首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analogies are drawn between the ordered structure of the colloidal water pool of reversed micelles, water present in the micropores of dense cellulose acetate films and the water vicinal to interfaces in biological systems. Chemical reactivity is enhanced in the solvent which is entirely different from normal water. In particular, it is possible to use the stretched water present in the cellulose acetate films to synthesise biochemicals.  相似文献   

2.
TiO2 films may be used to alter the wettability and hemocompatibility of cellulose materials. In this study, pure and stoichiometric TiO2 films were grown using atomic layer deposition on both silicon and cellulose substrates. The films were grown with uniform thicknesses and with a growth rate in agreement with literature results. The TiO2 films were shown to profoundly alter the water contact angle values of cellulose in a manner dependent upon processing characteristics. Higher amounts of protein adsorption indicated by blurry areas on images generated by scanning electron microscopy were noted on TiO2-coated cellulose acetate than on uncoated cellulose acetate. These results suggest that atomic layer deposition is an appropriate method for improving the biological properties of hemostatic agents and other blood-contacting biomaterials.  相似文献   

3.
Congo red bound to regenerated cellulose in highly swollen gel films formed by slow precipitation from LiCl/N,N-dimethylacetamide solution exhibits induced optical activity. The induced CD band of the dye vanishes when these films are dried under uniaxial stress, indicating that the effect is structural in origin and not simply due to association of dye with chiral centers on the cellulose chain. Cellulose was also regenerated from cellulose acetate films, cast both from isotropic and cholesteric solution, by deacetylation in aqueous ammonia. Congo red bound to cellulose regenerated from cholesteric cellulose acetate exhibits an induced CD band similar to that obtained for films precipitated from LiCl/DMAC solution. The CD spectrum of Congo red in cellulose films regenerated from isotropic cellulose acetate is featureless. These observations indicate that cellulose adopts cholesteric order on slow precipitation from solution.  相似文献   

4.
The objective of this work was the preparation of osmotic tablets using polymer blends of cellulose acetate butyrate (CAB) or ethylcellulose with ammonio methacrylate copolymer (Eudragit® RL). The advantage of these coatings in comparison to the traditionally used cellulose acetate is their solubility in safer organic solvents like ethanol. Polymer films were characterized with respect to their water uptake, dry mass loss, and mechanical properties. The effect of the polymer blend ratio on drug release and on the rupture force of the coating was investigated. In addition, the effect of drug solubility and content, pH and agitation rate of the release medium, and coating level and plasticizer content on the release were studied. With increased Eudragit® RL content in the coating blends, higher medium uptake of the film was observed, resulting in shorter lag times and faster drug release from the osmotic tablets. Replacing ethylcellulose with cellulose acetate butyrate as a coating material led to shorter lag times and faster drug release due to increased film permeability. In addition, CAB-based films had a higher strength and flexibility. The drug release was osmotically controlled and decreased with increasing coating level. It increased with increased drug solubility, plasticizer content, change of buffer species (acetate > phosphate), and decreased coating level. Agitation rate and drug content had no effect on the drug release. A 20% w/w coating level was sufficient for the tablet to tolerate forces of more than five times of the gastric destructive force reported in literature.  相似文献   

5.
Operational cellulose acetate reverse-osmosis membranes were examined for evidence of biological degradation. Numerous fungi and bacteria were isolated by direct and enrichment techniques. When tested, most of the fungi were active cellulose degraders, but none of the bacteria were. Neither fungi nor bacteria were able to degrade cellulose acetate membrane in vitro, although many fungi were able to degrade cellulose acetate membrane after it had been deacetylated. Organisms did not significantly degrade powdered cellulose acetate in pure or mixed cultures as measured by reduction in acetyl content or intrinsic viscosity or production of reducing sugars. Organisms did not affect the performance of cellulose triacetate fibers when incubated with them. The inability of the organisms to degrade cellulose acetate was attributed to the high degree of acetate substitution of the cellulose polymer. The rate of salt rejection decline was strongly correlated with chlorination of feed water and inversely with densities of microorganisms. These data suggest that microbial degradation of operational cellulose acetate reverse-osmosis membranes is unlikely.  相似文献   

