首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Staining of etched sections for light microscopy is described. Azan staining was successful after treatment with potassium dichromate and the use of concentrated dye solutions. To remove osmium for hematoxylin-eosin staining, removal by reduction with ferrocene was used instead of oxidation. Highly selective differentiation after hematoxylin staining was achieved using p-toluenesulfonic acid-DMSO. To enhance eosin staining, a 2-bromoethylamine link between eosin and the tissue was used. Ferrocene also facilitated counterstaining of nuclei with hematoxylin after the PAS reaction. Periodic acid-methenamine silver staining was carried out without modification.  相似文献   

3.
4.
Development of a resin-dissolving solution for use at low alkali concentrations is described. Crown ether dissolved in dimethyl-sulfoxide produces a superbasic alkoxide anion. A five minute treatment resulted in complete resin removal from kidney biopsy specimens embedded in Epon 812. Specimens were well stained by Loeffler's methylene blue. Periodic acid-methenamine silver and Giemsa stains yielded good results. Application of PAS reaction and subsequent hematoxylin counterstaining was practicable for diagnosis.  相似文献   

5.
To establish bromodeoxyuridine (BrdUrd)/iododeoxyuridine (IdUrd) double immunostaining for thick sections of epoxy resin-embedded tissues, young hamsters received intra-peritoneal injections of IdUrd and BrdUrd 3 hr and 1 hr before sacrifice, respectively. The intestines were fixed with phosphate-buffered 4% paraformaldehyde and embedded in an Epon-Araldite mixture. The epoxy resin was removed completely by a sodium methoxide/benzene/methanol solution. This epoxy resin removal method was effective for BrdUrd/IdUrd immunostaining using a mono-specific antibody for BrdUrd (Br-3) and a bi-specific antibody for BrdUrd and IdUrd (IU-4), followed by the ABC complex method. Epoxy sections stained with these antibodies showed clear localization of nuclei incorporating the two thymidine analogues with precise morphology of labeled cells. Furthermore, ultrastructural observation of thin sections adjacent to thick sections immunostained for BrdUrd/IdUrd confirmed the cell type and ultrastructural features of cells labeled with these thymidine analogues.  相似文献   

6.
Tissues were fixed for 30 min In cold (0-2° C) 1% OsO4 (Palade) buffered at pH 7.7, to which 0.1% MgCl2 was added. Dehydration was in a graded ethanol series (containing 0.5% MgCl2) at 0-2° C, and terminated with 2 changes of absolute ethanol. Tissues were then transferred by a graded series to anhydrous acetone. Infiltration of the tissue with Vestopal-W (a polyester resin), is gradual with the aid of graded solutions of Vestopal-W in acetone. The infiltrated tissue is encapsulated and initial polymerization is done under ultraviolet light at room temperature for 8-16 hr. This is followed by final hardening at 60° C for 36-48 hr. Sections (0.2-1 μ) were cut, dried on slides, placed in acetone for 1 min and then treated by either of the following staining procedures: (1) Thionin-azure-fuchsin staining: Flood the preparation with 0.2% aqueous thionin and heat to 60-80° C for 3 min; if the preparation begins to dry, add stain. Rinse in distilled water. Flood the slide with 0.2% azure B in phosphate buffer at pH 9. Heat to 60-80° C for 3 min; do not permit the preparation to dry. Rinse in distilled water. Dip the slide in MacCallum's variant of Goodpasture's carbol-fuchsin stain for 1-2 sec. Rinse in distilled water. Check the preparation microscopically for intensity of the fuchsin stain. Repeat dips as may be needed to obtain the desired intensity. Rinse in distilled water. Dehydrate quickly in 95% and absolute alcohol; clear in 2 changes of xylene and cover in Permount or similar synthetic resin. (2) Thionin-azure counterstain for the periodic acid-Schiff reaction: Oxidize the tissue in 0.5% periodic acid for 15 min and transfer to Schiff's leucofuchsin solution for 30 min. Counterstain with 0.5% aqueous thionin for 3 min; wash in distilled water; stain in 0.2% azure B in phosphate buffer at pH 5.5; wash in distilled water; dehydrate; clear and cover as in the first method. For temporary preparations let dry after absolute alcohol and apply a drop of immersion oil directly on the section.  相似文献   

7.
8.
This technique for the quantitation of silver grains in radioautographs produced by two differently labeled precursors of proteins and ribonucleic acids involves the use of 0.5 μ-thick sections from as many as 24 different blocks of tissue on a single microscope slide. Thereby, the incorporation of uridine-3H and leucine-14C by exocrine cells of the pancreas and major salivary glands was studied. The results indicate: (1) that this technique can be applied successfully in a simultaneous evaluation of two metabolic aspects in a given population of cells, and (2) that standardization of the mounting procedure permits multiple statistical comparisons of different organs.  相似文献   

