induced apoptosis in human cell lines. Pulsed field gel electrophoresis revealed that in the leukemia cell line HL-60 and the H(2)O(2)-resistant subclone, HP100, TAS-103 induced DNA cleavage to form 1-2-Mb fragments at 1 h to a similar extent, indicating that the DNA cleavage was induced independently of H(2)O(2). TAS-103-induced DNA ladder formation in HP100 cells was delayed compared with that seen at 4 h in HL-60 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded increases in mitochondrial membrane potential (DeltaPsim) and caspase-3 activation. Inhibitors of poly(ADP-ribose) polymerase (PARP) prevented both TAS-103-induced H(2)O(2) generation and DNA ladder formation. The levels of NAD(+), a PARP substrate, were significantly decreased in HL-60 cells after a 3-h incubation with TAS-103. The decreases in NAD(+) levels preceded both increases in DeltaPsim and DNA ladder formation. Inhibitors of NAD(P)H oxidase prevented TAS-103-induced apoptosis, suggesting that NAD(P)H oxidase is the primary enzyme mediating H(2)O(2) formation. Expression of the antiapoptotic protein, Bcl-2, in BJAB cells drastically inhibited TAS-103-induced apoptosis, confirming that H(2)O(2) generation occurs upstream of mitochondrial permeability transition. Therefore, these findings indicate that DNA cleavage by TAS-103 induces PARP hyperactivation and subsequent NAD(+) depletion, followed by the activation of NAD(P)H oxidase. This enzyme mediates O(2)(-)-derived H(2)O(2) generation, followed by the increase in DeltaPsim and subsequent caspase-3 activation, leading to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号