6.
The present work proposes the development of a bio-battery composed by an ultrathin monolithic structure of an electrospun cellulose acetate membrane, over which was deposited metallic thin film electrodes by thermal evaporation on both surfaces. The electrochemical characterization of the bio-batteries was performed under simulated body fluids like sweat and blood plasma [salt solution--0.9% (w/w) NaCl]. Reversible electrochemical reactions were detected through the cellulose acetate structure. Thus, a stable electrochemical behavior was achieved for a bio-battery with silver and aluminum thin films as electrodes. This device exhibits the ability to supply a power density higher than 3 μW cm(-2). Finally, a bio-battery prototype was tested on a sweated skin, demonstrating the potential of applicability of this bio-device as a micropower source.  相似文献   

7.
Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.  相似文献   

8.
In the present study, the composite films have been prepared from the aqueous dispersions of starch with microcrystalline cellulose using glycerol as plasticizer and irradiated under ultraviolet (UV) light using sodium benzoate as photo-sensitizer. Photo-crosslinking was characterized by measuring the water absorption under 100% relative humidity, swelling degree and gel fraction in dimethylsulphoxide (DMSO), upon irradiation time. Both, the incorporation of cellulose and photo-irradiation were found to decrease the water absorption, swelling in DMSO and increase the gel fraction. Thermal transitions indicated the anti-plasticization of amylopectin chains at the fiber/matrix interface. With increasing content of cellulose and photo-irradiation time, the tensile modulus and strength were found to improve. It is summarized that the combination of cellulose reinforcement and photo-crosslinking of matrix has improved the physical and mechanical properties.  相似文献   

9.
The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0–1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.  相似文献   

10.
Photochromic inks have been an attractive authentication strategy to improve the anti-counterfeiting efficiency of commercial products. However, recent reports have shown significant disadvantages with photochromic inks, including poor durability and high cost. In this context, we developed novel photochromic nanofibres for advanced anti-counterfeiting applications. Lanthanide-doped strontium aluminate (LdSA) nanoparticles (NPs) were prepared and immobilized into electrospun cellulose acetate nanofibres (CANF). Authentication materials immobilized with inorganic photochromic agents can warranty durability and photostability. Therefore, the ultraviolet-stimulated photochromism of LdSA-encapsulated cellulose acetate nanofibres (LdSA@CANF) demonstrated high reversibility and photostability. A broad range of cellulose acetate nanofibres with unique emission characteristics was developed when applying different ratios of LdSA NPs. LdSA@CANF appeared colourless under visible daylight, whereas a green emission was monitored under ultraviolet-light illumination. The shape and chemical content of the photochromic fibrous films were examined using various analytical techniques. The mechanical characteristics of LdSA@CANF-coated paper were investigated. The emission wavelength was detected at 514 nm to designate green colour, whereas the excitation wavelength was detected at 369 nm to indicate transparency. The prepared cellulose acetate nanofibrous film can be described as an efficient strategy for the anti-counterfeiting of commercialized items.  相似文献   

11.
Cellulose with properties suitable for films and absorbents has been extracted from corn kernels and DDGS. Although DDGS is an inexpensive and abundant co-product that contains valuable components, it is currently not being used for industrial applications. DDGS contains about 9–16% cellulose by weight but the properties of cellulose in DDGS or even in corn kernels such as degree of polymerization (DP), morphology and crystallinity of cellulose have not been studied. In this study, cellulose was extracted from corn kernels and DDGS using alkali and enzymes. A minimum crude cellulose yield of 1.7% and 7.2% with cellulose content of 72% and 81% was obtained from corn kernels and DDGS, respectively. The solids obtained after extraction with cellulose contents ranging from 35% to 81% were made into films with tensile strength and elongation up to 42.5 MPa and 3.3%, respectively, using water and without any additional chemicals. The cellulose obtained holds water up to 9 times its weight and could therefore be used as an absorbent. The cellulose could also be used as paper, composites, lubricant and nutritional supplement.  相似文献   

