首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal summation of vibrotactile stimuli was measured at four frequencies (25, 40, 80, and 160 Hz) using a large contactor. Stimulation at 160 Hz gave temporal summation comparable in amount to that reported in previous studies. Stimulation at 25, 40, and 80 Hz gave less summation. The presence of summation at low frequencies is unexpected in view of existing data obtained with small contactors' those data indicate that the afferent system primarily sensitive to low frequencies may not summate stimulus energy over time. The present data suggest either that the low-frequency afferents do summate energy over time or that, under some conditions, the perception of low-frequency signals presented through a large contactor may be mediated by more than one afferent system.  相似文献   

2.
The relationship between induction of central sensitization and facilitation of temporal summation to repetitive stimulation is still unclear. The aim of this study was to investigate temporal summation before and after the induction of secondary hyperalgesia by two different experimental methods: capsaicin injection and controlled heat injury. The effect of each injury model was assessed on a separate day with an interval of at least 5 days. Twelve healthy volunteers participated. Each experiment was performed using electrical, radiant heat, mechanical impact, and punctuate stimuli consecutively. The pain threshold (PT) to a single stimulus and the summation threshold to five repetitive stimuli for electrical (2?Hz) and radiant heat (0.83?Hz) were assessed within the secondary hyperalgesic area. The degree of temporal summation for stimulus intensities of 0.8, 1.0, and 1.2 times the baseline pain thresholds were evaluated by the increase in visual analogue scale (VAS) scores from the first to the fifth stimulus of the train. Further, the degrees of temporal summation were assessed for mechanical impact and punctuate stimuli within the primary and secondary hyperalgesic areas. The contra-lateral forearm served as control (no injury). The pain threshold and the summation threshold to electrical and heat stimuli decreased significantly within the secondary hyperalgesic area after the injury induced by both heat injury or capsaicin injection. However, there was no temporal summation for heat and electrical stimuli in either model. In contrast, for the mechanical impact and punctuate mechanical stimuli the degree of temporal summation was significantly facilitated in the secondary hyperalgesic areas compared with the baseline and the control arm in both models. In the primary hyperalgesic area, the degree of temporal summation was facilitated to mechanical impact and punctuate stimuli but only following the capsaicin injection. In conclusion, the temporal summation mechanism for mechanical stimuli was facilitated in the secondary hyperalgesic area.  相似文献   

3.
The relationship between induction of central sensitization and facilitation of temporal summation to repetitive stimulation is still unclear. The aim of this study was to investigate temporal summation before and after the induction of secondary hyperalgesia by two different experimental methods: capsaicin injection and controlled heat injury. The effect of each injury model was assessed on a separate day with an interval of at least 5 days. Twelve healthy volunteers participated. Each experiment was performed using electrical, radiant heat, mechanical impact, and punctuate stimuli consecutively. The pain threshold (PT) to a single stimulus and the summation threshold to five repetitive stimuli for electrical (2 Hz) and radiant heat (0.83 Hz) were assessed within the secondary hyperalgesic area. The degree of temporal summation for stimulus intensities of 0.8, 1.0, and 1.2 times the baseline pain thresholds were evaluated by the increase in visual analogue scale (VAS) scores from the first to the fifth stimulus of the train. Further, the degrees of temporal summation were assessed for mechanical impact and punctuate stimuli within the primary and secondary hyperalgesic areas. The contra-lateral forearm served as control (no injury). The pain threshold and the summation threshold to electrical and heat stimuli decreased significantly within the secondary hyperalgesic area after the injury induced by both heat injury or capsaicin injection. However, there was no temporal summation for heat and electrical stimuli in either model. In contrast, for the mechanical impact and punctuate mechanical stimuli the degree of temporal summation was significantly facilitated in the secondary hyperalgesic areas compared with the baseline and the control arm in both models. In the primary hyperalgesic area, the degree of temporal summation was facilitated to mechanical impact and punctuate stimuli but only following the capsaicin injection. In conclusion, the temporal summation mechanism for mechanical stimuli was facilitated in the secondary hyperalgesic area.  相似文献   

