首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that phospholipase increases host cell penetration by Toxoplasma gondii . Here we show that calcium-dependent phospholipase A (PLA) activity is found in the supernatant of sonically disrupted T. gondii . When fractions of disrupted T. gondii were incubated with host cells, the release of fatty acids and lysolipids was detected. Fractions of sonically disrupted T. gondii with PLA activity increased T. gondii host cell penetration in a bioassay. In addition, a protein of approximately 20 kDa was detected by immunoblot of T. gondii antigens with horse antiserum to snake venom, the major antibody of which recognizes PLA2. Incubation of T. gondii with exogenous PLA2 resulted in increased solubility of a rhoptry protein. This protein, which we previously characterized as involved with enhanced parasite invasion of host cells and which is recognized by monoclonal antibody Tg49, was detected in increased amounts in supernatant fractions of extracellular parasites treated with PLA2. Whereas without PLA2 treatment, it is only slightly soluble under physiological conditions. This raises the possibility that PLA may be implicated in the release of rhoptry proteins.  相似文献   

2.
Apicomplexan parasites possess an apical complex that is composed of two secretory organelles recognized as micronemes and rhoptries. Rhoptry contents are secreted into the parasitophorous vacuole during the host cell invasion process. Several rhoptry proteins have been identified in Toxoplasma gondii and seem to be involved in host-pathogen interactions and some of them are considered to be important virulence factors. Only one rhoptry protein, NcROP2, has been identified and extensively characterized in the closely related parasite Neospora caninum, and this has showed immunoprotective properties. Thus, with the aim of increasing knowledge of the rhoptry protein repertoire in N. caninum, a subcellular fractionation of tachyzoites was performed to obtain fractions enriched for this secretory organelle. 2-D SDS-PAGE followed by MS and LC/MS-MS were applied for fraction analysis and 8 potential novel rhoptry components (NcROP1, 5, 8, 30 and NcRON2, 3, 4, 8) and several kinases, proteases and phosphatases proteins were identified with a high homology to those previously found in T. gondii. Their existence in N. caninum tachyzoites suggests their involvement in similar events or pathways that occur in T. gondii. These novel proteins may be considered as targets that could be useful in the future development of immunoprophylactic measures.  相似文献   

3.
Phospholipases A(2) (PLA(2)) play an important role in Toxoplasma gondii host cell penetration. They are also key enzymes in the host cell response to the parasite invasion. PLA(2) hydrolyse cellular phospholipids, releasing multiple inflammatory lipidic mediators. We have investigated the biochemical characterisation of T. gondii PLA(2) activity in a mouse-cultured tachyzoite homogenate and in the peritoneal exudate from infected mice, using the hydrolysis of a fluorescent phosphatidylglycerol labelled at the sn-2 position. Spectrofluorimetry and thin-layer chromatography showed a PLA(2) activity (about 0.5-2 nmol/min per mg), calcium-independent, secreted into infected mice peritoneal exudate, with a broad pH activity ranging between 6.5 and 9.5 and resistant to a great number of potential PLA(2) inhibitors except dithio-nitrobenzoic acid (1 mM). An associated phospholipase A(1) activity was also displayed. These results suggest that Toxoplasma gondii displays specific phospholipases different from host enzymes and probably involved at critical steps of infectious cycle.  相似文献   

4.
Monoclonal antibody (mAb) Tg786 against Toxoplasma gondii has been found to detect a 42-kDa rhoptry protein (ROP6) which showed protease activity and host cell binding characteristics after secretion. Using the mAb, a colony containing a 3o-UTR was probed in a T. gondii cDNA expression library. A full length cDNA sequence of the rhoptry protein was completed after 5o-RACE, which consisted of 1,908 bp with a 1,443 bp ORF. The deduced amino acid sequence of ROP6 consisted of a polypeptide of 480 amino acids without significant homology to any other known proteins. This sequence contains an amino terminal stop transfer sequence downstream of a short neutral sequence, hydrophilic middle sequence, and hydrophobic carboxy terminus. It is suggested that the ROP6 is inserted into the rhoptry membrane with both N- and C-termini.  相似文献   

5.
Three proteases were identified in the excretory/secretory proteins (ESP) from Toxoplasma gondii by the gelatin acrylamide gel electrophoresis (GAGE), of which the molecular masses were 80, 70, and 42 kDa. One of the proteases with 42 kDa was reactive to a monoclonal antibody (mAb), Tg786 clone, which was localized in the rhoptry of T. gondii by immunohistochemistry. The protease was maximally active at the pH range between 7.5 and 8.5, and was sensitive to inhibition by TPCK and EGTA. The gelatinolytic activity of the protease was dependent on the concentration of calcium ion. The protease was active only in the millimolar ranges of calcium but not in micromolar ranges, implicating that the secretion is critical event for the activation of the protease. The secreted protease was shown to bind to the host cells upon Western blot and immunofluorescence analysis. It is suggested that the protease may target to the plasma membrane of the host cells, which provides appropriate environment for the entry of the parasite into host cells. The mAb (Tg786) of T. gondii also reacted with a protein of the same size and equivalent locality of rhoptry in Neospora caninum, a similar Apicomplexan protozoa, suggesting that secreted protease mediates a common function in the mechanism of entry into host cells.  相似文献   

