首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, sensitive and accurate high-performance liquid chromatographic method with UV detection was developed and validated for the quantification of gabapentin in human plasma. Gabapentin was quantified using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene following protein precipitation of plasma with acetonitrile. Amlodipine was used as internal standard. The chromatographic separation was carried out on a Nova-Pak C(18) column using a mixture of 50 mM NaH(2)PO(4) (pH=2.5)-acetonitrile (30:70, v/v) as mobile phase with UV detection at 360 nm. The flow rate was set at 1.5 ml/min. The method was linear over the range of 0.05-5 microg/ml of gabapentin in plasma (r(2)>0.999). The within-day and between-day precision values were in the range of 2-5%. The limit of quantification of the method was 0.05 microg/ml. The method was successfully used to study the pharmacokinetics of gabapentin in healthy volunteers.  相似文献   

2.
The development of the HIV protease inhibitor saquinavir (Ro 31-8959) required a range of analytical methods for its measurement in biological fluids. This paper describes the development of isocratic, reverse-phase HPLC/UV methods for the routine measurement of plasma levels of the drug together with a more sensitive radioimmunoassay. The performance of the two assays is compared with that of an HPLC/MS/MS method previously published and has been shown to be satisfactory, with coefficients of variation of calibration standards and quality control samples within the usual outside limits of +/- 15%. The HPLC/UV method can be routinely applied for concentrations down to 10-20 ng/ml and a lower limit of quantification of 1 ng/ml from 1 ml of human plasma is possible. The radioimmunoassay was developed for the specific measurement of saquinavir concentrations in human, HIV-positive plasma samples and has a lower limit of quantification of 0.5-1.0 ng/ml. Some preliminary findings suggested that it might not be specific in rat plasma and no attempts have been made to quantify any nonclinical samples with this technique. If still greater sensitivity is required, recourse can be made to the HPLC/MS/MS assay.  相似文献   

3.
A sensitive column-switching high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed for the determination of propiverine in human plasma. Propiverine and internal standard, oxybutynin, were extracted from human plasma that had been made basic with 5N sodium hydroxide into methyl tert-butyl ether. The extracted plasma sample was injected onto the HPLC system consisting of a pretreatment column, a concentrating column, and an analytical column, which were connected with a six-port switching valve. The assay was linear in concentration ranges of 2-200 ng/ml for propiverine in human plasma. This method showed excellent sensitivity (a limit of detection of 0.5 ng/ml), good precision and accuracy. This method is suitable for bioequivalence studies following single dose in healthy volunteers.  相似文献   

4.
We developed a sensitive and selective method for determining levels of sultopride, a neuroleptic drug of the substituted benzamide, in human plasma using high-performance liquid chromatography (HPLC) combined with UV detection and particle beam mass spectrometry (PBMS). Sutopride was extracted with tert.-butylmethyl ether using a salting-out technique. Tiapride served as an internal standard (I.S.). Sutopride and I.S. were separated by HPLC on a silica column with a mobile phase of acetonitrile-0.1 M ammonium acetate (94:6, v/v). The calibration curves were linear over the concentration range from 5 to 1000 ng/ml by HPLC with UV detection and from 10 to 1000 ng/ml with PBMS detection. The limit of quantitation was 5 ng/ml with UV detection and 10 ng/ml with PBMS detection. The absolute recovery was 92% and the within-day coefficients of variation were 2.9–7.1% at plasma concentrations from 50 to 500 ng/ml, determined by HPLC with UV detection. Using this method, we measured the plasma concentrations of sultopride with replicate analyses in four hospitalized patients and steady-state plasma levels were determined to be 161.6±30.8, 321.1±93.7, 726.5±143.1 and 1273.6±211.2 ng/ml, respectively.  相似文献   

5.
An HPLC system using a simple liquid-liquid extraction and HPLC with UV detection has been validated to determine tramadol concentration in human plasma. The method developed was selective and linear for concentrations ranging from 10 to 2000 ng/ml with average recovery of 98.63%. The limit of quantitation (LOQ) was 10 ng/ml and the percentage recovery of the internal standard phenacetin was 76.51%. The intra-day accuracy ranged from 87.55 to 105.99% and the inter-day accuracy, 93.44 to 98.43% for tramadol. Good precision (5.32 and 6.67% for intra- and inter-day, respectively) was obtained at LOQ. The method has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

