首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-density lipoproteins (hLDL) and beta-migrating-very-low-density lipoproteins (beta-VLDL) were isolated from the plasma of cholesterol-fed White Carneau (WC) pigeons and low-density lipoproteins (nLDL) were isolated from the plasma of grain-fed WC pigeons. The lipoproteins were radiolabeled with 125I or 131I and injected into normocholesterolemic or hypercholesterolemic WC pigeons to determine their rate of clearance from the plasma. The fractional catabolic rate (FCR) of nLDL and hLDL in normocholesterolemic pigeons averaged 0.202 and 0.206 pools/h.respectively. beta-VLDL was cleared at a significantly slower rate of 0.155 pools/h. The FCR of the same lipoproteins injected into hypercholesterolemic pigeons was reduced by 17% for nLDL, 50% for hLDL and 57% for beta-VLDL, indicating that the effect of hypercholesterolemia on clearance in vivo was different for the three lipoproteins. The FCR of reductively methylated pigeon LDL (MeLDL), which gives a measure of receptor-independent clearance of LDL, was shown previously to be 0.037 pools/h. These studies suggest therefore that LDL and beta-VLDL are cleared from the plasma of normocholesterolemic and hypercholesterolemic pigeons at a rate substantially greater than that predicted for non-specific processes. Despite the reduction in the clearance rate of hLDL and beta-VLDL due to cholesterol feeding, the absolute amount of cholesterol that was cleared from the plasma by these lipoproteins was increased from approx. 200 mg/kg body weight per day in the normocholesterolemic pigeons to greater than 1000 mg/kg body weight per day in the hypercholesterolemic pigeons. This is due principally to the enrichment in cholesterol relative to protein of the lipoproteins isolated from cholesterol-fed pigeons and the failure of hypercholesterolemia to completely inhibit receptor-dependent clearance of LDL and beta-VLDL. The lower rate of clearance of beta-VLDL relative to LDL is in marked contrast to mammalian beta-VLDL, which is cleared much faster than LDL, but is consistent with the lack of apo E on pigeon lipoproteins. Apo E is the apoprotein that is thought to be responsible for the rapid clearance of beta-VLDL in normocholesterolemic mammals. The low rate of beta-VLDL clearance in pigeons also suggests that pigeons lack an apolipoprotein that function like mammalian apo E.  相似文献   

2.
Cholesterol-fat feeding is associated with unusual alterations in the composition of plasma lipoproteins in alloxan-diabetic rabbits. In the present study plasma lipoprotein lipid and apoprotein composition was studied before and after 48 hr of fasting in cholesterol-fed diabetic and control rabbits in order to further characterize these alterations. Compared with control rabbits, the diabetic rabbits had similar plasma cholesterol levels, but 100-fold higher triglyceride levels prior to fasting. These plasma lipids were distributed mainly to large, Sf greater than 400 plasma lipoproteins in the diabetic rabbits, and to beta-VLDL in control rabbits. Sf greater than 400 lipoproteins, VLDL, IDL, LDL, and HDL from diabetic rabbits had triglyceride as the predominant lipoprotein core lipid. Sf greater than 400 lipoproteins and VLDL from diabetic rabbits had lesser amount of apoprotein E, and greater amounts of apoproteins A-I, A-IV, and B-48 as percent of total apoprotein mass in comparison with control rabbits. Fasting reduced plasma triglyceride levels by 55% in diabetic rabbits. Sf greater than 400 lipoprotein and VLDL triglyceride content decreased but remained a major core lipid. Fasting eliminated apoproteins A-I and A-IV from Sf greater than 400 lipoproteins and VLDL, but had no significant effect on apoB-48 content. Insulin treatment of the diabetic rabbits reduced plasma triglyceride by approximately 90% resulting in cholesteryl ester-rich particles reassembling beta-VLDL both in the Sf greater than 400 lipoprotein and VLDL fractions. These results indicate that the alterations in plasma lipoproteins in cholesterol-fed diabetic rabbits result from the presence in the d less than 1.006 g/ml plasma lipoprotein class of partially metabolized, intestinally derived particles.  相似文献   