4.
Animal experiments have shown that the nociceptive reflex can be used as an indicator of central temporal integration in the nociceptive system. The aim of the present study on humans was to investigate whether the nociceptive reflex, evoked by repetitive strong electrical sural nerve stimuli, increased when summation was reported by the volunteers. The reflexes were recorded from the biceps femoris and rectus femoris muscles in eight volunteers following a series of stimulations at 0.1, 1, 2, and 3 Hz. Each series consisted of five consecutive stimuli. Using 0.1- and 1-Hz stimulation, the reflex was not facilitated in the course of the five consecutive stimuli. Following 2- and 3-Hz stimulation, the reflex size (root mean square amplitude) increased significantly during the course of the fifth stimulus. This reflex facilitation was followed by a significant increase (summation) in the pain magnitude when compared with 1- and 0.1-Hz stimulation. Furthermore, the threshold for psychophysical summation could be determined. This threshold (stimulus intensity) decreased when the stimulus frequency (1–5 Hz) of the five consecutive stimuli was increased. The nociceptive reflex and the psychophysical summation threshold might be used to clarify and quantify aspects of temporal summation within the human nociceptive system.  相似文献   

5.
Temporal summation was estimated by measuring the detection thresholds for pulses with durations of 1–50 ms in the presence of noise maskers. The purpose of the study was to examine the effects of the spectral profiles and intensities of noise maskers on temporal summation, to investigate the appearance of signs of peripheral processing of pulses with various frequency-time structures in auditory responses, and to test the opportunity to use temporal summation for speech recognition. The central frequencies of pulses and maskers were similar. The maskers had ripple structures of the amplitude spectra of two types. In some maskers, the central frequencies coincided with the spectrum humps, whereas in other maskers, they coincided with spectrum dip (so-called on- and off-maskers). When the auditory system differentiated the masker humps, then the difference between the thresholds of recognition of the stimuli presented together with each of two types of maskers was not equal to zero. The assessment of temporal summation and the difference of the thresholds of pulse recognition under conditions of the presentation of the on- and off-maskers allowed us to make a conclusion on auditory sensitivity and the resolution of the spectral structure of maskers or frequency selectivity during presentation of pulses of various durations in local frequency areas. In order to estimate the effect of the dynamic properties of hearing on sensitivity and frequency selectivity, we changed the intensity of maskers. We measured temporal summation under the conditions of the presentation of on- and off-maskers of various intensities in two frequency ranges (2 and 4 kHz) in four subjects with normal hearing and one person with age-related hearing impairments who complained of a decrease in speech recognition under noise conditions. Pulses shorter than 10 ms were considered as simple models of consonant sounds, whereas tone pulses longer than 10 ms were considered as simple models of vowel sounds. In subjects with normal hearing in the range of moderate masker intensities, we observed an enhancement of temporal summation when the short pulses or consonant sounds were presented and an improvement of the resolution of the broken structure of masker spectra when the short and tone pulses, i.e., consonant and vowel sounds, were presented. We supposed that the enhancement of the summation was related to the refractoriness of the fibers of the auditory nerve. In the range of 4 kHz, the subject with age-related hearing impairments did not recognize the ripple structure of the maskers in the presence of the short pulses or consonant sounds. We supposed that these impairments were caused by abnormal synchronization of the responses of the auditory nerve fibers induced by the pulses, and this resulted in a decrease in speech recognition.  相似文献   

6.
Thresholds were measured for the detection of vibratory stimuli of variable frequency and duration applied to the index fingertip and thenar eminence through contactors of different sizes. The effects of stimulus frequency could be accounted for by the frequency characteristics of the Pacinian (P), non-Pacinian (NP) I, and NP III channels previously determined for the thenar eminence (Bolanowski et al., J Acoust Soc Am 84 : 1680-1694, 1988; Gescheider et al., Somatosens Mot Res 18: 191- 201, 2001). The effect of changing stimulus duration was also essentially identical for both sites, demonstrating the same amount of temporal summation in the P channel. Although the effect of changing stimulus frequency and changing stimulus duration did not differ for the two sites, the effect of varying the size of the stimulus was significantly greater for the thenar eminence than for the fingertip. The attenuated amount of spatial summation on the fingertip was interpreted as an indication that the mechanism of spatial summation consists of the operations of both neural integration and probability summation.  相似文献   

