首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burkholderia cepacia complex strains are genetically related but phenotypically diverse organisms that are important opportunistic pathogens in patients with cystic fibrosis (CF,) as well as pathogens of onion and banana, colonizers of the rhizospheres of many plant species, and common inhabitants of bulk soil. Genotypic identification and pathogenicity characterization were performed on B. cepacia complex isolates from the rhizosphere of onion and organic soils in Michigan. A total of 3,798 putative B. cepacia complex isolates were recovered on Pseudomonas cepacia azelaic acid tryptamine and trypan blue tetracycline semiselective media during the 2004 growing season from six commercial onion fields located in two counties in Michigan. Putative B. cepacia complex isolates were identified by hybridization to a 16S rRNA gene probe, followed by duplex PCR using primers targeted to the 16S rRNA gene and recA sequences and restriction fragment length polymorphism analysis of the recA sequence. A total of 1,290 isolates, 980 rhizosphere and 310 soil isolates, were assigned to the species B. cepacia (160), B. cenocepacia (480), B. ambifaria (623), and B. pyrrocinia (27). The majority of isolates identified as B. cepacia (85%), B. cenocepacia (90%), and B. ambifaria (76%) were pathogenic in a detached onion bulb scale assay and caused symptoms of water soaking, maceration, and/or necrosis. A phylogenetic analysis of recA sequences from representative B. cepacia complex type and panel strains, along with isolates collected in this study, revealed that the B. cenocepacia isolates associated with onion grouped within the III-B lineage and that some strains were closely related to strain AU1054, which was isolated from a CF patient. This study revealed that multiple B. cepacia complex species colonize the onion rhizosphere and have the potential to cause sour skin rot disease of onion. In addition, the onion rhizosphere is a natural habitat and a potential environmental source of B. cenocepacia.  相似文献   

2.
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.  相似文献   

3.
The species composition of a Burkholderia cepacia complex population naturally occurring in the maize rhizosphere was investigated by using both culture-dependent and culture-independent methods. B. cepacia complex isolates were recovered from maize root slurry on the two selective media Pseudomonas cepacia azelaic acid tryptamine (PCAT) and trypan blue tetracycline (TB-T) and subjected to identification by a combination of restriction fragment length polymorphism (RFLP) analysis and species-specific polymerase chain reaction (PCR) tests of the recA gene. DNA extracted directly from root slurry was examined by means of nested PCR to amplify recA gene with species-specific B. cepacia complex primers and to obtain a library of PCR amplified recA genes. Using the culture-dependent method the species Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia ambifaria and Burkholderia pyrrocinia were identified, whereas using the culture-independent method also the species Burkholderia vietnamiensis was detected. The latter method also allowed us to highlight a higher diversity within the B. cenocepacia species. In fact, by using the culture-independent method the species B. cenocepacia recA lineages IIIA and IIID besides B. cenocepacia recA lineage IIIB were detected. Moreover, higher heterogeneity of recA RFLP patterns was observed among clones assigned to the species B. cenocepacia than among B. cenocepacia isolates from selective media.  相似文献   

4.
The effect of concentrated cell-free extracellular material from stationary-phase cultures of Burkholderia cepacia 10661 and Pseudomonas aeruginosa PAO1 on virulence factor production in B. cepacia was assessed. While increasing concentrations of the B. cepacia exoproduct caused a slight increase in siderophore, lipase, and protease production in the producing organism, a significant in productivity was observed for all three virulence factors with the addition of the PAO1 exoproduct. Moreover, the addition of the exoproduct from a strain of P. aeruginosa producing reduced amounts of autoinducer caused only a slightly greater response than that of the control. Both B. cepacia 10661 and P. aeruginosa PAO1, along with two matched clinical isolates of both organisms obtained from a cystic fibrotic patient, were shown to produce variable amounts of three different types of autoinducer. The potential for interspecies signalling in microbial pathogenicity is discussed.  相似文献   

