首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the onset of neurogenesis in the mammalian central nervous system, neuroepithelial cells switch from symmetric, proliferative to asymmetric, neurogenic divisions. In analogy to the asymmetric division of Drosophila neuroblasts, this switch of mammalian neuroepithelial cells is thought to involve a change in cleavage plane orientation from perpendicular (vertical cleavage) to parallel (horizontal cleavage) relative to the apical surface of the neuroepithelium. Here, we report, using TIS21-GFP knock-in mouse embryos to identify neurogenic neuroepithelial cells, that at the onset as well as advanced stages of neurogenesis the vast majority of neurogenic divisions, like proliferative divisions, show vertical cleavage planes. Remarkably, however, neurogenic divisions of neuroepithelial cells, but not proliferative ones, involve an asymmetric distribution to the daughter cells of the apical plasma membrane, which constitutes only a minute fraction (1-2%) of the entire neuroepithelial cell plasma membrane. Our results support a novel concept for the cell biological basis of asymmetric, neurogenic divisions of neuroepithelial cells in the mammalian central nervous system.  相似文献   

2.
Localization and activation of heterotrimeric G proteins have a crucial role during asymmetric cell division. The asymmetric division of the Drosophila sensory precursor cell (pl) is polarized along the antero-posterior axis by Frizzled signalling and, during this division, activation of Galphai depends on Partner of Inscuteable (Pins). We establish here that Ric-8, which belongs to a family of guanine nucleotide-exchange factors for Galphai, regulates cortical localization of the subunits Galphai and Gbeta13F. Ric-8, Galphai and Pins are not necessary for the control of the anteroposterior orientation of the mitotic spindle during pl cell division downstream of Frizzled signalling, but they are required for maintainance of the spindle within the plane of the epithelium. On the contrary, Frizzled signalling orients the spindle along the antero-posterior axis but also tilts it along the apico-basal axis. Thus, Frizzled and heterotrimeric G-protein signalling act in opposition to ensure that the spindle aligns both in the plane of the epithelium and along the tissue polarity axis.  相似文献   

3.
Das T  Payer B  Cayouette M  Harris WA 《Neuron》2003,37(4):597-609
Two-photon excitation microscopy was used to reconstruct cell divisions in living zebrafish embryonic retinas. Contrary to proposed models for vertebrate asymmetric divisions, no apico-basal cell divisions take place in the zebrafish retina during the generation of postmitotic neurons. However, a surprising shift in the orientation of cell division from central-peripheral to circumferential occurs within the plane of the ventricular surface. In the sonic you (syu) and lakritz (lak) mutants, the shift from central-peripheral to circumferential divisions is absent or delayed, correlating with the delay in neuronal differentiation and neurogenesis in these mutants. The reconstructions here show that mitotic cells always remain in contact with the opposite basal surface by means of a thin basal process that can be inherited asymmetrically.  相似文献   

4.
Cells in the root meristem are organised in longitudinal files. Repeated transverse cell divisions in these files are the prime cause of root growth. Because of the orientation of the cell divisions, we expected to find mitoses with an spindle axis parallel to the file axis. However, we observed in the root cortex ofVicia faba large number of oblique chromosome orientations. From metaphase to telophase there was a dramatic increase of the rotation of the spindle axis. Measurements of both the size of the cortex cells and the chromosome configurations indicated that most cells were too small for an orientation of the spindle parallel to the file axis. Space limitation force the spindle into an oblique position. Despite this spindle axis rotation, most daughter cells remained within the original cell file. Only in extremely flat cells did the position of the daughter nuclei forced the cell to set a plane of division parallel to the file axis, which result in side-by-side orientation of the daughter cells. Telophase spindle axis rotations are also observed inCrepis capillaris andPetunia hybrida.. These species have respectively medium and small sized chromosomes compared toVicia. Since space limitation, which causes the rotation, depends both on cell and chromosome size, the frequency and extent of the phenomenon in former two species is comparatively low.  相似文献   