3.
The feeding of cholesterol to rats resulted in marked alterations in the type and distribution of the plasma lipoproteins and their apoproteins. The hyperlipoproteinemia was characterized by an increase in the d < 1.006 lipoproteins (B-VLDL and VLDL), an increase in the intermediate and low density lipoproteins (LDL), and the appearance of HDL(c). Associated with these lipoproteins was a prominence of the arginine-rich apoprotein. The high density lipoproteins (HDL) were decreased. A two-dimensional immunoelectrophoretic procedure was adapted to quantitate the changes in distribution of the arginine-rich apoprotein in the plasma and various ultracentrifugal fractions obtained from control and cholesterol-fed rats. In rats fed the cholesterol diet, the total plasma arginine-rich apoprotein increased from a control value of approximately 29 mg/dl to 47 mg/dl. The method of ultracentrifugation, however, was found to markedly alter the quantitative results. When the 60 Ti rotor was used at maximum speed to isolate the ultracentrifugal fractions, less than 50% of the total plasma arginine-rich apoprotein was associated with the lipoproteins in the d < 1.006 or the d 1.006-1.02, 1.02-1.063, or 1.063-1.21 ultracentrifugal fractions. By contrast, after limited ultracentrifugation with the 40 rotor, much less arginine-rich apoprotein was lost, with approximately 20% of the arginine-rich apoprotein in control rats and 10% in cholesterol-fed rats found in the d > 1.21 fraction. Significant alterations in the arginine-rich apoprotein quantitation notwithstanding, the observations of increased arginine-rich apoprotein in the B-VLDL, intermediate fraction, and HDL(c) following cholesterol feeding remained valid. However, precise quantitation awaits refinements in lipoprotein isolation techniques.  相似文献   

4.
Apoprotein E mediates the interaction of beta-VLDL with macrophages   总被引:4,自引:0,他引:4  
beta-Very low density lipoproteins (beta-VLDL) isolated from cholesterol-fed rhesus monkeys stimulated cholesteryl ester synthesis and accumulation in mouse peritoneal macrophages. The apoprotein specificity and requirement for the cell surface uptake of beta-VLDL was investigated by treating the beta-VLDL with trypsin (beta-VLDL (T], incubating the beta-VLDL (T) with other lipoproteins or apoproteins, reisolating the beta-VLDL (T) and measuring its biological activity which, for this study, is defined as the ability of the lipoprotein to stimulate cholesterol esterification in the macrophages. Trypsin treatment of beta-VLDL abolished its biological activity. Apoprotein analysis of the beta-VLDL (T) demonstrated the absence of intact apoproteins B-100, B-48, and E. The J774 macrophage-like cell line and mouse peritoneal macrophages responded similarly with respect to cholesterol esterification following incubation with inactive and treated beta-VLDL. The J774 macrophage-like cell line was used to establish the conditions necessary for the restoration of biologic activity to the trypsinized beta-VLDL. The loss of biological activity of beta-VLDL (T) could be reversed by restoring apoprotein E-containing LDL from hyperlipemic monkeys or purified apoprotein E. Apoprotein A-I had no such effect. The restored biological activity of the beta-VLDL (T) was proportional to the amount of apoprotein E acquired by the lipoprotein. beta-VLDL particles composed of apoprotein E and either intact or degraded apoprotein B-100 had comparable biological activity. Thus, intact apoprotein E, without intact apoprotein B, is a sufficient mediator for the biological activity and metabolism of beta-VLDL by macrophages and plays a major role in receptor-lipoprotein interaction.  相似文献   