6.
A reversed-phase high-performance liquid chromatographic (HPLC) using ultraviolet (UV) absorbance detection method for simultaneous determination of clofibrate (I) and its major metabolite clofibric acid (II) in human plasma has been developed to support a clinical study. I, II and internal standard (I.S., III) are isolated from human plasma by 96-well solid-phase extraction (SPE) C(18)z.ccirf;AR plate and quantified by direct injection of the SPE eluent onto the HPLC with UV detection wavelength at 230 nm. Two chromatographic methods, isocratic and step gradient, have been validated from 1.0 to 100.0 microg/ml and successfully applied to plasma sample analysis for a clinical study. The lower limit of quantitation (LLOQ) is 1.0 microg/ml for both I and II when 500 microl plasma sample is processed. Sample collection and preparation is conducted at 5 degrees C to minimize the hydrolysis of I to II in human plasma.  相似文献   

7.
The first method using high-performance liquid chromatography (HPLC) has been developed for the determination of trans-resveratrol in human plasma. The method involves a liquid–liquid extraction followed by reversed-phase HPLC with UV detection. The detection limit of trans-resveratrol in human plasma was 5.0 ng/ml. Standard curves are linear over the concentration range of 5.0–5000.0 ng/ml. Intra-assay variability ranged from 1.9 to 3.7% and inter-assay variability ranged from 2.5 to 4.0% at the concentration range of 15.0–4000.0 ng/ml.  相似文献   

8.
A sensitive analytical method for gabapentin [1-(aminomethyl) cyclohexaneacetic acid] (GBP) in human plasma based on capillary electrophoretic separation and laser-induced fluorescence (LIF) detection has been developed. 6-Carboxyfluorescein succinimidyl ester (CFSE) was used for precolumn derivatization of the non-fluorescent drug in plasma. Optimal separation and detection were obtained with an electrophoretic buffer of 50mM sodium borate (pH 9.5) and an air-cooled argon-ion laser (excitation at 488 nm, emission at 520 nm). A calibration curve ranging from 0.3 to 150 microM was shown to be linear. The concentration limit of detection (LOD) in plasma was 60 nM. We also demonstrate how the detection limit can be enhanced by using acetonitrile stacking technique. With stacking, the limit of detection for gabapentin in plasma was 4.8 nM. A calibration curve ranging from 0.03 to 15 microM was shown to be linear. Both the within-day and day-to-day reproducibility and accuracy were 相似文献   

9.
A rapid, simple and sensitive high-performance liquid chromatographic (HPLC) assay has been developed for the simultaneous quantification of the HIV-protease inhibitors indinavir, amprenavir, ritonavir, saquinavir and nelfinavir in human plasma. The method involved the solid-phase extraction of the five drugs and the internal standard (I.S., verapamil) from 400 μl of human plasma. The HPLC analysis used a reversed-phase C18 analytical column and a mobile phase consisting of a gradient with 15 mM phosphate buffer (pH 5.75)–acetonitrile and UV monitoring. The method was linear over the therapeutic concentration range for the five HIV-protease inhibitors. The accuracy of the method ranged from 98.2 to 106.7% and the precision values ranged from 1.4 to 8.1% for intra-day precision and from 3.1 to 6.4% for the inter-day values.  相似文献   

10.
A column-switching high-performance liquid chromatography (HPLC) method for the determination of aloesin in rat plasma using column-switching and ultraviolet (UV) absorbance detection is described. Plasma was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with a six-port switching valve. The determination of aloesin was accurate and repeatable, with a limit of quantitation of 10 ng/ml in plasma. The standard calibration curve for aloesin was linear (r=0.998) over the concentration range of 10–1000 ng/ml in rat plasma. The intra- and inter-day assay variabilities of aloesin ranged from 1.0 to 4.7% and 1.1 to 8.8%, respectively. This highly sensitive and simple method has been successfully applied to a pharmacokinetic study after oral administration of aloesin to rats.  相似文献   

