首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To gain better insight into the importance of predator and resourcecontrol in New Zealand lakes we surveyed the late summer trophicstructure of 25 shallow South Island lakes with contrastingnutrient levels (6–603 µg TP l–1) and fishdensities. Total catch of fish per net (CPUE) in multi-meshgillnets placed in the open water and the littoral zones waspositively related with the nutrient level. Trout CPUE was negativelycorrelated with total phosphorus (TP) and total nitrogen (TN).Zooplankton seemed largely influenced by fish, as high fishCPUE coincided with low zooplankton and Daphnia biomass, lowaverage weight of cladocerans, low contribution of Daphnia tototal cladoceran biomass, low ratio of calanoids to total copepodbiomass and low ratio of zooplankton biomass to phytoplanktonbiomass. However, chlorophyll a was only slightly negativelyrelated to Daphnia biomass and not to zooplankton biomass ina multiple regression that included TN and TP. Ciliate abundancewas positively related to chlorophyll a and negatively to Daphniabiomass, but not to total zooplankton biomass, while no relationshipswere found between heterotrophic nanoflagellates and zooplankton.The relationships between fish abundance and nutrients and fishabundance and zooplankton:phytoplankton ratio and between chlorophylla and TP largely followed the pattern obtained for 42 northtemperate Danish lakes. We conclude that fish, including trout,have a major effect on the zooplankton community structure andbiomass in the pelagial of the shallow oligotrophic to slightlyeutrophic New Zealand lakes, but that the cascading effectson phytoplankton and protist are apparently modest.  相似文献   

2.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

3.
Seasonal dynamics in elemental composition [carbon (C), nitrogenand phosphorus (P)] of seston and zooplankton were studied overseveral years in three hypereutrophic Dutch lakes with persistentdominance and high biomass of cyanobacteria. In all three lakes,there was a strong pattern with decreased P-content and increasedC:P ratio in seston (<150 µm) coinciding with the increasein water temperature. The seston C:P ratios (at:at) were morethan doubled with the rising temperature, i.e. from 200 (at:at)in winter to 500 in summer. Sestonic C:P ratios increased overthe growing season, suggesting that seasonal dynamics amongautotrophs with high P-uptake in winter and support of subsequentphytoplankton growth by consumption of internal cellular P (P-quota)was the main cause of low sestonic P contents in late summer.This could, however, occur in concert with a physiologicallydriven decrease in cell-specific P at higher temperatures insummer. In contrast, the annual variation of C:P ratios of thezooplankton fraction was only 10% of that of seston. The variationsof C:P ratios of the zooplankton were, nevertheless, stronglycorrelated with those of seston. For most of the summer, sestonC:P ratios were far above the threshold ratio for P-limitationin Daphnia and other P-demanding species. This will pose furtherconstraints on growth performance of Daphnia in these lakes,thus adding to the fish predation pressure and the poor foodquality of cyanobacteria per se. The low grazing pressure causesa high biomass of low-quality autotrophs, promoting a stablestate with low trophic transfer efficiency.  相似文献   

4.
The carbon (C), nitrogen (N) and phosphorus (P) contents (%of dry weight) of some crustacean zooplankton were studied inthe Baltic Sea. The copepod Acartia sp. had a stable C and Ncontent (48.3 ± 0.8% C, 12.4 ± 0.2% N, C:N ratio4.5 ± 0.1). The P content was variable (1–2%),probably depending on developmental stage and season. Copepodsaccumulating fat, like Pseudocalanus minutus elongatus, hadhigher and more variable C content (50–60%), and lowerN and P content (7–12% N, 0.6–1.5% P). The highestC and lowest N and P contents were found in adult Limnocalanusmacrurus. However, the N:P ratio was apparently independentof fat content and between 14 and 27 for all copepods. The cladoceransBosmina longispina maritima and Evadne nordmanni had lower Ncontent (9.3–10.8%) and higher C:N ratio (5.1–5.7)than Acartia sp. The P content (1.2–1.4%) was similarto Acartia sp. and the N:P ratios (16–19) were in thelower range of that found for the copepods. The N:P ratio wasgenerally somewhat higher in the copepods than in seston, whichmost of the year had nearly Redfield C:N:P ratios. Potentially,nutrient recycling from crustacean zooplankton could enhanceN limitation of phytoplankton, but small stoichiometric differencessuggest that this effect is probably weak. The extent is dependenton the structure of the zooplankton community and the grossgrowth efficiencies. Acartia copepodites, which had nearly RedfieldN:P ratios, would have the opposite effect and enhance P limitationin late summer when seston N:P ratios increased.  相似文献   