12.
Abstract

Increasing population growth and industrialization are continuously oppressing the existing energy resources, elevating the pollution and global fuel demand. Various alternate energy resources can be utilized to cope with these problems in an environment-friendly fashion. Currently, bioethanol (sugarcane, corn-derived) is one of the most widely consumed biofuels in the world. Lignocellulosic biomass is yet another attractive resource for sustainable bioethanol production. Pretreatment step plays a crucial role in the lignocellulose to bioethanol conversion by enhancing cellulose susceptibility to enzymatic hydrolysis. However, economical lignocellulose pretreatment still remains a challenging job. Ionic liquids (ILs), especially 1-ethyl-3-methylimidazolium acetate (EmimAc), is an efficient solvent for cellulose dissolution with improved enzymatic saccharification kinetics. To increase the process efficiency as well as recyclability of IL, water is shown as a compatible cosolvent for lignocellulosic pretreatment. The performance analysis of IL–water mixture based on the molecular level understanding may help to design effective pretreatment solvents. In this study, all-atom molecular dynamics simulation has been performed using EmimAc–water mixtures to understand the behavior of cellulose microcrystal containing eight glucose octamers at room and pretreatment temperatures. High-temperature simulation results show effective cellulose chain separation where cellulose–acetate interaction is found to be the driving force behind dissolution. It is also observed that pretreatment with 50 and 80% IL mixture is efficient in decreasing cellulose crystallinity. At a high IL concentration, water exists in a clustered network which gradually spans into the medium with increasing water fraction leading to loss of its cosolvation activity.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
This study reports a facile method to disperse cellulose in deionized water, wherein a critical condition of regenerated cellulose is discovered, where it completely disperses up to a maximum of 5 g L(-1) concentration in deionized water with the help of ultrasonication. The dispersed cellulose is characterized by TEM and DLS, the latter among which shows 200 nm hydrodynamic radii of cellulose nanoparticles dispersed in deionized water. FTIR analysis of dispersed cellulose reveals that dispersed cellulose losses its crystallinity during regeneration and dispersion step employed in this study. The dispersed cellulose reported in this study is able to form free-standing, transparent films, which were characterized by SEM, XRD, TGA, EDX, and FTIR spectroscopy and show resistance against dissolution in water. Additionally, the dispersed cellulose is able to undergo at least three times faster enzymatic hydrolysis in comparison to pristine microcrystalline cellulose under similar reaction conditions. The dispersed cellulose reported here could be a better material for reinforcement, preparation of hydrogels, and drug delivery applications under physiological environment.  相似文献   

14.
The presence of 'ultramicrocells' in natural mineral water, capable of passing through a 0.2 micron filter, has been demonstrated. Filters allowing the greatest proportion of viable (culturable) cells to pass ranked in the order, 0.4 micron polycarbonate (5.02%) > 0.2 micron polycarbonate (0.02%) > or = 0.45 micron cellulose nitrate (0.02%) > 0.2 micron cellulose acetate (< 0.002%). Following incubation for 4 d at 22 degrees C, viable counts in filtered mineral water increased from < 2-8.7 x 10(2) cfu ml-1(-2).8 x 10(4)-1.9 x 10(6) cfu ml-1. Successive filtration/incubation cycles of mineral water increased the proportion of cells passing through a 0.2 micron cellulose acetate filter from < 0.003% to 0.11% and 0.69%, suggesting selection for 'ultramicrocells'. Cells isolated from this process and grown on liquid R2A medium were thin, Gram-negative rods, of 0.15-0.40 micron wide and 0.50-6.20 microns long. Membrane filtration techniques used for pathogen detection in mineral waters will not retain all the cells present. If pathogens are able to form ultramicrocells, these may go undetected.  相似文献   

15.
Phosphatidylcholine liposomes bound to the surface of L cells inhibit cell attachment to L-cell monolayers or to lipid films. Aggregation of L cells or of mouse embryo fibroblasts is also diminished upon treatment with liposomes. However, they neither inhibit cell attachment to glass or cellulose acetate substrata, nor diminish conA-mediated cell aggregation. It is supposed that liposome-binding sites on the cell surface described earlier are involved in cell-cell attachment.  相似文献   

16.
Regenerated films were successfully prepared from cellulose/NaOH/urea solution by coagulating with water at temperature from 25 to 45 °C. The results of solid 13C NMR, wide angle X-ray diffraction, scanning electron microscopy (SEM) and tensile testing revealed that the cellulose films possessed homogeneous structure and cellulose II crystalline, similar to that prepared previously by coagulating with 5 wt% H2SO4. By changing the coagulation temperature from 25 to 45 °C, tensile strength of the films was in the range of 85-139 MPa. Interestingly, the RC35 film coagulated at 35 °C exhibited the highest tensile strength (σb = 139 MPa). The inclusion complex associated with cellulose, NaOH and urea hydrates in the cellulose solution were broken by adding water (non-solvent), leading to the self-association of cellulose to regenerate through rearrangement of the hydrogen bonds. This work provided low-cost and “green” pathway to prepare cellulose films, which is important in industry.  相似文献   