9.
Specimens 1 mm3 from rat liver and kidney were fixed for 50 min in cold (0-2° C) 1% OsO4 in veronal-acetate buffer, pH 7.7, and containing 0.1% MgCl2; then dehydrated and embedded in Vestopal-W. Sections were cut in two ranges, 0.1-2 µ and 60-90 mµ thick, and attached to slides by floating on water and drying at 60° C. The thicker ones, for light microscopy, were soaked in acetone 1.5-3 hr; the thinner, for electron microscopy, 20-30 min. Both kinds were stained by Wilder's (1935) method for reticulum. Those for light microscopy were finished by dehydrating, clearing and covering in the customary manner; those for electron microscopy, by coating with 1% parlodion, drying, cutting the film about 2 mm2 around the section, and freeing the section by soaking in water. The section was then mounted on a grid. The structures stained are: nuclei, basement membrane of capillaries, reticulum fibers of the liver and kidney, and in addition, the basement membrane of the kidney tubules. The mitochondria, vesicles, endoplasmic reticulum and cell membranes were not defined.  相似文献   

10.
Rat suprarenal glands fixed in Palade's 1% OsO4, buffered at pH 7.7 with veronal-acetate, to which 0.1% MgCl2 was added, were embedded in Vestopal-W and sectioned at 0.2-1 µ. The sections were attached to slides by floating on water, without adhesive, and drying at 60-80° C, placed in acetone for 1 min and then treated with the following staining procedure: Place the preparation in a filtered solution of oil red O, 1 gm; 70% alcohol, 50 ml; and acetone, C.P., 50 ml; for 0.5-1 hr. Rinse in absolute ethyl alcohol; drain; counterstain with 0.5% aqueous thionin for 5 min; rinse in distilled water; drain; stain in 0.2% azure B in phosphate buffer at pH 9, for 5 min. Dry and apply a drop of immersion oil directly on the section. The preparations are temporary. Ciaccio-positive lipids, rendered insoluble by OsO, fixation, stained red to ochre.  相似文献   

11.
12.
A simple and rapid method of handling ribboned serial sections of epoxy embedded specimens is described. Ribbons are cut from a block having the leading and trailing sides coated with contact cement. A scoop made from polyethylene tubing is used to remove a ribbon of sections from the boat of a glass or diamond knife and to transfer it to a pool of water on a microscope slide. Many ribbons (comprising hundreds of sections) can be mounted on a single slide. This method requires the construction of only one simple, inexpensive tool, the polyethylene scoop, and otherwise utilizes only items commonly available in the laboratory.  相似文献   

13.
A basic fuchsin-crystal violet staining sequence for demonstration of juxtaglomerular granular cells in epoxy-embedded tissues is rapid and results in slides with excellent contrast and intensity. Procedure: Cut sections 0.3-0.6 μ thick. Hydrate through xylene and alcohol to water. Stain in modified Goodpasture's stain (basic fuchsin, 1; aniline, 1; phenol, 1; 30% alcohol, 100) for 20-30 sec; rinse in tap water; stain in modified Stirling's (crystal violet, 5; alcohol, 10; aniline, 2; water, 88) for 20-30 sec; rinse in tap water and dry on a hotplate; mount in a synthetic resin. Granular cells of the juxtaglomerular apparatus are stained an intense dark blue by the crystal violet. Arterial elastic membranes and collagen are pale blue. Other structures are shades of red.  相似文献   

14.
After treatment of epoxy resin semithin sections from glutaraldehyde fixed rat large intestine with 5% aqueous phosphotungstic acid (PTA), staining with unpurified 0.2% solutions of methyl green at 60 C for 5 min produces a color differentiation between mucin granules of goblet cells. Some mucin granules and the glycocalyx appear deep green while the remaining granules, luminal mucin and collagen fibers are pink. The known contamination of unpurified methyl green with crystal violet seems to be responsible for the pink staining reaction of the latter structures, which also present an orange-red fluorescence under green exciting light. Electron microscopic observations show selective contrast of mucin granules which appear with a different amount of PTA deposits. This procedure is useful to reveal the heterogeneity of mucin granules in light and electron microscopy.  相似文献   

15.
Aqueous solutions of the arylmethane dyes Chromoxane pure blue BLD (C.I. No. 43825) and Chromoxane pure blue B (C.I. No. 43830) will stain beryllium oxide. In the presence of EDTA the staining of other metals is masked. As a specific stain for BeO, formol saline fixed paraffin sections are hydrated and stained for 1 hr with either 0.1 gm of pure blue BLD in 100 ml of pH 4.0 Na-acetate buffer or with 0.1 gm of pure blue B in 1 N NaOH adjusted to pH 9.0 with HCl. To mask interference from other metal ions, 9 gm of Na2-EDTA is added to 100 ml of the stain solution. BeO is stained blue, organic tissue components are either unstained or pink. Results of tests against other materials show that a high degree of specificity may be expected from these dyes. A 1% aqueous solution of neutral red may be used as a counterstain.  相似文献   