5.
Lakes were surveyed to assess the potential patterns of latitudinalvariation in carbon:nitrogen:phosphorus (C:N:P) stoichiometryof lower food web components. Thirty-four lakes were surveyedat an arctic latitude (68°38'N, 149°38'W) and 10 lakesat a temperate latitude (46°13'N, 89°32'W) during 1997.The temperate data set was augmented with earlier survey resultsemploying similar methods. It was hypothesized that differencesin environmental variables across latitude would cause differencesin community C:N:P ratios, leading to differences in trophicinteractions. Physical measurements (light, temperature), sestonand zooplankton were collected from each lake. Seston and zooplanktonwere analyzed for C, N and P content, and zooplankton were countedand measured for biomass estimates. The degree of trophic interactionbetween seston and zooplankton was assessed by (i) measuringelemental imbalances between seston and zooplankton and (ii)calculating the potential recycling ratio by the zooplanktoncommunity available for seston. Seston C:nutrient, but not N:P,ratios were higher in temperate than arctic lakes. Conversely,arctic zooplankton had higher C:nutrient, but not N:P, ratiosthan zooplankton in temperate lakes. Elemental imbalances weregreater in temperate than in arctic lakes, but N:P stoichiometryof potential zooplankton recycling was nearly identical betweenthe two latitudes. Zooplankton community C:N:P ratios were notrelated to either latitude or seston C:N:P. In accordance withstoichiometric theory, relative abundances of calanoid copepodswere positively correlated with seston C:N in temperate lakes.Additionally, relative abundances of Daphnia were negativelycorrelated with seston C:N ratios in temperate and arctic lakes,and positively correlated with N:P ratios in the arctic. Ingeneral, these results suggest that seston and zooplankton communitystoichiometry differ across latitude, and these differenceshave the potential to affect trophic interactions.  相似文献   

6.
We hypothesised that increasing winter affluence and summer temperatures, anticipated in southern Europe with climate change, will deteriorate the ecological status of lakes, especially in those with shorter retention time. We tested these hypotheses analysing weekly phytoplankton and chemistry data collected over 2 years of contrasting weather from two adjacent stratified lakes in North Italy, differing from each other by trophic state and water retention time. Dissolved oxygen concentrations were higher in colder hypolimnia of both lakes in the second year following the cold winter, despite the second summer was warmer and the lakes more strongly stratified. Higher loading during the rainy winter and spring increased nutrient (N, P, Si) concentrations, and a phytoplankton based trophic state index, whilst the N/P ratio decreased in both lakes. The weakened Si limitation in the second year enabled an increase of diatom biovolumes in spring in both lakes. Chlorophyll a concentration increased in the oligo-mesotrophic lake, but dropped markedly in the eutrophic lake where the series of commonly occurring cyanobacteria blooms was interrupted. The projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients rather than to the retention time, and is more pronounced in lakes with lower trophy.  相似文献   