5.
Despite considerable interest in studying Burkholderia cepacia complex in the environment, we still do not have efficient methods to detect, isolate, and screen large numbers of B. cepacia isolates. To better describe the ecology and diversity of B. cepacia complex, a colony hybridization assay was developed to detect specifically all species of the complex based on polymorphism of the variable V3 region of the 16S rRNA sequence. The sensitivity of the assay was dramatically enhanced by using a probe consisting of three repeats of a B. cepacia complex-specific probe, each separated by a phosphoramidite spacer. In addition, a duplex PCR targeting B. cepacia complex-specific recA and 16S rRNA sequences was developed to enable a fast and reliable diagnostic assay for members of the complex. When applied to maize rhizosphere samples, colony hybridization results were in good agreement with those of most-probable-number duplex PCR, both indicating a >100-fold fluctuation of abundance between individual plants. Using restriction analysis of recA for a total of 285 confirmed isolates of the B. cepacia complex, up to seven B. cepacia complex species were identified; however, their diversity and abundance were not evenly distributed among individual plants, and several allelic variants were commonly found from the same rhizosphere sample. These results indicate that not only complex communities of B. cepacia complex species and closely related strains of the same species may coexist at high population levels but also species composition and abundance may dramatically vary between individual plants.  相似文献   

6.
Burkholderia cepacia is now recognised as a life-threatening pathogen among several groups of immunocompromised patients. In this context, the proposed large-scale use of these bacteria in agriculture has increased the need for a better understanding of the genetics of the species forming the B. cepacia complex. Until now, little information has been available on the bacteriophages of the B. cepacia complex. Transducing phages, named NS1 and NS2, were derived from the lysogenic B. cepacia strains ATCC 29424 and ATCC 17616. The frequency of transduction per phage particle ranged from 1.0x10(-8) to 7.0x10(-6) depending on the phage and recipient strain used. The host range of NS1 and NS2 differed but in each case included environmental and clinical isolates, and strains belonging to several species and genomovars of the B. cepacia complex. The host range of both phages also included Pseudomonas aeruginosa. Some B. cepacia complex isolates were sensitive to the well-characterised P. aeruginosa transducing phages, B3, F116L and G101. The lytic activity of NS1 and NS2 was inhibited by B. cepacia lipopolysaccharide suggesting that this moiety is a binding site for both phages. The molecular size of the NS1 and NS2 genomes was approximately 48 kb.  相似文献   

7.
Nineteen Burkholderia cepacia-like isolates of human and environmental origin could not be assigned to one of the seven currently established genomovars using recently developed molecular diagnostic tools for B. cepacia complex bacteria. Various genotypic and phenotypic characteristics were examined. The results of this polyphasic study allowed classification of the 19 isolates as an eighth B. cepacia complex genomovar (Burkholderia anthina sp. nov.) and to design tools for its identification in the diagnostic laboratory. In addition, new and published data for Burkholderia pyrrocinia indicated that this soil bacterium is also a member of the B. cepacia complex. This highlights another potential source for diagnostic problems with B. cepacia-like bacteria.  相似文献   

8.
The leading cause of morbidity and mortality in cystic fibrosis (CF) continues to be lung infections with Pseudomonas aeruginosa biofilms. Co-colonization of the lungs with P aeruginosa and Burkholderia cepacia can result in more severe pulmonary disease than P. aeruginosa alone. The interactions between P. aeruginosa biofilms and B. cepacia are not yet understood; one possible association being that mixed species biofilm formation may be part of the interspecies relationship. Using the Calgary Biofilm Device (CBD), members of all genomovars of the B. cepacia complex were shown to form biofilms, including those isolated from CF lungs. Mixed species biofilm formation between CF isolates of P. aeruginosa and B. cepacia was readily achieved using the CBD. Oxidation-fermentation lactose agar was adapted as a differential agar to monitor mixed biofilm composition. Scanning electron micrographs of the biofilms demonstrated that both species readily integrated in close association in the biofilm structure. Pseudomonas aeruginosa laboratory strain PAO1, however, inhibited mixed biofilm formation of both CF isolates and environmental strains of the B. cepacia complex. Characterization of the soluble inhibitor suggested pyocyanin as the active compound.  相似文献   