6.
We have previously demonstrated that Toxoplasma gondii has a tyrosine-based sorting system, which mediates protein targeting to the lysosome-like rhoptry secretory organelle. We now show that rhoptry protein targeting is also dependent on a dileucine motif and occurs from a post-Golgi endocytic organelle to mature rhoptries in an adaptin-dependent fashion. The T. gondii AP-1 adaptin complex is implicated in this transport because the micro1 chain of T. gondii AP-1 (a) was localized to multivesicular endosomes and the limiting and luminal membranes of the rhoptries; (b) bound to endocytic tyrosine motifs in rhoptry proteins, but not in proteins from dense granule secretory organelles; (c) when mutated in predicted tyrosine-binding motifs, led to accumulation of the rhoptry protein ROP2 in a post-Golgi multivesicular compartment; and (d) when depleted via antisense mRNA, resulted in accumulation of multivesicular endosomes and immature rhoptries. These are the first results to implicate AP-1 in transport from a post-Golgi compartment to a mature secretory organelle and substantially expand the role for AP-1 in anterograde protein transport.  相似文献   

7.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

8.
TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase   总被引:2,自引:0,他引:2  
All parasites in the phylum Apicomplexa, including Toxoplasma gondii and Plasmodium falciparum, contain rhoptries, specialized secretory organelles whose contents are thought to be essential for successful invasion of host cells. Serine proteinase inhibitors have been reported to block host cell invasion by both T. gondii and P. falciparum. We describe the cloning and characterization of TgSUB2, a subtilisin-like serine proteinase, from T. gondii. Like its closest homologue P. falciparum PfSUB-2, TgSUB2 is predicted to be a type I transmembrane protein. Disruption of TgSUB2 was unsuccessful implying that TgSUB2 is an essential gene. TgSUB2 undergoes autocatalytic processing as it traffics through the secretory pathway. TgSUB2 localizes to rhoptries and associates with rhoptry protein ROP1, a potential substrate. A sequence within TgSUB2 with homology to the ROP1 cleavage site (after Glu) was identified and mutated by site-directed mutagenesis. This mutation abolished TgSUB2 autoprocessing suggesting that TgSUB2 is a rhoptry protein maturase with similar specificity to the ROP1 maturase. Processing of secretory organelle contents appears to be ubiquitous among the Apicomplexa. As subtilases are present in genomes of all the Apicomplexa sequenced to date, subtilases may represent a novel chemotherapeutic target.  相似文献   

9.
Four rhoptry proteins (ROP) of Toxoplasma gondii previously identified with mAb have been affinity purified and analyzed by MS; the data obtained allowed the genomic sequences to be assigned to these proteins. As previously suggested for some of them by antibody crossreactivity, these proteins were shown to belong to a family, the prototype of which being ROP2. We describe here the proteins ROP2, 4, 5, and 7. These four proteins correspond to the most abundant products of a gene family that comprises several members which we have identified in genomic and EST libraries. Eight additional sequences were found and we have cloned four of them. All members of the ROP2 family contain a protein-kinase-like domain, but only some of them possess a bona fide kinase catalytic site. Molecular modeling of the kinase domain demonstrates the conservation of residues critical for the stabilization of the protein-kinase fold, especially within a hydrophobic segment described so far as transmembrane and which appears as an helix buried inside the protein. The concomitant synthesis of these ROPs by T. gondii tachyzoites suggests a specific role for each of these proteins, especially in the early interaction with the host cell upon invasion.  相似文献   

10.
Serum from mouse orally ingested with tissue cyst forming strain (Me49) of Toxoplasma gondii was assayed by Western blot and immunofluorescene assay (IFA) to establish early responses in antigenicity of the parasite in mouse model of foodborne toxoplasmosis. Sera were collected weekly to blot the RH antigen transferred onto nitrocellulose paper after being separated by 12% SDS-PAGE. With the second week serum, 34 kDa protein (p34) was detected uniquely, and all antigens of T. gondii were detected with the sera from 3 or 4 weeks. p34 was not a member of the major surface membrane proteins and confirmed to be localized in the rhoptry by IFA. It was secreted into parasitophorous vacuolar membrane (PVM) during the entry into host cells. When applied to the human sera of which the ELISA absorbance was in negative range, 10.3% of sera detected p34, while all the ELISA positive sera detected the band. It has diagnostic usefulness of presumed T. gondii infection. We suggest the name of the p34 protein as ROP9.  相似文献   