5.
During mammalian neurogenesis, progenitor cells can divide with the mitotic spindle oriented parallel or perpendicular to the surface of the neuroepithelium. Perpendicular divisions are more likely to be asymmetric and generate one progenitor and one neuronal precursor. Whether the orientation of the mitotic spindle actually determines their asymmetric outcome is unclear. Here, we characterize a mammalian homolog of Inscuteable (mInsc), a key regulator of spindle orientation in Drosophila. mInsc is expressed temporally and spatially in a manner that suggests a role in orienting the mitotic spindle in the developing nervous system. Using retroviral RNAi in rat retinal explants, we show that downregulation of mInsc inhibits vertical divisions. This results in enhanced proliferation, consistent with a higher frequency of symmetric divisions generating two proliferating cells. Our results suggest that the orientation of neural progenitor divisions is important for cell fate specification in the retina and determines their symmetric or asymmetric outcome.  相似文献   

6.
Neural progenitor cells have a central role in the development and evolution of the vertebrate brain. During early brain development, neural progenitors first expand their numbers through repeated proliferative divisions and then begin to exhibit neurogenic divisions. The transparent and experimentally accessible optic tectum of Xenopus laevis is an excellent model system for the study of the cell biology of neurogenesis, but the precise spatial and temporal relationship between proliferative and neurogenic progenitors has not been explored in this system. Here we construct a spatial map of proliferative and neurogenic divisions through lineage tracing of individual progenitors and their progeny. We find a clear spatial separation of proliferative and neurogenic progenitors along the anterior‐posterior axis of the optic tectum, with proliferative progenitors located more posteriorly and neurogenic progenitors located more anteriorly. Since individual progenitors are repositioned toward more anterior locations as they mature, this spatial separation likely reflects an increasing restriction in the proliferative potential of individual progenitors. We then examined whether the transition from proliferative to neurogenic behavior correlates with cellular properties that have previously been implicated in regulating neurogenesis onset. Our data reveal that the transition from proliferation to neurogenesis is associated with a small change in cleavage plane orientation and a more pronounced change in cell cycle kinetics in a manner reminiscent of observations from mammalian systems. Our findings highlight the potential to use the optic tectum of Xenopus laevis as an accessible system for the study of the cell biology of neurogenesis. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1328–1341, 2016  相似文献   

7.
The process of oriented divisions of polarised cells is a recurrent mechanism of cell fate diversification in development. It is commonly assumed that a specialised mechanism of spindle alignment into the axis of polarity is a prerequisite for such systems to generate cell fate diversity. Oriented divisions also take place in the frog blastula, where orientation of the spindle into the apicobasal axis of polarised blastomeres generates inner and outer cells with different fates. Here, we show that, in this system, the spindle orients according to the shape of the cells, a mechanism often thought to be a default. We show that in the embryo, fatedifferentiative, perpendicular divisions correlate with a perpendicular long axis and a small apical surface, but the long axis rather then the size of the apical domain defines the division orientation. Mitotic spindles in rounded, yet polarised, isolated Xenopus blastula cells orient randomly, but align into an experimentally introduced long axis when cells are deformed early in the cell cycle. Unlike other systems of oriented divisions, the spindle aligns at prophase, rotation behaviour is rare and restricted to small angle adjustments. Disruption of astral microtubules leads to misalignment of the spindle. These results show that a mechanism of spindle orientation that depends on cell shape rather than cortical polarity can nevertheless generate cell fate diversity from a population of polarised cells.  相似文献   