7.
Seasonal changes in the biochemistry of lake seston   总被引:3,自引:0,他引:3  
1. The quantity of seston was measured and the elemental carbon, nitrogen and phosphorus (C, N, P) and biochemical composition (carbohydrate, protein, lipid) of the < 53 μm size fraction in three temperate lakes during one year was analysed. The lakes differed in nutrient concentration and were characterized as oligotrophic, mesotrophic and eutrophic. Linear regression analyses defined associations between seston composition and either lake trophic status, depth or season. 2. The concentration of particulate organic seston was greatest during spring and autumn and lowest during the clear water period in early summer. Seasonal patterns in seston elemental and biochemical percentage composition (quality) were observed to be independent of differences in seston quantity. 3. Concentrations of seston C, N and P were high in most cases in the spring and autumn and low in summer. Concentrations of P were particularly high during late summer and early autumn in the metalimnion, perhaps because of recovery of P from anaerobic sediments and hypolimnetic waters. Because seston C and N did not increase as markedly as P, C : P and N : P ratios both declined in the autumn. Primary production was thought to be co-limited by N and P in all three of these lakes; however, the data suggested that N might be more important as a major limiting nutrient in the eutrophic lake as the metalimnion increased in depth in late summer and autumn. 4. Concentrations of protein, carbohydrate, polar lipid and triglyceride generally increased with lake type as expected (greatest in the eutrophic lake), but showed no relationship with water depth. As the year progressed, no significant changes were measured in protein and carbohydrate concentrations; however, the concentration of polar lipid decreased and triglyceride increased significantly with time of year. 5. The biochemical composition of seston varied during the year and among lakes; for example, in Lake Waynewood the proportion of protein composing the seston (percentage protein by weight) varied from < 10% to > 40%. No statistically significant patterns in the percentage protein or carbohydrate were found. However, the proportion of seston comprised of triglyceride decreased with lake type and increased during the year; whereas the proportion of seston as polar lipid increased with lake type and decreased during the year. Triglyceride comprised most of the lipid. Both protein : lipid and protein : carbohydrate ratios tended to be greatest in summer and lowest in the spring and autumn. 6. Relationships between samples and biochemical composition analysed by Canonical Correspondence Analysis (Canoco) indicated similar patterns in seasonal changes in seston biochemistry for the three lakes, with samples separated primarily by vectors for lake type (oligotrophic to eutrophic) and the percentage polar lipid (proportion of total lipid) and secondarily by vectors for date and water depth (epilimnion or metalimnion). 7. These seasonal biochemical changes in the seston food base were compared with biochemical changes known to occur in algae grown under N-or P-limited conditions in the laboratory, and the resultant quality of this algal food for suspension-feeding consumers (zooplankton). It was concluded that zooplankton were likely to be physiologically challenged by these distinct seasonal shifts in the quality of lake seston.  相似文献   

8.
We performed in situ experiments during the summer of 1995 and 1996 to assess the potential effect of solar ultraviolet B (UVB) radiation (290-320 nm) on the survival of Cyclops abyssorum tatricus Kozminski and Boeckella gracilipes Daday. These species are numerically dominant within the crustacean zooplankton living in two high-mountain lakes, one located in the Austrian Alps [Gossenkollesee (GKS), 2417 m above sea level, maximum depth 9.9 m] and another in the Chilean Andes (Laguna Negra, 2700 m above sea level, maximum depth 320 m). The copepods were incubated in quartz tubes (1 1) or in quartz tubes wrapped with Mylar D® to exclude most of the UVB radiation. The organisms were exposed at 0.5 m depth for 10-72 h on cloudless days. Both lakes were very transparent to UVB and 10% of the surface radiation at the nominal wavelength of 305 nm was still present at 9.6 m in GKS and at 12.8 in Laguna Negra. These species migrate vertically and have a maximum daytime distribution close to the bottom (C.abyssorum tatricus) or below 15 m depth (B.gracilipes). Both species were red, but the carotenoid concentration was higher in C.abyssorum tatricus than in B.gracilipes (6.5 and 2.3 g mg-1 dry weight, respectively). UV-absorbing compounds with a maximum absorption at 334 nm were also detected. Cyclops abyssorum tatricus was highly resistant to UVB radiation and no significant lethal effect was observed. Boeckella gracilipes had a mortality 5 times higher in the treatment receiving full sunlight than in the Mylar treatment (3.2%) only when exposed for 70 h. The resistance of B.gracilipes was higher than that reported in the literature for the same species, suggesting the existence of intraspecific differences in UV sensitivity.   相似文献   

9.
The stoichiometry of N and P in the pelagic zone of Castle Lake, California   总被引:2,自引:0,他引:2  
We measured the concentrations, as well as lake-wide amounts,of nitrogen (N) and phosphorus (P) in dissolved, seston andzooplankton pools throughout the water column of Castle Lake,California, during summer, 1991. This allowed us to determinethe stoichiometric ratios of important elements in each pool(C:N, C:P, N:P) as well as for the entire lake. Dissolved andseston pools were the predominant storage compartments for bothN and P; zooplankton never contained >5% of N or 10% of Plake wide. However, by late summer, the concentrations of Pin seston and in zooplankton were similar in the upper portionsof the water column, suggesting that changes in food web structurethat alter zooplankton biomass and community composition (andhence elemental storage in the zooplankton) may produce significantshifts in nutrient storage among pelagic pools. Lake-wide levelsof dissolved N were largely constant over the study period;however, lake-wide dissolved P increased. These dynamics suggestedthat the majority of nutrients stored in dissolved pools wereunavailable for phytoplankton growth. N:P and C:P ratios indicatedthat Castle Lake phytoplankton became severely deficient inP during the course of our observations. These ratios also greatlyexceeded recently reported threshold values for elemental constraintson growth and reproduction for several species of zooplankton.The ratio of N to P in the zooplankton pool was relatively constantand consistently lower than that in the sestion. As a result,the predicted N:P ratio of zooplankton-regenerated nutrientsexceeded the N:P ratio of the seston, implying that zooplanktonnutrient regeneration further skewed N and P supply ratios,and potentially enhanced P limitation of phytoplankton in CastleLake. 1Present address: Department of Biology, Box 19498, Universityof Texas at Arlington, Arlington, TX 76019, USA  相似文献   