9.
AIMS: Determination of genetic diversity among UK Burkholderia cepacia isolates from various environmental niches, principally woodland tree rhizospheres and onions. METHODS AND RESULTS: Genus determination was made using polymerase chain reaction (PCR) amplification and fatty acid methyl ester profiling. Genetic diversity was investigated by repetitive sequence genetic PCR fingerprinting. Several onion isolates were similar to clinical isolates but others were diverse. Some environmental isolates were possibly synonymous with B. cepacia and B. gladioli but most from woodland rhizospheres were distinct and clustered together. The 16S rRNA genes of representatives from these clusters were PCR amplified, sequenced and phylogenetically compared with all known Burkholderia and related species. This revealed that the rhizospheric isolates had closest affinity with Burkholderia spp. with known bioremediative and biocontrol capabilities and were unrelated to taxa comprising plant or human pathogenic strains. CONCLUSIONS: All of the analyses investigated revealed that environmental and onion isolates of B. cepacia complex bacteria are genetically diverse but that woodland rhizospheric isolates are related to each other and unrelated to plant or human pathogenic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Woodland rhizospheric isolates of B. cepacia are potentially good candidates for use in bioremediation and biocontrol, as they appear distinct from plant or human pathogenic strains.  相似文献   

10.
Genetic studies with Burkholderia cepacia complex isolates are hampered by the limited availability of cloning vectors and by the inherent resistance of these isolates to the most common antibiotics used for genetic selection. Also, some of the promoters widely employed for gene expression in Escherichia coli are inefficient in B. cepacia. In this study, we have utilized the backbone of the vector pME6000, a derivative of the pBBR1 plasmid that was originally isolated from Bordetella bronchiseptica, to construct a set of vectors useful for gene expression in B. cepacia. These vectors contain either the constitutive promoter of the S7 ribosomal protein gene from Burkholderia sp. strain LB400 or the arabinose-inducible P(BAD) promoter from E. coli. Promoter sequences were placed immediately upstream of multiple cloning sites in combination with the minimal sequence of pME6000 required for plasmid maintenance and mobilization. The functionality of both vectors was assessed by cloning the enhanced green fluorescent protein gene (e-gfp) and determining the levels of enhanced green fluorescent protein expression and fluorescence emission for a variety of clinical and environmental isolates of the B. cepacia complex. We also demonstrate that B. cepacia carrying these constructs can readily be detected intracellularly by fluorescence microscopy following the infection of Acanthamoeba polyphaga.  相似文献   

11.
12.
AIMS: To investigate the relationship between genomovar status and carbon source utilization, antibiotic susceptibility and growth ability on selective media of 142 clinical and environmental Burkholderia cepacia complex (Bcc) isolates belonging to all nine genomovars. METHODS AND RESULTS: Carbon source utilization and growth on selective media were tested by agar plate multipoint inoculation. Antimicrobial minimum inhibitory concentration (MIC) values were determined by agar dilution. Of all carbon sources, l-arabinose was most frequently utilized, supporting growth of 90% of all isolates. Burkholderia cepacia genomovar VI failed to utilize azelaic acid, penicillin G, phtalate, salicin and tryptamine. Overall, B. vietnamiensis and B. anthina were most susceptible and B. cepacia genomovar VI most resistant to antimicrobial agents. Burkholderia cepacia selective agar (BCSA) and the Mast B. cepacia medium supported growth of Bcc isolates most efficiently. CONCLUSIONS: This study demonstrates phenotypic heterogeneity within the Bcc. Some trends can be observed at the genomovar level, but only B. cepacia genomovar VI could be differentiated unambiguously on the basis of its inability to grow on PCAT. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides an update on some differential phenotypic characteristics of all nine Bcc genomovars.  相似文献   