5.
Low-density lipoproteins (hLDL) and β-migrating-very-low-density lipoproteins (β-VLDL) were isolated from the plasma of cholesterol-fed White Carneau (WC) pigeons and low-density lipoproteins (nLDL) were isolated from the plasma of grain-fed WC pigeons. The lipoproteins were radiolabeled with 125I or 131I and injected into normocholesterolemic or hypercholesterolemic WC pigeons WC pigeons to determine their rate of clearance from the plasma. The fractional catabolic rate (FCR) of nLDL and hLDL in normocholesterolemic pigeons averaged 0.202 and 0.206 pools/h, respectively. β-VLDL was cleared at a significantly slower rate of 0.155 pools/h. The FCR of the same lipoproteins injected into hypercholesterolemic pigeons was reduced 17% for nLDL, 50% for hLDL and 57% for β-VLDL, indicating that the effect of hypercholesterolemia on clearance in vivo was different for the three lipoproteins. The FCR of reductively methylated pigeon LDL (MeLDL), which gives a measure of receptor-independent clearance of LDL, was shown previously to be 0.037 pools/h. These studies therefore that LDL and β-VLDL are cleared from the plasma of normocholesterolemic and hypercholesterolemic pigeons at a rate substantially greater than that predicted for non-specific processes. Despite the reduction in the clearance rate of hLDL and β-VLDL due to cholesterol feeding, the absolute amount of cholesterol that was cleared from the plasma by these lipoproteins was increased from approx. 200 mg/kg body weight per day in the normocholesterolemic pigeons to greater than 1000 mg/kg body weight per day in the hypercholesterolemic pigeons. This is due principally to the enrichment in cholesterol relative to protein of the lipoproteins isolated from cholesterol-fed pigeons and the failure of hypercholesterolemia to completely inhibit receptor-dependent clearance of LDL and β-VLDL. The lower rate of clearance of β-VLDL relative to LDL is in marked contrast to mammalian β-VLDL, which is cleared much faster than LDL, but is consistent with the lack of apo E on pigeon lipoproteins. Apo E is the apoprotein that is thought to be responsible for the rapid clearance of β-VLDL in normocholesterolemic mammals. The low rate of β-VLDL clearance in pigeons also suggests that pigeons lack an apolipoprotein that function like mammalian apo E.  相似文献   

6.
Density gradient ultracentrifugation was used to isolate and characterize the plasma lipoproteins from African green monkeys before and 24 and 48 h after subcutaneous injection of 300 micrograms/kg lipopolysaccharide (LPS) to induce an acute phase response. Compared with 0 h values, reductions occurred in plasma cholesterol (39%), high density lipoprotein (HDL) cholesterol (54%), lecithin:cholesterol acyltransferase (LCAT) activity (55%), and post-heparin plasma lipase activity (68%) 48 h after LPS injection while plasma triglyceride concentrations increased 700%. Cholesterol distribution among lipoproteins shifted from 7 to 41% in very low density lipoproteins (VLDL), 65 to 38% in low density lipoproteins (LDL), and 28 to 21% in HDL after LPS injection. At 48 h after LPS injection, all lipoprotein classes were relatively enriched in phospholipid and triglyceride and depleted of cholesteryl ester. The plasma concentration of all chemical constituents in VLDL was increased 3-9-fold within 48 h after LPS injection. By negative stain electron microscopy, HDL were discoidal in shape while VLDL and LDL appeared to have excess surface material present. Even though total HDL protein concentration in plasma was unaffected, the plasma mass of the smallest HDL subfractions (HDL3b,c) doubled while the mass of intermediate-sized subfractions (HDL3a) was dramatically decreased within 24 h after treatment. HDL became enriched in apoE, acquired apoSAA, and became depleted of apoA-I, A-II, and Cs by 48 h after LPS injection while apoB-100 remained the major apoprotein of VLDL and LDL. We conclude that administration of LPS to monkeys prevents normal intravascular metabolism of lipoproteins and results in the accumulation of relatively nascent forms of lipoproteins in plasma. These immature lipoproteins resemble those isolated from the recirculating perfusion of African green monkey livers, which are relatively deficient of LCAT activity and those isolated from the plasma of patients with familial LCAT deficiency.  相似文献   