8.
EMBO J 32: 2790–2803 doi:10.1038/emboj.2013.197; published online September102013The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation.Oriented cell divisions play important roles in the establishment of the animal body plan by both influencing tissue morphogenesis and generating cellular diversity. Generally, the direction of the cell division plane is determined by the orientation of the mitotic spindle prior to cytokinesis. The observation that the mitotic spindle in most animal cell types aligns with the cell''s longest axis has led to the formulation of the ‘long-axis-rule'', postulating that cell shape anisotropy is the main determinant of spindle orientation (Minc et al, 2011). However, cell shape anisotropy is unlikely to be the only determinant since many cell types round up during mitosis, thereby losing their shape anisotropy and others do not follow the long-axis-rule at all. In such cases, division orientation is determined by the polarizing activity of biochemical signals originating from the environment (reviewed in Morin and Bellaïche, 2011). In addition, externally applied forces have also been suggested to control division orientation of single cells in culture independently from their effect on cell shape (Fink et al, 2011).Epithelial growth implies that cells divide parallel to the tissue plane with both daughter cells remaining integrated within the tissue. Although it has been recognized that defects in apico-basal polarity lead to spindle misalignment and disruption of epithelial architecture, the molecular mechanisms underlying this regulation are still unknown. Recent work in the Drosophila wing disc epithelium uncovered that the junctional proteins Scribbled and Discs large 1 (Dlg1) are required for proper spindle alignment parallel to the tissue plane (Nakajima et al, 2013). Similarly, in the Drosophila follicular epithelium, spindle orientation is dependent on the lateral localization of Dlg1, independently of its role in apico-basal polarity (Bergstralh et al, 2013). While such mechanisms ensure that cells divide parallel to the epithelial plane, other mechanisms must still be present to determine the orientation of the mitotic spindle within this plane.In the Drosophila wing disc epithelium, symmetric cell divisions preferentially align with the proximal-distal (PD) axis, thus elongating the organ along this axis (Baena-López et al, 2005). This preferential cell division orientation is determined by the Fat-Dachsous pathway, which promotes accumulation of the atypical myosin Dachs at PD cellular junctions. The polarized activity of Dachs in turn drives cell elongation along the PD axis, leading to a preferential orientation of the mitotic spindle along this axis (Mao et al, 2011). In this issue of The EMBO Journal, Mao et al (2013) report that while mitotic cells located in central regions of the wing disc indeed elongate and divide along the PD axis, cells located in the periphery (proximal edge) elongate and divide orthogonally to the PD axis (Figure 1). These results suggested some type of global planar tissue polarization in proximal regions of the wing disc overriding the local effects of Dachs on spindle orientation. By using laser ablation to reveal tissue tension, the authors showed that in peripheral/proximal regions of the wing disc, junctions oriented orthogonal to the PD axis (PD junctions) are under higher tension than junctions oriented along this axis (lateral junctions; Figure 1). This led them to hypothesize that anisotropic tissue tension might control division orientation of proximal wing cells. Through a combination of elegant genetic experiments and theoretical modelling, the authors then demonstrated that this global tension anisotropy in the proximal wing disc arises from higher cell division rates observed in central versus proximal regions of the wing disc. Furthermore, this apparent tension anisotropy causes concentric elongation of proximal wing disc cells orienting their mitotic spindle orthogonal to the PD axis (Figure 1).Open in a separate windowFigure 1Differential rates of cell division between distal (green) and proximal (red) regions of the Drosophila wing disc epithelium (1) give rise to global patterns of tension anisotropy within the tissue (2). This tension anisotropy promotes cell elongation along the main axis of tension, thereby controlling the orientation of cell division via cell shape anisotropies in proximal regions of the wing disc (3); D, distal; P, proximal.Collectively, these results demonstrate that differential proliferation rates within a tissue can generate global tension anisotropies, which promote cell shape changes that again influence cell division orientation. Further dissection of the mechanisms by which tissue tension controls cell division orientation will clarify if anisotropic tension controls division orientation solely through cell elongation, or if additional mechanosensing mechanisms exist that more directly convey tissue tension information to the mitotic spindle. It might also be worth exploring whether cell divisions along the main axis of tension within the wing disc affect global tension anisotropy, and whether the formation of anisotropic tension around areas of cell proliferation affects the rate of cell division therein. Such interplay between tissue tension anisotropy and cell division orientation/rate will likely be critical for maintaining physiological degrees of tissue tension and growth.In general, the work by Mao et al (2013) provides compelling evidence for a functional link between tissue tension and cell division orientation in a physiological relevant context, paving the way for future studies addressing the reciprocal relationship between these two aspects in tissue morphogenesis.  相似文献   