13.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

14.
Cardona ST  Valvano MA 《Plasmid》2005,54(3):2079-228
Infection of the respiratory tract caused by Burkholderia cepacia complex poses a serious risk for cystic fibrosis (CF) patients due to the high morbidity and mortality associated with the chronic infection and the lack of efficacious antimicrobial treatments. A detailed understanding of the pathogenicity of B. cepacia complex infections is hampered in part by the limited availability of genetic tools and the inherent resistance of these isolates to the most common antibiotics used for genetic selection. In this study, we report the construction of an expression vector which uses the rhamnose-regulated P(rhaB) promoter of Escherichia coli. The functionality of the vector was assessed by expressing the enhanced green fluorescent protein (eGFP) gene (e-gfp) and determining the levels of fluorescence emission. These experiments demonstrated that P(rhaB) is responsive to low concentrations of rhamnose and it can be effectively repressed with 0.2% glucose. We also demonstrate that the tight regulation of gene expression by P(rhaB) promoter allows us to extend the capabilities of this vector to the identification of essential genes.  相似文献   

15.
We have isolated BcepMu, a Mu-like bacteriophage whose host range includes human pathogenic Burkholderia cenocepacia (formally B. cepacia genomovar III) isolates, and determined its complete 36748 bp genomic sequence. Like enteric bacteriophage Mu, the BcepMu genomic DNA is flanked by variable host sequences, a result of transposon-mediated replication. The BcepMu genome encodes 53 proteins, including capsid assembly components related to those of Mu, and tail sheath and tube proteins related to those of bacteriophage P2. Seventeen of the BcepMu genes were demonstrated to encode homotypic interacting domains by using a cI fusion system. Most BcepMu genes have close homologs to prophage elements present in the two published Salmonella typhi genomes, and in the database sequences of Photorhabdus luminescens, and Chromobacterium violaceum. These prophage elements, designated SalMu, PhotoMu and ChromoMu, respectively, are collinear with BcepMu through nearly their entire lengths and show only limited mosaicism, despite the divergent characters of their hosts. The BcepMu family of Mu-like phages has a number of notable differences from Mu. Most significantly, the critical left end region of BcepMu is inverted with respect to Mu, and the BcepMu family of transposases is clearly of a distinct lineage with different molecular requirements at the transposon ends. Interestingly, a survey of 33 B.cepacia complex strains indicated that the BcepMu prophage is widespread in human pathogenic B.cenocepacia ET12 lineage isolates, but not in isolates from the PHDC or Midwest lineages. Identified members of the BcepMu family all contain a gene possibly involved in bacterial pathogenicity, a homolog of the type-two-secretion component exeA, but only BcepMu also carries a lipopolysaccharide modification acyltransferase which may also contribute a pathogenicity factor.  相似文献   

16.
Burkholderia (Pseudomonas) cepacia is a common environmental bacterium which can be pathogenic for plants and humans. In this study, four strategies were used to identify aquatic isolates: API test strips, hybridization with species-specific DNA probes for the 16S and 23S rRNA genes, fatty acid methyl ester (FAME) profiles, and growth on selective medium (TB-T agar [C. Hagedorn, W. D. Gould, T. R. Bardinelli, and D. R. Gustarson, Appl. Environ. Microbiol. 53:2265-2268, 1987]). Only 59% of the isolates identified as B. cepacia with the API test strips were confirmed as B. cepacia by using fatty acid profiles. The 23S rRNA probe generated a few false-positive results but dramatically underestimated the number of B. cepacia isolates (i.e., 40% of the colonies that did not hybridize to the probe were B. cepacia, as determined by FAME). The 16S rRNA probe generated more false-positive results than the 23S rRNA probe but was effective in identifying the majority of the B. cepacia isolates. The selective medium was only partially successful in recovering B. cepacia. Use of the B. cepacia-specific 16S rRNA probe was the most efficient and accurate way of identifying B. cepacia.  相似文献   