7.
The liver is a major source of the plasma lipoproteins; however, direct studies of the regulation of lipoprotein synthesis and secretion by human liver are lacking. Dense monolayers of Hep-G2 cells incorporated radiolabeled precursors into protein ([35S]methionine), cholesterol ([3H]mevalonate and [14C]acetate), triacylglycerol, and phospholipid ([3H]glycerol), and secreted them as lipoproteins. In the absence of free fatty acid in the media, the principal lipoprotein secretory product that accumulated had a density maximum of 1.039 g/ml, similar to serum low density lipoprotein (LDL). ApoB-100 represented greater than 95% of the radiolabeled apoprotein of these particles, with only traces of apoproteins A and E present. Inclusion of 0.8 mM oleic acid in the media resulted in a 54% reduction in radiolabeled triacylglycerol in the LDL fraction and a 324% increase in triacylglycerol in the very low density lipoprotein (VLDL) fraction. Similar changes occurred in the secretion of newly synthesized apoB-100. The VLDL contained apoB-100 as well as apoE. In the absence of exogenous free fatty acid, the radiolabeled cholesterol was recovered in both the LDL and the high density lipoprotein (HDL) regions. Oleic acid caused a 50% decrease in HDL radiolabeled cholesterol and increases of radiolabeled cholesterol in VLDL and LDL. In general, less than 15% of the radiolabeled cholesterol was esterified, despite the presence of cholesteryl ester in the cell. Incubation with oleic acid did not cause an increase in the total amount of radiolabeled lipid or protein secreted. We conclude that human liver-derived cells can secrete distinct VLDL and LDL-like particles, and the relative amounts of these lipoproteins are determined, at least in part, by the availability of free fatty acid.  相似文献   

8.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

9.
Hypercholesterolemia was induced in adult male rhesus monkeys with a high-fat diet containing an elevated cholesterol level (0.5%). Plasma lipoproteins were chromatographically separated into four size populations (regions) that were subdivided by density until fractions with single electrophoretic mobilities were obtained. The region III lipoproteins (LDL) contained 80% of plasma cholesterol and were present in the highest concentration of all fractions. Their molecular weight was increased over that of controls so that each particle averaged 1.8 times the number of cholesteryl ester molecules as did control LDL. Region II lipoproteins, a heterogeneous group, were present in next highest concentration. Most were cholesteryl ester-rich, beta-migrating lipoproteins that overlapped the VLDL and LDL density ranges; apoB was the predominant apoprotein. One region II subfraction had pre beta 2 migration and the density range. 1.050 less than d less than 1.10. Another subfraction, cholesteryl ester-rich VLDL including only about 1% of plasma cholesterol, had pre beta 1 migration and apoB and apoC as the predominant apoproteins with no apoprotein E. Region I lipoproteins were larger sized, slow beta-migrating cholesteryl ester-rich VLDL that included 5% of plasma cholesterol. ApoB and apoE were the predominant apoproteins. Region IV lipoproteins (HDL) contained 4% of the plasma cholesterol; their concentration was decreased to about 1/3 of the control level. Atherogenic features of the diet-induced dyslipoproteinemia included the increased plasma concentrations and cholesteryl ester contents of the region I, II, and III lipoproteins in addition to the decreased HDL concentration.  相似文献   

10.
The lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl-(HMG-) CoA reductase in cultured mouse peritoneal macrophages has been investigated. In contrast to what has been reported for other cells, HMG-CoA reductase activity is not suppressed by normal serum or by normal low density lipoproteins (LDL) from humans or dogs. Suppression of reductase activity occurred when cells were cultured in the presence of beta-migrating very low density lipoproteins (beta-VLDL) or LDL from hypercholesterolaemic dogs, or LDL modified by acetoacetylation. Human beta-VLDL from an atypical type III hyperlipoproteinaemic patient was also effective, as was apolipoprotein (apo) E-containing high density lipoproteins (HDL) from cholesterol-fed dogs (apo-E HDLc). The results indicate that cholesterol biosynthesis in mouse peritoneal macrophages is regulated by lipoprotein cholesterol entering via receptor-mediated endocytosis. Normal LDL were not effective because of the poor binding and uptake of these lipoproteins by the apo-B, E (LDL) receptor. Only beta-VLDL, apo-E HDLc, and hypercholesterolaemic LDL were avidly taken up by this receptor and were able to suppress HMG-CoA reductase. Acetoacetylated LDL were internalized via the acetyl-LDL (scavenger) receptor. Thus, mouse macrophages differ from human fibroblasts and smooth muscle cells in their physiological regulation of cholesterogenesis.  相似文献   