11.
Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD) is a natural compound with antioxidant properties of a new family of sulfur-containing amino acids. It has been detected in human urine and plasma, in mammalian cerebellum and, more recently, in dietary vegetables. In the present study, a simple, highly sensitive method using a high-performance liquid chromatography system with electrochemical detection (ECD) has been developed. The method showed excellent precision and accuracy. It has been found to be about 100-fold more sensitive than gas chromatographic method and 2000-fold more sensitive in respect to the liquid chromatography method with UV detection. The method showed the required features of specificity and sensitivity to detect aminoethylcysteine ketimine decarboxylated dimer in human plasma and in cultured cells after in vitro supplementation.  相似文献   

12.
A sensitive, rapid, selective and reproducible method has been developed to measure plasma levels of sulfadoxine, 4-Amino-N-(5, 6-dimethoxy-4-pyrimidinyl) benzensulfonamide; in healthy, human volunteers using packed-column supercritical fluid chromatography. Omeprazole, 5-methoxy-2-[[(4-methoxy-3, 5-di-methyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole; was used as the internal standard (i.s.) at 15.0 μg/ml. The drug and the i.s. were extracted from plasma using dichloromethane. Separation of sulfadoxine and i.s. was done on a Nucleosil (250×4.6 mm) 10 μm, RP-C18 column with 7.4% (v/v) methanol-modified supercritical fluid carbon dioxide (2.5 ml/min) as the mobile phase. The column temperature was 40°C and the outlet pressure was set at 8.83 MPa. The detection was done using a UV–Vis detector set at 265 nm. The limit of quantification was 0.50 μg/ml using 1 ml plasma specimen. The mean extraction recovery of the drug from plasma was found to be 94.9%. The SFC method was directly compared to a published HPLC/UV method. With respect to speed and use of organic solvents SFC was found to be superior; while in all other aspects the results were similar to the published technique. The method has been successfully used to estimate the sulfadoxine levels in healthy human volunteers from 0 to 240 h following an oral dose of 500 mg of sulfadoxine in combination with 25 mg of pyrimethamine.  相似文献   

13.
A simple, rapid, specific and sensitive high-performance liquid chromatography method has been developed for quantitation of 5-fluorouracil (5-FU) in human plasma. The method involves deproteinization of a small sample volume of plasma (150 μl) followed by HPLC on a cation-exchange resin column, Aminex HPX-87H (300×7.8 mm I.D.), preceded by a similar guard cartridge with UV detection at 265 nm. This method allows a good separation of 5-FU with a retention time of 24 min and a detection limit at 25 ng/ml. The calibration curve was linear from 25 to 2000 ng/ml. The coefficient of variation was ≤4.4% for within-day reproducibility and ≤9.5% for day-to-day reproducibility.  相似文献   

14.
An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36±12.53% and 93.52±7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

15.
A chemical method for the determination of hyaluronan (hyaluronic acid, HA) has been developed and applied to the human blood plasma. Human blood plasma HA was converted to the ΔDi-HA by digestion with hyaluronidase SD and determined by a sensitive and selective high-performance liquid chromatography (HPLC). The HPLC includes the separation and detection of ΔDi-HA using a graphitized carbon column and fluorometric reaction with 2-cyanoacetamide in an alkaline eluent. The calibration graph for ΔDi-HA was linear over the range 0.2 ng-1 μg. It was revealed that the concentration of HA in normal human blood plasma is very low levels (about 24 ng/ml) in comparison to low-sulfated chondroitin 4-sulfate (about 13 μg/ml).  相似文献   

16.
A method for the determination of rofecoxib in human plasma is described. After the addition of an internal standard, buffered (pH 5) plasma samples are extracted with hexane–methylene chloride (50:50, v/v). The extracts are evaporated to dryness and reconstituted in mobile phase. Upon exposure to UV light, the analyte was found to undergo a stilbene–phenanthrene-like photocyclization reaction with the resulting formation of a highly fluorescent species. Thus, the plasma extracts were analyzed via HPLC with post-column photochemical derivatization and fluorescence detection. The assay has been validated in the concentration range of 0.5–100 ng/ml using 1-ml samples. The method has been successfully utilized to support human clinical pharmacokinetic studies.  相似文献   