17.
An in vitro method of determining the activity of antibiotics in combination which is simple and convenient to perform and which could be used routinely in clinical microbiology laboratories is desirable. We investigated the activity, against Pseudomonas aeruginosa and Burkholderia cepacia complex clinical isolates, of ceftazidime and tobramycin in combination using a broth macrodilution sensitivity method based on breakpoint minimum inhibitory concentrations and compared the results obtained using this method with those obtained using the microtitre checkerboard method. There was good agreement in interpretation of results between the two methods for both P. aeruginosa (90%) and B. cepacia complex isolates (70%) with tobramycin and for P. aeruginosa isolates (70%) with ceftazidime. As the breakpoint combination sensitivity testing method employs only four tubes and does not require initial determination of individual antibiotic minimum inhibitory concentrations, it is simpler and more convenient for determining the activity of antibiotics in combination than the microtitre checkerboard method. The use of this method in routine microbiology laboratories to determine the activity of antibiotic combinations against clinical isolates should optimise treatment of infection by ensuring that appropriate antibiotic combinations are prescribed.  相似文献   

18.
The Burkholderia cepacia complex (BCC) comprises a group of bacteria associated with opportunistic infections, especially in cystic fibrosis patients. B. cenocepacia J2315, of the transmissible ET12 lineage, contains a type III secretion (TTS) gene cluster implicated in pathogenicity. PCR and hybridisation assays indicate that the TTS gene cluster is present in all members of the BCC except B. cepacia (formerly genomovar I). The TTS gene clusters of B. cenocepacia J2315 and B. multivorans are similar in organisation but have variable levels of gene identity. Nucleotide sequence data obtained for the equivalent region of the B. cepacia genome indicate the absence of TTS structural genes due to a rearrangement likely to involve more than one step.  相似文献   

19.
Modern data, related with the identification and typing of the complex B. cepacia bacteria, are analyzed in the article by using the poly-phase taxonomic approach. An optimal scheme for identifying and typing the complex B. cepacia bacteria, involving the microbiological and molecular-biological methods of laboratory diagnostics, is presented. The key and assumed factors of pathogenicity of the discussed bacteria are described. The possible phylogenetic relations of the complex B. cepacia bacteria with phytopathgens as well as with pathogenic bacteria of species Burkholderia, Pseudomonas, Escherichia, B. mallei, B. pdeudomallei, P. seruginosa and E. coli are described. A possible role of genome alterations and mutations in the genome of the complex B. cepacia bacteria (with the latter genome having unusual properties, i.e. a big size, and a considerable quantity of insertion sequences) in creating the conditions for the "pulsing" evolution "jerks", i.e. for a rapid change-over from saprophytism in the soil to a pathogenic causative agent of a viral-and-bacteriological infection. Such mechanism can be regarded as a rapid and radical adaptation of a microorganism under the conditions of changing ecological niches.  相似文献   

20.
Burkholderia cenocepacia is a significant problem in individuals with cystic fibrosis and is a member of the B. cepacia complex of closely related antibiotic resistant bacteria. A salicylate-regulated antibiotic efflux operon has been identified in B. cenocepacia and one of its four genes, llpE, is without parallel in previously reported efflux operons. PCR amplification and sequencing of llpE from B. cepacia complex isolates demonstrated the highest prevalence in B. cenocepacia with a high degree of sequence conservation. While at least one non-synonymous mutation was identified between isolates from different genomovars, only synonymous differences were identified within the IIIA and IIIB sub-groups of B. cenocepacia. Structural modeling suggests that LlpE is a member of the alpha/beta hydrolase enzyme family. Identification of strong structural homology to hydrolases and a high degree of conservation in B. cenocepacia suggests an enzymatic function for LlpE, benefiting survival in the cystic fibrosis lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号