9.
Asymmetric stem cell division is thought to require precise orientation of the mitotic spindle. However, a recent study in Cell (Yingling et al., 2008) analyzes the role of LIS1 in the developing mouse brain and shows that spindle orientation is more important during early, symmetric progenitor cell divisions than for later asymmetric divisions.  相似文献   

10.
A fertilised Caenorhabditis elegans embryo shows an invariable pattern of cell division and forms a multicellular body where each cell locates to a defined position. Mitotic spindle orientation is determined by several preceding events including the migration of duplicated centrosomes on a nucleus and the rotation of nuclear-centrosome complex. Cell polarity is the dominant force driving nuclear-centrosome rotation and setting the mitotic spindle axis in parallel with the polarity axis during asymmetric cell division. It is reasonable that there is no nuclear-centrosome rotation in symmetrically dividing blastomeres, but the mechanism(s) which suppress rotation in these cells have been proposed because the rotations occur in some polarity defect embryos. Here we show the nuclear-centrosome rotation can be induced by depletion of RPN-2, a regulatory subunit of the proteasome. In these embryos, cell polarity is established normally and both asymmetrically and symmetrically dividing cells are generated through asymmetric cell divisions. The nuclear-centrosome rotations occurred normally in the asymmetrically dividing cell lineage, but also induced in symmetrically dividing daughter cells. Interestingly, we identified RPN-2 as a binding protein of PKC-3, one of critical elements for establishing cell polarity during early asymmetric cell divisions. In addition to asymmetrically dividing cells, PKC-3 is also expressed in symmetrically dividing cells and a role to suppress nuclear-centrosome rotation has been anticipated. Our data suggest that the expression of RPN-2 is involved in the mechanism to suppress nuclear-centrosome rotation in symmetrically dividing cells and it may work in cooperation with PKC-3.  相似文献   

11.
The orientation of mitotic spindles, which determines the plane of cell division, is tightly regulated in polarized cells such as epithelial cells, but it has been unclear whether there is a mechanism regulating spindle orientation in non-polarized cultured cells. In adherent cultured cells, spindles are positioned at the center of the cells and the axis of the spindle lies in the longest axis of the cell. Thus, cell geometry is thought to be one of cues for spindle orientation and positioning in cultured cells because this defines the center and the long axis of the cell. Recent work provides a new insight into the spindle orientation in cultured cells; spindles are aligned along the axis parallel to the cell-substrate adhesion plane. Concomitantly, integrin-mediated cell adhesion to the extracellular matrix (ECM), rather than gravitation, cell-cell adhesion or cell geometry, has shown to be essential for this mechanism of spindle orientation. Several independent lines of evidence confirm the involvement of cell-ECM adhesion in spindle orientation in both cultured cells and in developing organisms. The important future challenge is to identify a molecular mechanism(s) that links integrin and spindles in the control of spindle axis.  相似文献   

12.
《The Journal of cell biology》1995,129(4):1071-1080
Cells of the early Caenorhabditis elegans embryo divide in an invariant pattern. Here I show that the division axes of some early cells (EMS and E) are controlled by specific cell-cell contacts (EMS-P2 or E-P3 contact). Altering the orientation of contact between these cells alters the axis along which the mitotic spindle is established, and hence the orientation of cell division. Contact-dependent mitotic spindle orientation appears to work by establishing a site of the type described by Hyman and White (1987. J. Cell Biol. 105:2123-2135) in the cortex of the responding cell: one centrosome moves toward the site of cell-cell contact during centrosome rotation in both intact embryos and reoriented cell pairs. The effect is especially apparent when two donor cells are placed on one side of the responding cell: both centrosomes are "captured," pulling the nucleus to one side of the cell. No centrosome rotation occurs in the absence of cell-cell contact, nor in nocodazole-treated cell pairs. The results suggest that some of the cortical sites described by Hyman and White are established cell autonomously (in P1, P2, and P3), and some are established by cell-cell contact (in EMS and E). Additional evidence presented here suggests that in the EMS cell, contact-dependent spindle orientation ensures a cleavage plane that will partition developmental information, received by induction, to one of EMS's daughter cells.  相似文献   