11.
Host cell invasion in the Apicomplexa is unique in its dependency on a parasite actin-driven machinery and in the exclusion of most host cell membrane proteins during parasitophorous vacuole (PV) formation. This exclusion occurs at a junction between host cell and parasite plasma membranes that has been called the moving junction, a circumferential zone which forms at the apical tip of the parasite, moves backward and eventually pinches the PV from the host cell membrane. Despite having been described by electron microscopic studies 30 years ago, the molecular nature of this singular structure is still enigmatic. We have obtained a monoclonal antibody that recognizes the moving junction of invading tachyzoites of Toxoplasma gondii, in a pattern clearly distinct from those described so far for microneme and rhoptry proteins. The protein recognized by this antibody has been affinity purified. Mass spectrometry analysis showed that it is a rhoptry neck protein (RON4), a hypothetical protein with homologues restricted to Apicomplexa. Our findings reveals for the first time the participation of rhoptry neck proteins in moving junction formation and strongly suggest the conservation of this structure at the molecular level among Apicomplexa.  相似文献   

12.
We have identified a novel phospholipase A1, named mPA-PLA1beta, which is specifically expressed in human testis and characterized it biochemically together with previously identified mPA-PLA1alpha. The sequence of mPAPLA1beta encodes a 460-amino acid protein containing a lipase domain with significant homology to the previously identified phosphatidic acid (PA)-selective PLA1, mPA-PLA1alpha. mPA-PLA1beta contains a short lid and deleted beta9 loop, which are characteristics of PLA1 molecules in the lipase family, and is a member of a subfamily in the lipase family that includes mPA-PLA1alpha and phosphatidylserine-specific PLA1. Both mPA-PLA1beta and mPA-PLA1alpha recombinant proteins exhibited PA-specific PLA1 activity and were vanadate-sensitive. When mPAPLA1beta-expressing cells were treated with bacterial phospholipase D, the cells produced lysophosphatidic acid (LPA). In both mPA-PLA1alpha and beta-expressing cells, most of the PA generated by the phospholipase D (PLD) treatment was converted to LPA, whereas in control cells it was converted to diacylglycerol. When expressed in HeLa cells most mPA-PLA1alpha protein was recovered from the cell supernatant. By contrast, mPA-PLA1beta was recovered almost exclusively from cells. Consistent with this observation, we found that mPA-PLA1beta has higher affinity to heparin than mPA-PLA1alpha. We also found that the membrane-associated mPA-PLA1s were insoluble in solubilization by 1% Triton X-100 and were detected in Triton X-100-insoluble buoyant fractions of sucrose gradients. The present study raises the possibility that production of LPA by mPA-PLA1alpha and -beta occurs on detergent-resistant membrane domains of the cells where they compete with lipid phosphate phosphatase for PA.  相似文献   

13.
The pathogenesis and pathophysiology of Acanthamoeba infections remain incompletely understood. Phospholipases are known to cleave phospholipids, suggesting their possible involvement in the host cell plasma membrane disruption leading to host cell penetration and lysis. The aims of the present study were to determine phospholipase activities in Acanthamoeba and to determine their roles in the pathogenesis of Acanthamoeba. Using an encephalitis isolate (T1 genotype), a keratitis isolate (T4 genotype), and an environmental isolate (T7 genotype), we demonstrated that Acanthamoeba exhibited phospholipase A(2) (PLA(2)) and phospholipase D (PLD) activities in a spectrophotometry-based assay. Interestingly, the encephalitis isolates of Acanthamoeba exhibited higher phospholipase activities as compared with the keratitis isolates, but the environmental isolates exhibited the highest phospholipase activities. Moreover, Acanthamoeba isolates exhibited higher PLD activities compared with the PLA(2). Acanthamoeba exhibited optimal phospholipase activities at 37℃ and at neutral pH indicating their physiological relevance. The functional role of phospholipases was determined by in vitro assays using human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. We observed that a PLD-specific inhibitor, i.e., compound 48/80, partially inhibited Acanthamoeba encephalitis isolate cytotoxicity of the host cells, while PLA(2)-specific inhibitor, i.e., cytidine 5'-diphosphocholine, had no effect on parasite-mediated HBMEC cytotoxicity. Overall, the T7 exhibited higher phospholipase activities as compared to the T4. In contract, the T7 exhibited minimal binding to, or cytotoxicity of, HBMEC.  相似文献   