11.
Plasma from individual human subjects is known to contain multiple discrete subpopulations of low (LDL) and intermediate (IDL) density lipoproteins that differ in particle size and density. The metabolic origins of these subpopulations are unknown. Transformation of IDL and larger LDL to smaller, denser LDL particles had been postulated to occur as a result of the combined effects of triglyceride hydrolysis and lipid transfer. However, the presence of multiple small LDL subspecies has been described in patients lacking cholesteryl ester transfer protein. We have characterized an alternative pathway in which size decrements in IDL or LDL are produced in the presence of unesterified fatty acids and a source of apolipoprotein (apo) A-I. Incubation of IDL or LDL subfractions with palmitic acid and either high density lipoproteins (HDL), apoHDL, or purified apoA-I gives rise to apoA-I, apoB-containing complexes that can dissociate into two particles, an apoB-containing lipoprotein with particle diameter 10-30 A smaller than the starting material, and a still smaller species (apparent peak particle diameter 140-190 A) containing lipid and apoA-I but no apoB. The newly formed IDL or LDL are depleted in phospholipid and free cholesterol with no change in apoB-100 as assessed by SDS gel electrophoresis. We hypothesize that this reaction may contribute to the formation of discrete IDL and LDL subpopulations of varying size during the course of hydrolysis of triglyceride-rich lipoproteins in plasma.  相似文献   

12.
Hepatic lipase clears plasma cholesterol by lipolytic and nonlipolytic processing of lipoproteins. We hypothesized that the nonlipolytic processing (known as the bridging function) clears cholesterol by removing apoB-48- and apoB-100-containing lipoproteins by whole particle uptake. To test our hypotheses, we expressed catalytically inactive human HL (ciHL) in LDL receptor deficient "apoB-48-only" and "apoB-100-only" mice. Expression of ciHL in "apoB-48-only" mice reduced cholesterol by reducing LDL-C (by 54%, 46 +/- 6 vs. 19 +/- 8 mg/dl, P < 0.001). ApoB-48 was similarly reduced (by 60%). The similar reductions in LDL-C and apoB-48 indicate cholesterol removal by whole particle uptake. Expression of ciHL in "apoB-100-only" mice reduced cholesterol by reducing IDL-C (by 37%, 61 +/- 19 vs. 38 +/- 12 mg/dl, P < 0.003). Apo-B100 was also reduced (by 27%). The contribution of nutritional influences was examined with a high-fat diet challenge in the "apoB-100-only" background. On the high fat diet, ciHL reduced IDL-C (by 30%, 355 +/- 72 vs. 257 +/- 64 mg/dl, P < 0.04) but did not reduce apoB-100. The reduction in IDL-C in excess of apoB-100 suggests removal either by selective cholesteryl ester uptake, or by selective removal of larger, cholesteryl ester-enriched particles. Our results demonstrate that the bridging function removes apoB-48- and apoB-100-containing lipoproteins by whole particle uptake and other mechanisms.  相似文献   

13.
Nine hypercholesterolemic and hypertriglyceridemic subjects were enrolled in a randomized, placebo-controlled, double-blind, crossover study to test the effect of atorvastatin 20 mg/day and 80 mg/day on the kinetics of apolipoprotein B-100 (apoB-100) in triglyceride-rich lipoprotein (TRL), intermediate density lipoprotein (IDL), and LDL, of apoB-48 in TRL, and of apoA-I in HDL. Compared with placebo, atorvastatin 20 mg/day was associated with significant reductions in TRL, IDL, and LDL apoB-100 pool size as a result of significant increases in fractional catabolic rate (FCR) without changes in production rate (PR). Compared with the 20 mg/day dose, atorvastatin 80 mg/day caused a further significant reduction in the LDL apoB-100 pool size as a result of a further increase in FCR. ApoB-48 pool size was reduced significantly by both atorvastatin doses, and this reduction was associated with nonsignificant increases in FCR. The lathosterol-campesterol ratio was decreased by atorvastatin treatment, and changes in this ratio were inversely correlated with changes in TRL apoB-100 and apoB-48 PR. No significant effect on apoA-I kinetics was observed at either dose of atorvastatin. Our data indicate that atorvastatin reduces apoB-100- and apoB-48-containing lipoproteins by increasing their catabolism and has a dose-dependent effect on LDL apoB-100 kinetics. Atorvastatin-mediated changes in cholesterol homeostasis may contribute to apoB PR regulation.  相似文献   