16.
Sections of aldehyde-fixed and osmium-stained insect tissues embedded in various epoxy resins were affixed to glass slides by use of a slide cover and hotplate combination. A high concentration of solvent vapor over the sections was thus maintained while they dried down on the slides, resulting in excellent flatness and adhesion. Sections were then stained at an elevated temperature with a mixture of equal parts of 3 dye solutions: 1% toluidine blue O, 1% safranin O, and saturated auramine O, all made up in 1% solution of borax in water. The method resulted in excellent differentiation of all insect tissue components including lightly chitinized structures.  相似文献   

17.
Improved polychrome staining of 1-1.5 μm epoxy sections is achieved with sequential applications of a single basic fuchsin-methylene blue mixture at two different pH values. The dye solution is applied for 2-3 min at 50-52 C first at pH 7.9, then at pH 6.7. In sections of mouse mammary tissue, epithelial ells are stained deep blue, connective tissue pink, and fat ells bright olive-green. This simple technique consistently yields uniform, vivid, contrasting colors that sharply delineate the elements of the complex glandular architecture of the mammary gland. Similar polychromatic effects are obtained in applications to other tissues, such as stomach, adrenal gland, mammary tumor and artery.  相似文献   

18.
Dyes used in the 3 methods recommended are: I, thionin and acridine orange (T-AO); II, Janus green and Darrow red (JG-DR); III, methyl green and methyl violet (MG-MV). The first 2 methods were two-solution stains, applied in sequence; the third, required only one solution since methyl violet is present in commercial methyl green. Staining solution and timing was as follows: Method I. 0.1% thionin in a 45% ethanolic solution of 0.01 N NaOH, 5 min at 70 C; rinsing in water and followed by 1 min in a 1% aqueous solution of acridine orange made up in 0.02 N NaOH, also at 70 C, then washed, and dried on slides. Method II. 0.5% Janus green in aqueous 0.05 N NaOH, 5 min at 70 C; rinsing in water then into 0.5% Darrow red in 0.05 N NaOH (aq.), 2 min at 70 C., washing, and drying on slides. Method III. 1% methyl green (commercial, unpurified) in 1% aqueous borax for 15-20 min at 20-25 C, washing and attaching to slides. All staining was performed by floating the sections on the staining solutions, all drying at 70 C, and mounting in a resinous medium. T-AO gave blue to violet cytoplasmic structures, darker nuclei which contrasted strongly with yellow connective tissue and the secretion of goblet cells. JG-DR resembled a hematoxylineosin stain, but by shortening the staining time in DR to 0.5-1 min, collagenous and elastic tissue retained more of the green dye. MG-MV gave dark green nuclei in light green cytoplasm, with collagenous and elastic tissues in blue to violet. As with most methods for staining ultrathin sections, thicknesses of less than 1 μ required longer staining times.  相似文献   

19.
This report presents a simple procedure for staining 1-2 μm epoxy plastic sections of cells and mineralizing matrix present in fetal bovine bone tissue cultures. A 0.3% aqueous toluidine blue 0 solution was used as a cellular stain and was followed with 2% alizarin red S for the detection of calcium at sites of mineralition. Effects of concentration and pH of alizarin red S on the penetration of epon embedded thick sections were investigated Optimal staining was achieved with a 2% aqueous alizarin red S solution adjusted to a pH of 5.5-6.5. This staining procedure provides unusually clear contrast between mineral and bone cells in plastic sections for light microscopy.  相似文献   

20.
Intact stamens of Tradescantia were fixed, dehydrated, and infiltrated with an epoxy resin. Each stamen was then put into a drop of resin on a microscope slide, which was transferred to the stage of a dissecting microscope so that individual hairs could be detached from the filament with fine tungsten needles. The detached hairs were transferred to drops of resin ca. 2 mm in diameter (6 or 7 in each of two rows) lying on a slide heavily coated with evaporated carbon. Polymerization was carried out in an oven until the resin attained a degree of viscosity that permitted orientation of the isolated hairs (by using a compound microscope) without their subsequent dislocation. When the small drops of resin had hardened after further polymerization, the positions of the hairs were marked by circumscribing the cells with India ink. The block was pried from the slide after rapid cooling with solid CO2, and was then trimmed and sectioned. Cells suspended in culture medium were embedded in much the same way; they were centrifuged to obtain a pellet, which was fixed, dehydrated, and infiltrated. A small fragment of the pellet with a little resin was placed on a microscope slide, where the cells were dissociated under a dissecting microscope at ca. 100 × magnification. Individual cells were then picked up with tungsten needles and transferred to droplets of resin on a carbon-coated slide. The subsequent steps were similar to those described for the staminate hairs. Pieces of tissue in the 50-500 μ range were also handled by the foregoing technique. However, after infiltration they were put into large drops of resin on a slide coated with silicone mold-release rather than on a surface coated with carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号