13.
Orientation of cell division is a vital aspect of tissue morphogenesis and growth. Asymmetric divisions generate cell fate diversity and epithelial stratification, whereas symmetric divisions contribute to tissue growth, spreading, and elongation. Here, we describe a mechanism for positioning the spindle in symmetric cell divisions of an embryonic epithelium. We show that during the early stages of epiboly, spindles in the epithelium display dynamic behavior within the plane of the epithelium but are kept firmly within this plane to give a symmetric division. This dynamic stability relies on balancing counteracting forces: an apically directed force exerted by F-actin/myosin-2 via active cortical flow and a basally directed force mediated by microtubules and myosin-10. When both forces are disrupted, spindle orientation deviates from the epithelial plane, and epithelial surface is reduced. We propose that this dynamic mechanism maintains symmetric divisions while allowing the quick adjustment of division plane to facilitate even tissue spreading.  相似文献   

14.
Mitotic spindle assembly and orientation are tightly regulated to allow the appropriate segregation of genetic material and cell fate determinants during symmetric and asymmetric divisions. Microtubules and many proteins including the dynein/dynactin complex and the large nuclear mitotic apparatus NuMA protein, are fundamental players in these mechanisms. A recent study reported that huntingtin regulates spindle orientation by ensuring the proper localization of the p150(Glued) subunit of dynactin, dynein and NuMA. This function of huntingtin is conserved in Drosophila. Among other events, spindle orientation influences the fate of daughter cells. In agreement with this, huntingtin changes the direction of division of mouse cortical progenitors and promotes neurogenesis in the neocortex. We will also discuss the involvement of mitotic spindle components in neuronal disorders.  相似文献   

15.
The orientation of the mitotic spindle relative to the cell axis determines whether polarized cells undergo symmetric or asymmetric divisions. Drosophila epithelial cells and neuroblasts provide an ideal pair of cells to study the regulatory mechanisms involved. Epithelial cells divide symmetrically, perpendicular to the apical-basal axis. In the asymmetric divisions of neuroblasts, by contrast, the spindle reorients parallel to that axis, leading to the unequal distribution of cell-fate determinants to one daughter cell. Receptor-independent G-protein signalling involving the GoLoco protein Pins is essential for spindle orientation in both cell types. Here, we identify Mushroom body defect (Mud) as a downstream effector in this pathway. Mud directly associates and colocalizes with Pins at the cell cortex overlying the spindle pole(s) in both neuroblasts and epithelial cells. The cortical Mud protein is essential for proper spindle orientation in the two different division modes. Moreover, Mud localizes to centrosomes during mitosis independently of Pins to regulate centrosomal organization. We propose that Drosophila Mud, vertebrate NuMA and Caenorhabditis elegans Lin-5 (refs 5, 6) have conserved roles in the mechanism by which G-proteins regulate the mitotic spindle.  相似文献   

16.
Cell determination in the retina has been under intense investigation since the discovery that retinal progenitors generate clones of apparently random composition (Price, J., D. Turner, and C. Cepko. 1987. Proc. Natl. Acad. Sci. USA. 84:156-160; Holt, C.E., T.W. Bertsch, H.M. Ellis, and W.A. Harris. 1988. Neuron. 1:15-26; Wetts, R., and S.E. Fraser. 1988. Science. 239:1142-1145). Examination of fixed tissue, however, sheds little light on lineage patterns or on the relationship between the orientation of division and cell fate. In this study, three-dimensional time-lapse analyses were used to trace lineages of retinal progenitors expressing green fluorescent protein under the control of the ath5 promoter. Surprisingly, these cells divide just once along the circumferential axis to produce two postmitotic daughters, one of which becomes a retinal ganglion cell (RGC). Interestingly, when these same progenitors are transplanted into a mutant environment lacking RGCs, they often divide along the central-peripheral axis and produce two RGCs. This study provides the first insight into reproducible lineage patterns of retinal progenitors in vivo and the first evidence that environmental signals influence the orientation of cell division and the lineage of neural progenitors.  相似文献   