7.
Thresholds were measured for the detection of vibratory stimuli of variable frequency and duration applied to the index fingertip and thenar eminence through contactors of different sizes. The effects of stimulus frequency could be accounted for by the frequency characteristics of the Pacinian (P), non-Pacinian (NP) I, and NP III channels previously determined for the thenar eminence (Bolanowski et al., J Acoust Soc Am 84: 1680-1694, 1988; Gescheider et al., Somatosens Mot Res 18: 191-201, 2001). The effect of changing stimulus duration was also essentially identical for both sites, demonstrating the same amount of temporal summation in the P channel. Although the effect of changing stimulus frequency and changing stimulus duration did not differ for the two sites, the effect of varying the size of the stimulus was significantly greater for the thenar eminence than for the fingertip. The attenuated amount of spatial summation on the fingertip was interpreted as an indication that the mechanism of spatial summation consists of the operations of both neural integration and probability summation.  相似文献   

8.
Perceiving, memorizing, and estimating temporal durations are key cognitive functions in everyday life. In this study, a duration summation paradigm was used to examine whether summation of temporal durations introduces an underestimation or overestimation bias, and whether this bias is common to visual and auditory modalities. Two within- or across-modality stimuli were presented sequentially for variable durations. Participants were asked to reproduce the sum of the two durations (0.6–1.1 s). We found that the sum of two durations was overestimated regardless of stimulus modalities. A subsequent control experiment indicated that the overestimation bias arose from the summation process, not perceptual or memory processes. Furthermore, we observed strong positive correlations between the overestimation bias for different sensory modalities within participants. These results suggest that the sum of two durations is overestimated, and that supra-modal processes may be responsible for this overestimation bias.  相似文献   

9.
Perception of cutaneous heating and cooling depends strongly on stimulus size. Although this dependence has been attributed solely to spatial summation, topographical variations in temperature sensitivity may also play a role. These variations, which differentially affect perception of small stimuli, may have led to overestimation of spatial summation. This possibility was investigated by measuring detection thresholds and perceived intensity for heating and cooling on the volar surface of the forearm using a multiple-thermode stimulus array. By keeping the array in place throughout each testing session we were able to measure threshold sensitivity and suprathreshold responsiveness at eight individual sites and for combinations of these sites having total stimulus areas of 0.64-5.12 cm2. When spatial summation was calculated in the traditional way by averaging the data for all stimuli of each size, the results agreed closely with previous estimates of summation for warmth and cold. When calculations were based instead on the most sensitive test site for each stimulus size, estimates of summation were reduced by about two-thirds. This outcome indicates that the spatial heterogeneity of thermal sensitivity likely contributed to estimates of spatial summation reported in earlier psychophysical studies. A schematic model of cutaneous thermoreception is presented that shows how neural summation and the density of innervation may combine to produce the psychophysical effects of increasing stimulus size (spatial enhancement).  相似文献   

10.
Perception of cutaneous heating and cooling depends strongly on stimulus size. Although this dependence has been attributed solely to spatial summation, topographical variations in temperature sensitivity may also play a role. These variations, which differentially affect perception of small stimuli, may have led to overestimation of spatial summation. This possibility was investigated by measuring detection thresholds and perceived intensity for heating and cooling on the volar surface of the forearm using a multiple-thermode stimulus array. By keeping the array in place throughout each testing session we were able to measure threshold sensitivity and suprathreshold responsiveness at eight individual sites and for combinations of these sites having total stimulus areas of 0.64-5.12 cm2. When spatial summation was calculated in the traditional way by averaging the data for all stimuli of each size, the results agreed closely with previous estimates of summation for warmth and cold. When calculations were based instead on the most sensitive test site for each stimulus size, estimates of summation were reduced by about two-thirds. This outcome indicates that the spatial heterogeneity of thermal sensitivity likely contributed to estimates of spatial summation reported in earlier psychophysical studies. A schematic model of cutaneous thermoreception is presented that shows how neural summation and the density of innervation may combine to produce the psychophysical effects of increasing stimulus size (spatial enhancement).  相似文献   

11.
Two experiments explored the interaction of spatial and temporal summation in the perception of radiant heat. The first experiment showed that the absolute threshold for detecting two brief (0.1 sec) pulses of heat, one presented to each side of the forehead, is lower than the threshold for detecting a single pulse, even when the two pulses are separated in time by as muchas 0l75 sec. The second experiment showed that a single, 4-sec pulse of heat presented to one side of the forehead feels no warmer than two successive, 2-sec pulses, one to each side. Spatial and temporal summation appear to take place at least partly in the central nervous system.  相似文献   