17.
We report a rapid and sensitive method for separation and quantitation of free fatty acids (FFAs) in human plasma using high-performance liquid chromatography (HPLC). Two established techniques of lipid extraction were investigated and modified to achieve maximal FFA recovery in a reasonably short time period. A modified Dole extraction method exhibited greater recovery (90%) and short processing times (30 min) compared to the method of Miles et al. Reversed-phase HPLC using UV detection was used for plasma FFA separation and quantitation. Two phenacyl ester derivatives, phenacyl bromide and p-bromophenacyl bromide, were investigated in order to achieve optimal separation of individual plasma FFAs (saturated and unsaturated) with desirable detection limits. Different chromatographic parameters including column temperature, column type and elution profiles (isocratic and gradient) were tested to achieve optimal separation and recovery of fatty acids. Phenacyl bromide esters of plasma fatty acids were best resolved using an octadecylsilyl column with endcapped silanol groups. An isocratic elution method using acetonitrile–water (83:17) at 2 ml/min with UV detection at 242 nm and a column temperature of 45°C was found to optimally resolve the six major free fatty acids present in human plasma (myristic [14:0], palmitic [16:0], palmitoleic [16:1], stearic [18:0], oleic [18:1] and linoleic [18:2]), with a run time of less than 35 min and detection limits in the nmol range. The entire process including plasma extraction, pre-column derivatization, and HPLC quantitation can be completed in 90 min with plasma samples as small as 50 μl. Over a wide physiological range, plasma FFA concentrations determined using our HPLC method agree closely with measurements using established TLC–GC methods (r2≥0.95). In addition, by measuring [14C] or [3H] radioactivity in eluent fractions following HPLC separation of plasma FFA, this method can also quantitate rates of FFA turnover in vivo in human metabolic studies employing isotopic tracers of one or more fatty acids.  相似文献   

18.
A rapid, specific, sensitive and economical method has been developed and validated for the determination of grepafloxacin in human plasma and urine. The assay consisted of reversed-phase HPLC with UV detection. Plasma proteins were removed by a fast and efficient procedure that has eliminated the need for costly extraction and evaporation. For the urine samples, the only required sample preparation was dilution. Separation was achieved on a reversed-phase TSK gel column with an isocratic mobile system. The method had a quantification limit of 0.05 μg/ml in plasma and 0.5 μg/ml in urine. The coefficients of variation (C.V.) were less than 4% for within- and between-day analyses. The method was successfully applied to a pharmacokinetic study, and was proved to be simple, fast and reproducible.  相似文献   

19.
A rapid, sensitive and simple high-performance liquid chromatographic (HPLC) method with ultraviolet detector (UV) has been developed for the determination of bifendate in 100 microl plasma of rats. Sample preparation was carried out by deproteinization with 100 microl of acetonitrile. A 20 microl of supernatant was directly injected into the HPLC system with methanol-double distilled water (65/35, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Separation was performed with a microBondapak C(18) column at 30 degrees C. The peak was detected at 278 nm. The calibration curve was linear (r(2)=0.9989) in the concentration range of 0.028-2.80 microg/ml in plasma. The intra- and inter-day variation coefficients were not more than 6.55% and 6.07%, respectively. The limit of detection was 5 ng/ml. The mean recoveries of bifendate were ranged from 94.53% to 99.36% in plasma. The present method has been successfully applied to the pharmacokinetic study of bifendate liposome in rats.  相似文献   

20.
A specific and sensitive liquid chromatographic assay for the determination of 4-amidino-1-indanone-2′-amidinohydrazone (CGP 48 664, I) and a potential metabolite, 2-(4-carbamoyl-2,3-dihydro-1H-inden-1-yliden) hydrazine carboximidamide (CGP 53 391, II), in human and animal plasma was developed. CGP 51 467, a structural analog, was added to the plasma samples (up to 1 ml) as an internal standard. After mixing, the samples were processed automatically using an ASPEC solid-phase extraction system. The final extracts were chromatographed on a 5 μm Purospher RP-18 HPLC column. Chromatography was performed using a gradient system and UV detection. The described HPLC method is suitable for specific and quantitative measurement of concentrations of I, as well as its potential metabolite II down to 5–10 ng/ml in human and animal (dog, rat) plasma with acceptable reproducibility and accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号