17.
During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.  相似文献   

18.
Setting aside pluripotent cells that give rise to the future body is a central cell fate decision in mammalian development. It requires that some blastomeres divide asymmetrically to direct cells to the inside of the embryo. Despite its importance, it is unknown whether the decision to divide symmetrically versus asymmetrically shows any spatial or temporal pattern, whether it is lineage-dependent or occurs at random, or whether it influences the orientation of the embryonic-abembryonic axis. To address these questions, we developed time-lapse microscopy to enable a complete 3D analysis of the origins, fates and divisions of all cells from the 2- to 32-cell blastocyst stage. This showed how in the majority of embryos, individual blastomeres give rise to distinct blastocyst regions. Tracking the division orientation of all cells revealed a spatial and temporal relationship between symmetric and asymmetric divisions and how this contributes to the generation of inside and outside cells and thus embryo patterning. We found that the blastocyst cavity, defining the abembryonic pole, forms where symmetric divisions predominate. Tracking cell ancestry indicated that the pattern of symmetric/asymmetric divisions of a blastomere can be influenced by its origin in relation to the animal-vegetal axis of the zygote. Thus, it appears that the orientation of the embryonic-abembryonic axis is anticipated by earlier cell division patterns. Together, our results suggest that two steps influence the allocation of cells to the blastocyst. The first step, involving orientation of 2- to 4-cell divisions along the animal-vegetal axis, can affect the second step, the establishment of inside and outside cell populations by asymmetric 8- to 32-cell divisions.  相似文献   

19.
In the fission yeast Schizosaccharomyces pombe, interphase microtubules (MTs) position the nucleus [1, 2], which in turn positions the cell-division plane [1, 3]. It is unclear how the spindle orients, with respect to the predetermined division plane, to ensure that the chromosomes are segregated across this plane. It has been proposed that, during prometaphase, the astral MT interaction with the cell cortex aligns the spindle with the cell axis [4] and also participates in a spindle orientation checkpoint (SOC), which delays entry into anaphase as long as the spindle is misaligned [5-7]. Here, we trace the position of the spindle throughout mitosis in a single-cell assay. We find no evidence for the SOC. We show that the spindle is remarkably well aligned with the cell longitudinal axis at the onset of mitosis, by growing along the axis of the adjacent interphase MT. Misalignment of nascent spindles can give rise to anucleate cells when spindle elongation is impaired. We propose a new role for interphase microtubules: through interaction with the spindle pole body, interphase microtubules determine the initial alignment of the spindle in the subsequent cell division.  相似文献   

20.
Asymmetric partitioning of cell-fate determinants during development requires coordinating the positioning of these determinants with orientation of the mitotic spindle. In the Drosophila peripheral nervous system, sensory organ progenitor cells (SOPs) undergo several rounds of division to produce five cells that give rise to a complete sensory organ. Here we have observed the asymmetric divisions that give rise to these cells in the developing pupae using green fluorescent protein fusion proteins. We find that spindle orientation and determinant localization are tightly coordinated at each division. Furthermore, we find that two types of asymmetric divisions exist within the sensory organ precursor cell lineage: the anterior-posterior pI cell-type division, where the spindle remains symmetric throughout mitosis, and the strikingly neuroblast-like apical-basal division of the pIIb cell, where the spindle exhibits a strong asymmetry at anaphase. In both these divisions, the spindle reorientates to position itself perpendicular to the region of the cortex containing the determinant. On the basis of these observations, we propose that two distinct mechanisms for controlling asymmetric cell divisions occur within the same lineage in the developing peripheral nervous system in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号