12.
A computerized system for precise stimulation and analysis of electroencephalographic (EEG) reactions to two simultaneously presented frequencies of sine-wave light (one constant, 13 Hz, and the other varying from 1 to 6 Hz and vice versa) was used to study the mechanisms of human brain reactivity to complex rhythmical stimulation. The frequencies were generated by computer and presented to the subjects by three different ways: as a result of their simple summation (additively), as a product of their multiplication (multiplicatively, amplitude modulation of constant frequency by the varying frequency), or by separate presentation to different eyes. The dynamics of electroencephalograms for different types of stimulation were compared. Under all three experimental conditions, the dynamics of EEG spectra has demonstrated the same general pattern of resonance activation, which was similar to that observed for the presented signals in the case of their amplitude modulation. Significant positive shifts in the functional state of subjects were observed as a result of stimulation. The results obtained show the leading role of the processes of amplitude modulation in the interaction of integrative, adaptive, and trace mechanisms of the brain functioning during human perception of complex rhythmical stimuli.  相似文献   

13.
When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.  相似文献   

14.
In Li and Atick's [1, 2] theory of efficient stereo coding, the two eyes' signals are transformed into uncorrelated binocular summation and difference signals, and gain control is applied to the summation and differencing channels to optimize their sensitivities. In natural vision, the optimal channel sensitivities vary from moment to moment, depending on the strengths of the summation and difference signals; these channels should therefore be separately adaptable, whereby a channel's sensitivity is reduced following overexposure to adaptation stimuli that selectively stimulate that channel. This predicts a remarkable effect of binocular adaptation on perceived direction of a dichoptic motion stimulus [3]. For this stimulus, the summation and difference signals move in opposite directions, so perceived motion direction (upward or downward) should depend on which of the two binocular channels is most strongly adapted, even if the adaptation stimuli are completely static. We confirmed this prediction: a single static dichoptic adaptation stimulus presented for less than 1 s can control perceived direction of a subsequently presented dichoptic motion stimulus. This is not predicted by any current model of motion perception and suggests that the visual cortex quickly adapts to the prevailing binocular image statistics to maximize information-coding efficiency.  相似文献   

15.
Real-world sounds like speech or traffic noise typically exhibit spectro-temporal variability because the energy in different spectral regions evolves differently as a sound unfolds in time. However, it is currently not well understood how the energy in different spectral and temporal portions contributes to loudness. This study investigated how listeners weight different temporal and spectral components of a sound when judging its overall loudness. Spectral weights were measured for the combination of three loudness-matched narrowband noises with different center frequencies. To measure temporal weights, 1,020-ms stimuli were presented, which randomly changed in level every 100 ms. Temporal weights were measured for each narrowband noise separately, and for a broadband noise containing the combination of the three noise bands. Finally, spectro-temporal weights were measured with stimuli where the level of the three narrowband noises randomly and independently changed every 100 ms. The data consistently showed that (i) the first 300 ms of the sounds had a greater influence on overall loudness perception than later temporal portions (primacy effect), and (ii) the lowest noise band contributed significantly more to overall loudness than the higher bands. The temporal weights did not differ between the three frequency bands. Notably, the spectral weights and temporal weights estimated from the conditions with only spectral or only temporal variability were very similar to the corresponding weights estimated in the spectro-temporal condition. The results indicate that the temporal and the spectral weighting of the loudness of a time-varying sound are independent processes. The spectral weights remain constant across time, and the temporal weights do not change across frequency. The results are discussed in the context of current loudness models.  相似文献   