10.
A series of 4-day manipulations of zooplankton biomass and nutrientavailability was performed in enclosures in three lakes to determinespecies-specific algal responses to herbivory and nutrient enrichment.Algal performance in enclosures was compared to the relationshipsbetween weekly algal growth rates and the zooplankton in situ.When in situ growth rates were significant functions of zooplanktonbiomass, the responses were generally consistent with responsesin the enclosure experiments. The importance of both nutrientsand zooplankton in mediating algal growth was demonstrated bynumerous observations: strong algal community response to enrichment,unimodal or positive responses of certain algal taxa to zooplanktonbiomass, differences in degree of nutrient limitation amongthe algal response types, lack of nutrient limitation of non-grazedalgal taxa and a preponderance of taxa with no net responseto increasing zooplankton biomass. Variation in the zooplanktoncommunity may be the largest source of variability in nutrientsupply rate during summer in stratified lakes, and causes substationalvariability in the algae. Algae responded more strongly to changesin zooplankton composition than to changes in zooplankton biomass.We conclude that, due to the close coupling of phytoplanktonand zooplankton communities in these nutrient-limited lakes,major compositional changes in the zooplankton have greatereffects on the algae than do changes in biomass of grazers alreadypresent. 1Present address: Division of Environmental Studies, Universityof California, Davis, CA 95616, USA 2Present address: Division of Biological Sciences, Universityof California, Davis, CA 95616, USA  相似文献   

11.
A recent rise in the relative abundance of Discostella species (D. stelligera and D. pseudostelligera) has been well documented from sedimentary diatom assemblages across the Northern Hemisphere. This unprecedented change over the last ~150 years has been linked to rises in atmospheric temperatures, changes in ice cover, and/or increases in thermal stability, among other factors. The bi‐weekly monitoring data from two boreal lakes at the Experimental Lakes Area (ELA) in northwestern Ontario were analyzed across seasons (spring, summer, and fall) and decades (1970s–2000s). We found that Discostella species are primarily spring/early summer bloomers (i.e., late April to June) in these lakes and changes in concentrations of Discostella over time were most pronounced in the spring or early summer months. Increases in Discostella abundance over time may be linked to earlier ice‐off and a longer period of spring turnover, resulting from increased winter and spring temperatures. It is also possible that a trophic mismatch between the spring diatom bloom and zooplankton is occurring, thus reducing diatom loss rates, and resulting in greater overall abundance. Moreover, the spring dominance of Discostella in our study lakes occurred at a time of the year when nutrient concentrations were at their highest seasonally, suggesting that these taxa are neither limited directly by nutrients, nor responding to enhanced stratification during the summer months in these lakes.  相似文献   

12.
Changes in zooplankton populations during the experimental acidilicationof Little Rock Lake provided an opportunity to examine specificmechanisms underlying the morphological responses of bosminidsto changing predation pressure. Two large copepods, Epischuralacustris and Mesocyclops edax, disappeared from the lake'sacidified basin in 1986 and 1989, respectively, while a smallercopepod predator, Tropocyclops extensus, increased during laterstages of acidification. The two bosminid species showed distinctlydifferent responses coinciding with the changes in copepod predation.Bosmina longirostris exhibited a significant decrease in mucrolength with the decline of M.edax and E.lacustris. Its meanbody and antennule length, however, did not change. We suggestthat the decoupling of B.longirostris mucro length and antennulelength may have been related to the persistence of the smallercopepod predator, T.extensus. Eubosmina tubicen showed no apparentresponse to declines in M.edax and E.lacustris abundance ineither mean mucro, antennule or body length. Allometric analysesindicated, however, that mucro length was related to size-dependentcopepod predation for both B.longirostris and E.tubicen.  相似文献   