14.
Noninsulin-dependent diabetics, whose plasma contained no detectable beta-VLDL (very low density lipoprotein), had a proportion (0.23 +/- 0.04) of plasma apolipoprotein E in the form of an abnormal lipoprotein not recognized by antibodies to apoB-100 from LDL (low density lipoprotein) or apoA-I from HDL (high density lipoprotein). This lipoprotein, abnormally rich in free cholesterol and apoE, had a calculated particle density within the low density lipoprotein range. It competed with LDL at the apoB,E receptor of normal fibroblasts and stimulated cholesteryl ester accumulation in mouse peritoneal macrophages. However, it did not compete with the binding of labeled rabbit beta-VLDL to macrophages. A much lower proportion of apoE (0.04 +/- 0.03) was in this form in the plasma of patients with insulin-dependent diabetes who had a comparable degree of hyperglycemia. The diabetic lipoprotein was absent in normoglycemic control subjects. The net transport of cholesterol from cell membranes to the plasma of noninsulin-dependent diabetics (and to a lesser extent, insulin-dependent diabetics) was inhibited relative to control values, and the magnitude of this inhibition was well correlated with the concentration of the abnormal lipoprotein of diabetes in plasma (r = 0.66 and 0.75, respectively). These findings suggest that diabetic plasma contains an abnormal and novel low density lipoprotein that mediates the abnormal cholesterol transport characteristic of human diabetes mellitus.  相似文献   

15.
The effect of two different levels of dietary cholesterol (0.16 mg/Kcal and 0.79 mg/cal) on the composition of thoracic lymph duct lipoproteins was studied in two species of nonhuman primates, Ceropithecus aethiops (African green monkey) and Macaca fascicularis (cynomolgus monkey). Diet was infused intraduodenally at a constant rate to facilitate comparisons among animals. The higher level of dietary cholesterol resulted in an increase in the amount of cholesteryl ester in lymph chylomicrons and VLDL. Cholesteryl oleate was the predominant cholesteryl ester present in lymph d less than 1.006 g/ml lipoproteins and it was the predominant cholesteryl ester formed from exogenous radiolabeled cholesterol. The percentage of saturated and monounsaturated cholesteryl esters in lymph chylomicrons and VLDL significantly increased with the higher dietary cholesterol level. The apoprotein distribution of chylomicrons and VLDL was qualitatively similar during infusions of both diets. The apoprotein B of intestinal chylomicrons and VLDL, termed apoprotein B2, was qualitatively similar during low and high cholesterol diet infusion and was significantly smaller than that of plasma LDL apoB, termed apoprotein B1, as indicated by its electrophoretic mobility in SDS-polyacrylamide gels. The major phospholipid present in lymph chylomicrons and VLDL was phosphatidylcholine and the phospholipid composition of the particles was not affected by diet. Lymph d greater than 1.006 g/ml lipoproteins were separated and the cholesterol mass distribution among lipoprotein fractions was found to be similar during both diet infusions. With an increase in the level of dietary cholesterol, the percentage esterification of cholesterol mass and of exogenous cholesterol radioactivity increased in LDL and HDL from lymph. Lymph LDL and HDL contained less free and esterified cholesterol when their composition was compared to that for these lipoproteins in plasma. We conclude that the primary effect of increased dietary cholesterol level was to increase the cholesteryl ester content of all lymph lipoproteins; cholesterol distribution among lymph lipoproteins was unaffected.  相似文献   