17.
Regeneration of avocado via somatic embryogenesis is difficult due to poor embryo maturation, resulting in low frequencies of germination. In this study, the influence of semi-permeable cellulose acetate membranes and culture media, containing high levels of sucrose along with coconut water, on maturation and germination of somatic embryos of avocado have been evaluated. The culture of embryogenic calli on top of cellulose acetate membranes significantly increased the number of mature, white-opaque embryos that were recovered after 5 weeks of culture. These embryos showed a much more normal appearance and better quality compared with the control embryos, although the embryo size was significantly reduced. To increase the embryo size and to complete maturation, several two-step maturation treatments were tested. The culture of white-opaque somatic embryos in a modified MS medium with B5 macronutrients gelled with 10 g L?1 agar (B5m10A medium) over a 5-week period, followed by 5 additional weeks in B5m10A with 45 g L?1 sucrose and 20 % coconut water, yielded the best results, reducing the percentage of necrotic embryos and the number of calli formed. The beneficial effects of this maturation treatment were enhanced when using embryos that were pre-matured on cellulose acetate membranes. Following this two-step maturation treatment, the germination rate of the control somatic embryos, which were not cultured on cellulose membranes, was lower than 10 %, but it significantly improved when the embryos had been pre-matured on cellulose acetate membranes for 5 weeks, reaching a germination rate close to 40 %. The water availability was significantly reduced when somatic embryos were cultured on cellulose membranes, and after this pre-maturation treatment, the white-opaque embryos showed lower water potential and ABA content compared with the control embryos. These results suggest that culturing over cellulose membranes causes a controlled embryo desiccation that enhances the recovery of plants.  相似文献   

18.
A study has been carried out to assess the potential use of pectin in combination with two added hydrocolloids, i.e., hydroxy-propyl-methyl cellulose and hydroxyethyl cellulose in varied concentrations and coated with ethyl cellulose and cellulose acetate phthalate. The results of in vitro drug release showed that the matrix tablets prepared with pectin, hydroxy ethyl cellulose (20 percent) when coated with ethyl cellulose and cellulose acetate phthalate were found to be 63.0 percent, 8.4 percent, and 4.5 percent, respectively, in after eight hours during drug release study period. These results were confirmed with the results of roentgenographic studies in nine healthy human volunteers to find the shape and integrity of the dosage form. The X-ray photographs revealed that the enteric-coated tablet was visible only up to 5.5 hours and at the end of eighth hour, the photograph has not shown any presence of tablet indicating the loss of shape and size by the microflora present in the colon region. So, the results of in vitro and roentgenographic studies revealed that pectin, hydroxy ethyl cellulose (20 percent) base coated with ethyl cellulose and cellulose acetate phthalate was found to be a promising carrier for naproxen to colon.  相似文献   

19.
In order to expand its utility and understand how to carry it out most efficiently, the scope of the highly regioselective, tetrabutylammonium fluoride (TBAF) catalyzed deacylation of cellulose acetates has been investigated, including the influence of key process parameters: solvent, temperature, and water content. Reactions in DMSO, THF, MEK and acetone afforded similar extents of deacylation and regioselectivity. Reaction with TBAF in DMSO at 50 °C for 18 h was the most efficient process providing regioselective deacylation at O-2/3. All results were consistent with our previous mechanistic proposals. Furthermore, we demonstrate that TBAF-catalyzed deacylation is also effective and regioselective with cellulose acetate, butyrate, and hexanoate triesters, and even with a cellulose ester devoid of alpha protons, cellulose tribenzoate. These reactions displayed regioselectivity for deacylation at O-2/3 similar to that observed earlier with cellulose acetate (DS 2.4).  相似文献   

20.
Hornig S  Heinze T 《Biomacromolecules》2008,9(5):1487-1492
Commercially prepared cellulose acetate, cellulose acetate propionate, -butyrate, and -phthalate as well as cellulose acetates prepared in the laboratory scale with varying degree of substitution (DS) self-assemble into regular nanoparticles, ranging in size from 86 to 368 nm, by using two different techniques of nanoprecipitation. Dialysis of polymers dissolved in N,N-dimethylacetamide results in the formation of regular nanospheres whereas the preparation in acetone by successive adding of water leads to bean-shaped particles in the nanoscale. One criterion for nanoprecipitation is the existence of dilute polymer solutions. Furthermore, the formation of nanoparticles strongly depends on DS and distribution of the substituents. Concerning this issue, quantitative (13)C NMR spectroscopy was applied for detailed structure characterization of selected cellulose acetates. The stability of the nanoparticle suspensions in the physiological pH range was observed by zeta potential measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号