13.
  1. Daphnia are key organisms in pelagic food webs, acting as a food resource for fish and predatory zooplankton and regulating phytoplankton through grazing. Its population dynamic follows regular seasonal patterns, with spring peaks followed by summer population declines (midsummer declines, MSDs). Midsummer declines show high inter-annual variation, which has been attributed to different causes. However, the mechanisms controlling the MSD remain poorly understood, especially in deep stratified lakes.
  2. We tried to disentangle the factors causing Daphnia MSDs in Lake Lugano and Lake Iseo (in Switzerland and Italy), two deep peri-alpine lakes with similar trophic status and vertical mixing dynamics, characterised by phosphorus accumulation in the hypolimnion and variable mixing during late-winter turnovers.
  3. Specifically, we assessed the effects of three different hypothetical pathways according to which: (1) winter air temperature controls MSDs by influencing mixing depth during turnovers and epilimnetic phosphorus replenishment; (2) vernal air temperature influences MSD by accelerating the timing of spring population peak; and (3) summer temperature influences MSDs by increasing fish predation. We assessed the relative strength of these pathways using structural equation modelling on long-term datasets for the two lakes (29 years for Lake Lugano and 19 years for Lake Iseo).
  4. Between the hypothesised pathways, the one driven by winter air temperature (through P replenishment) influenced Daphnia abundance in spring in both lakes, but the effects propagated to summer Daphnia abundance only in Lake Lugano. Additionally, summer Daphnia abundance was influenced by the summer air temperature through a positive (although weak) effect. By comparison, vernal air temperature had no detectable effects on summer Daphnia abundance.
  5. The results revealed marked differences between the meromictic study lakes and the shallow hypertrophic water bodies that were the focus of previous research on Daphnia MSD, and also between the two study lakes. The influence of epilimnetic P replenishment on the summer Daphnia abundance in Lake Lugano, which was recovering from past eutrophication, may have reflected the greater susceptibility of deep, stratified lakes to P depletion after spring compared to shallow hypertrophic lakes or reservoirs. This effect might not have been detected in Lake Iseo because P was more consistently depleted during the study period (i.e. variance in the predictor was too low to detect an effect).
  6. This study highlighted the complexity of the effects of climate variability on Daphnia MSD in deep lakes, showing that the responses can differ even between two neighbouring lakes with similar vertical mixing dynamics and trophic status. At the same time, the results suggest that future increases in winter air temperature, caused by global warming, may cause critically low densities of Daphnia during spring and summer and compromise the ability of zooplankton to control phytoplankton biomass.
  相似文献   

14.
Zooplankton annual cycle in a Mediterranean coastal area   总被引:13,自引:0,他引:13  
The annual cycle of the zooplankton community in the SaronikosGulf (Aegean Sea, Greece) was studied over a period of 2 years.The sampling scheme included monthly hauls at three stationsdifferentiated according to depth and neritic character. Maximumvalues of total zooplankton abundance were found in summer monthsup to early autumn and partially in spring. Copepods dominatedduring most of the year (Clausocalanus furcatus, Paracalanusparvus, Temora stylifera, Ctenocalanus vanus, Oithona similis,Oithona plumifera), while cladocerans (Penilia avirostris) wereabundant in summer months and in September. No important fluctuationswere detected between the 2 years of study, while monthly oneswere more significant in the more neritic station during thewinter–spring period. Correspondence analysis showed thatthe seasonal evolution of zooplankton is related to environmentalparameters: temperature, hydrography expressed in open sea influenceand topography.  相似文献   