14.
ABSTRACT We immunolocalized a Toxoplasma gondii rhoptry protein (ROP1) before and after parasite host cell invasion of human fibroblasts and TG180 murine sarcoma cells by electron microscopy and immunogold labeling using either a monoclonal antibody (Tg49) or a monospecific rabbit antiserum (α249). At all stages of parasite growth ROP1 was found within the body but rarely within the peduncle of rhoptries, even in those that appeared empty. Immediately after host cell invasion ROP1 was associated with the parasitophorous vacuole membrane. Within hours after invasion the amount of ROP1 immunodetectable on the parasitophorous vacuole membrane was markedly decreased. The localization of ROP1 suggests a role in the early establishment of infection in host cells, consistent with previous work that has indicated that monoclonal antibodies to ROP1 (including the one used in these studies) interfere with the phenomenon of penetration enhancement.  相似文献   

15.
We immunolocalized a Toxoplasma gondii rhoptry protein (ROP1) before and after parasite host cell invasion of human fibroblasts and TG180 murine sarcoma cells by electron microscopy and immunogold labeling using either a monoclonal antibody (Tg49) or a monospecific rabbit antiserum (alpha 249). At all stages of parasite growth ROP1 was found within the body but rarely within the peduncle of rhoptries, even in those that appeared empty. Immediately after host cell invasion ROP1 was associated with the parasitophorous vacuole membrane. Within hours after invasion the amount of ROP1 immunodetectable on the parasitophorous vacuole membrane was markedly decreased. The localization of ROP1 suggests a role in the early establishment of infection in host cells, consistent with previous work that has indicated that monoclonal antibodies to ROP1 (including the one used in these studies) interfere with the phenomenon of penetration enhancement.  相似文献   

16.
17.
Host cell cholesterol is implicated in the entry and replication of an increasing number of intracellular microbial pathogens. Although uptake of viral particles via cholesterol-enriched caveolae is increasingly well described, the requirement of cholesterol for internalization of eukaryotic pathogens is poorly understood and is likely to be partly organism specific. We examined the role of cholesterol in active host cell invasion by the protozoan parasite Toxoplasma gondii. The parasitophorous vacuole membrane (PVM) surrounding T. gondii contains cholesterol at the time of invasion. Although cholesterol-enriched parasite apical organelles termed rhoptries discharge at the time of cell entry and contribute to PVM formation, surprisingly, rhoptry cholesterol is not necessary for this process. In contrast, host plasma membrane cholesterol is incorporated into the forming PVM during invasion, through a caveolae-independent mechanism. Unexpectedly, depleting host cell plasma membrane cholesterol blocks parasite internalization by reducing the release of rhoptry proteins that are necessary for invasion. Cholesterol back-addition into host plasma membrane reverses this inhibitory effect of depletion on parasite secretion. These data define a new mechanism by which host cholesterol specifically controls entry of an intracellular pathogen.  相似文献   

18.
Various monoclonal antibodies (mAbs) against Toxoplasma gondii RH tachyzoites were used for flow cytometric detection of intracellular parasites in murine splenic lymphocytes. Tg110 and Tg563 (reacting with the major surface protein SAG1), Tg505 (with another surface protein SAG2), Tg695 and Tg786 (with rhoptry proteins), Tg507, Tg621, and Tg317 (with dense granule proteins), Tg536 (with a microneme protein), and Tg685 (with a cytosol antigen) were the mAbs used. After an in vitro infection of lymphocytes with tachyzoites and reactions with the different mAbs, flow cytometry was performed using an indirect immunofluorescent technique. The proportions of whole infected lymphocytes and of each infected lymphocyte phenotype, CD4+ T cells, CD8+ T cells, and B cells, were determined, and their fluorescent intensities were quantified. The best reaction was seen when Tg110 or Tg695 was used as the mAbs. The results suggest that mAbs against surface or rhoptry proteins are highly useful for the flow cytometric detection of intracellular T. gondii in host cells.  相似文献   

19.
Tachyzoites of Toxoplasma gondii were located inside the nucleus of both skeletal muscle cells infected in vitro and peritoneal exudate cells collected from infected mouse in vivo. Ultrastructural analysis demonstrated that T. gondii invades the nucleus of host cells by the parasite apical region and with constriction of its body. We noted that the rhoptry, a secretory organelle of the parasite that is involved in the host cell invasion mechanism, was empty in the intranuclear T. gondii. The parasites were found in the nuclear matrix without evidence of the vacuolar membrane. Frequently, new parasites invaded host cell nucleus, which was already infected. The significance of this nuclear invasion could reflect an alternative route of T. gondii for its transitory survival or an escape mechanism from the host immune response during the in vivo infection (or both).  相似文献   

20.
Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号