16.
Accurate pitch perception of harmonic complex tones is widely believed to rely on temporal fine structure information conveyed by the precise phase-locked responses of auditory-nerve fibers. However, accurate pitch perception remains possible even when spectrally resolved harmonics are presented at frequencies beyond the putative limits of neural phase locking, and it is unclear whether residual temporal information, or a coarser rate-place code, underlies this ability. We addressed this question by measuring human pitch discrimination at low and high frequencies for harmonic complex tones, presented either in isolation or in the presence of concurrent complex-tone maskers. We found that concurrent complex-tone maskers impaired performance at both low and high frequencies, although the impairment introduced by adding maskers at high frequencies relative to low frequencies differed between the tested masker types. We then combined simulated auditory-nerve responses to our stimuli with ideal-observer analysis to quantify the extent to which performance was limited by peripheral factors. We found that the worsening of both frequency discrimination and F0 discrimination at high frequencies could be well accounted for (in relative terms) by optimal decoding of all available information at the level of the auditory nerve. A Python package is provided to reproduce these results, and to simulate responses to acoustic stimuli from the three previously published models of the human auditory nerve used in our analyses.  相似文献   

17.
We sought to determine the extent to which red-green, colour-opponent mechanisms in the human visual system play a role in the perception of drifting luminance-modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance-modulated (yellow-black) test sinusoids was measured following adaptation to isoluminant red-green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1-16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1-4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal-frequency-dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance-modulated motion targets drifting at speeds of up to at least 32 degrees s(-1). We argue that such mechanisms most probably lie within a parvocellular-dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.  相似文献   

18.
Characteristics of temporal summation in neurons of area 17 of the visual cortex in acute experiments on unanesthetized, immobilized cats. During light adaptation, extracellular spike responses of these neurons to optimal local photic stimuli of varied duration — from 5 to 1000 msec — were studied. The critical duration of temporal summation of excitation, determined by the supraliminal method using the criterion of maximal discharge frequency in the first volley of the spike response, varied in different cells from 5 to 100 msec; neurons with summation lasting 15–100 msec (mean 31.45±5.67 msec) were found most frequently. Neurons with central receptive fields differed significantly from cellswith peripheral fields in the shorter critical duration of temporal summation, the lower frequency of spontaneous discharges, and the shorter duration of the first volley of the response. Summation time in neurons with simple receptive fields was significantly shorter than in neurons with complex receptive fields. The results of these experiments are compared with data in the literature obtained by the study of retinal and lateral geniculate neurons in cats and are discussed from the stand-point of division of ascending afferent projections in the visual system into X-and Y-groups (Ia and Ib).Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 345–352, July–August, 1981.  相似文献   

19.
Thiele A  Dobkins KR  Albright TD 《Neuron》2000,26(3):715-724
Human psychophysical studies have demonstrated that, for stimuli near the threshold of visibility, detection of motion in one direction is unaffected by the superimposition of motion in the opposite direction. To investigate the neural basis for this perceptual phenomenon, we recorded from directionally selective neurons in macaque visual area MT (middle temporal visual area). Contrast thresholds obtained for single gratings moving in a neuron's preferred direction were compared with those obtained for motion presented simultaneously in the neuron's preferred and antipreferred directions. A simple model based on probability summation between neurons tuned to opposite directions could sufficiently account for contrast thresholds revealed psychophysically, suggesting that area MT is likely to provide the neural basis for contrast detection of stimuli modulated in time.  相似文献   

20.
To react efficiently to potentially threatening stimuli, we have to be able to localize these stimuli in space. In daily life we are constantly moving so that our limbs can be positioned at the opposite side of space. Therefore, a somatotopic frame of reference is insufficient to localize nociceptive stimuli. Here we investigated whether nociceptive stimuli are mapped into a spatiotopic frame of reference, and more specifically a peripersonal frame of reference, which takes into account the position of the body limbs in external space, as well as the occurrence of external objects presented near the body. Two temporal order judgment (TOJ) experiments were conducted, during which participants had to decide which of two nociceptive stimuli, one applied to either hand, had been presented first while their hands were either uncrossed or crossed over the body midline. The occurrence of the nociceptive stimuli was cued by uninformative visual cues. We found that the visual cues prioritized the perception of nociceptive stimuli applied to the hand laying in the cued side of space, irrespective of posture. Moreover, the influence of the cues was smaller when they were presented far in front of participants’ hands as compared to when they were presented in close proximity. Finally, participants’ temporal sensitivity was reduced by changing posture. These findings are compatible with the existence of a peripersonal frame of reference for the localization of nociceptive stimuli. This allows for the construction of a stable representation of our body and the space closely surrounding our body, enabling a quick and efficient reaction to potential physical threats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号