15.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

16.
Stocking piscivorous salmonids in Lake Michigan produced dramaticalterations in food-web structure, including higher numbersof large-bodied zooplankton (especially Daphnia pulicaria),lower summer chlorophyll concentrations and increased watertransparency. Experimental determinations of epilimnetic phytoplanktongrowth rates and of zooplankton grazing rates indicate thatherbivorous zooplankton controlled algal dynamics during thesummer of 1983 because grazers occupied the surface waters throughoutthe day. In 1985, however, both large- and small-bodied Daphniamade approximately equal contributions to total grazer biomass,and all grazers displayed pronounced diel vertical migrations,visiting epilimnetic waters only at night. This prohibited zooplanktonfrom controlling algal dynamics because grazing losses did notexceed phytoplankton growth rates. The changes in zooplanktoncommunity composition and behavior observed in summer 1985 probablyresulted from increased predation by visually orienting planktivorousfish, especially bloater chub (Coregonus hoyi). Effects of food-webmanipulations on phytoplankton dynamics were evident only duringJuly and August. During spring and early summer copepods dominateLake Michigan's zooplankton community. Owing to their smallbody size, copepods are less susceptible to fish predation andexhibit much lower filtering rates than Daphnia. Variabilityin zooplanktivorous fish abundance probably has little effecton phytoplankton dynamics during spring and early summer.  相似文献   

17.
The life history and production characteristics of Neomysis mercedis from two British Columbia lakes were examined for their potential influence on zooplankton and limnetic fish communities. During the day, mysids in shallow Muriel Lake (45 m) were on or near the bottom; in Kennedy Lake (> 100 m), mysids remained deeper than 50 m. In both lakes, mysids spent summer nights at 0–15 m depths despite > 20 °C temperatures. Mysid density was not strongly correlated with lake depth. Mysids generally displayed spring to early summer minima and late summer to fall maxima in numbers and biomass. Single peaks in gravid females and juvenile mysid abundance, and the absence of pronounced seasonal size changes of gravid females suggest that N. mercedis produced a single generation each year. Fecundities of study lake mysids are the lowest on record, and although size-dependent, exhibited unusually high variability. Annual productivity of mysids averaged 485 mg m–2 y–1 (range 205–690). Calculations indicate mysids consume several times more zooplankton per annum than limnetic fish do. N. mercedis is likely an important competitor of juvenile sockeye salmon (Oncorhynchus nerka) since: (i) sockeye exhibit food limited growth and survival patterns in coastal lakes, (ii) mysids and sockeye consume similar zooplankton prey and (iii) mysids do not contribute greatly to sockeye diet (i.e. < 26% of summer and fall diets by numbers or weight).  相似文献   

18.
The annual cycle of the zooplankton community in a coastal embaymentof the Bay of Biscay was studied from data on zooplankton fractionslarger than 45 and 250 µm Smaller zooplankton and chlorophyllmaxima coincided in summer, while larger zooplankton reachedthe maximum in spring. Copepods dominated in both fractionsmost of the year, being copepod nauplii and postnaupliar stagesof Oithona nana and Paracalanus parvus the main constituentsof the microzooplankton maxima, and older copepodites and adultsof Acartw clausi of the meso-macrozooplankton maxima. Secondarypeaks of abundance due to protozoan blooms of Steno-semellanivalu, in early spring, and Noctiluca santillans, in summer,were also observed in smaller and larger fractions respectively.The collapse of phytoplankton biomass in early autumn was followedby a strong decrease of zooplankton in mid autumn. From thisperiod to winter, chlorophyll and zooplankton abundance showedsmall variations, but noticeable changes in the compositionand size spectra of zooplankton were observed. In winter, valuesof chlorophyll and zooplankton abundance reached minima, A.clausidominated the copepod assemblage and carnivorous zooplankterswere absent or negligible The annual development of the mainpredator populations (Sagitta frideria, Luiopc tetraphylla andanchovies) were found to be synchronized with the variationsin abundance and size spectra of zooplankton in the study area.  相似文献   

19.
The predatory impact and the trophic role of the freshwaterjellyfish, Craspedacusta sowerbii, was studied using microcosmand enclosure experiments as well as a 3-year pond survey. Theresults showed a significant decrease of small herbivorous crustaceans,i.e. Bosmina longirostris and juvenile cyclopoid copepods, inthe medusa treatments of the microcosms and the enclosure experiments.Chlorophyll concentrations in the enclosure experiment weresignificantly increased in the medusa treatment, suggestingthat C. sowerbii may cause cascading effects in the food chain.A comparison of daily zooplankton losses during the pond surveycaused by medusae and fish (roach, Rutilus rutilus), and theirfood selectivities suggest food separation of these two predatorsand reveal a strong negative impact of medusae on the copepodpond community. In the case of a jellyfish bloom, our resultsshow that both food chains can co-occur in lakes because ofa weak interaction between these top predators, fish and jellyfish,with simultaneous impacts on the zooplankton structure.  相似文献   

20.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号