16.
To assess the role of beta-VLDL in diet-induced atherogenesis, the in vivo metabolism and aortic accumulation of 125I-labeled beta-VLDL were investigated in cholesterol-fed rabbits and chow-fed controls. 125I-labeled HDL and 125I-labeled albumin were studied for comparison. The fractional catabolic rate of 125I-labeled beta-VLDL was reduced in cholesterol-fed rabbits (0.011 vs 0.139 hr-1), but due to the high endogenous pool, the total beta-VLDL flux was very high (13.1 vs less than 1.1 mg/kg per 24 hr). These results suggest that elevated levels of beta-VLDL during cholesterol feeding were due to an enhanced rate of synthesis, a finding confirmed in hypercholesterolemic rabbits subjected to plasmapheresis. Following acute reduction of plasma cholesterol by plasmapheresis, the quantitative increases in beta-VLDL cholesterol concentrations (210 to 364 mg/dl) over the subsequent 24 hr were in agreement with the rise calculated from the plasma clearance kinetics of 125I-labeled beta-VLDL (378 mg/dl per 24 hr). Aortic accumulation of beta-VLDL in hypercholesterolemic rabbits was increased greater than 15-fold over controls. Accumulation was predominantly in the intimal atheromatous lesions. The fractional catabolic rate of 125I-labeled HDL was increased during cholesterol feeding (0.037 vs 0.021 hr-1). A decreased rate of synthesis appeared to be responsible for the markedly depleted plasma HDL. HDL accumulation within the aorta was attenuated greater than 9-fold in cholesterol-fed rabbits compared to those fed normal chow. Plasma kinetics and aortic accumulation of 125I-labeled albumin were similar in hypercholesterolemic and control rabbits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Intestinal apolipoprotein synthesis and secretion in the suckling pig   总被引:1,自引:0,他引:1  
The present studies report characterization of intestinal apolipoprotein (apoLp) synthesis and secretion in the suckling pig. Lipoproteins (d less than 1.006 g/ml) from mesenteric lymph were found to contain both apoB-100 and B-48, in addition to apoA-IV, E, A-I, and Cs. Lymph low density lipoproteins (LDL) and high density lipoproteins (HDL) contained mainly apoB-100 and apoA-I, respectively. Analysis of core cholesteryl ester fatty acid composition suggested filtration from plasma as the major source of lymph LDL and HDL. Dual radioisotope labeling of intestinal and hepatic apoLps in lymph, as well as immunoprecipitation of radiolabeled intestinal mucosa, demonstrated intestinal synthesis of apoB-48, A-IV, and A-I. There was no evidence for apoB-100 synthesis by intestinal mucosa. By contrast, piglet liver synthesized apoB-100, E, A-I, and Cs, but not apoB-48. Newly synthesized intracellular intestinal apoA-I was mainly (basic) isoform 1 (pI 5.58), while lymph and plasma HDL apoA-I were predominantly isoform 3 (pI 5.33), mature apoA-I. Lymph apoB (P less than 0.001) and apoA-I (P less than 0.04) mass output increased significantly during lipid absorption. Studies were subsequently conducted in fasting, fat-fed, bile-diverted, and sham-operated animals to determine the role of both dietary and biliary lipid in regulating intestinal apoLp biosynthesis. Proximal and distal small intestinal loops were pulse-radiolabeled with [3H]leucine, and apoB-48 and A-I were immunoprecipitated from cytosolic supernatants. Although a proximal to distal gradient in intestinal synthesis rates for both apoB and A-I was noted in all groups, the acute absorption of dietary lipid did not significantly increase apoB or A-I synthesis in either location. Complete removal of biliary lipid for 48 hr did not alter synthesis rates in jejunum or ileum. These studies suggest that mesenteric lymph apoLps in the suckling pig are derived both by filtration from plasma and by direct secretion from the intestine. Physiologic regulation of intestinal apoA-I and B-48 synthesis rates appears to be independent of luminal lipid availability.  相似文献   

18.
The extent to which cholesterol synthesis is modulated in macrophage foam cells by changes in cholesterol influx and efflux was determined using thioglycollate-elicited peritoneal macrophages from normal and cholesterol-fed White Carneau (WC) and Show Racer (SR) pigeons. In peritoneal macrophages from normocholesterolemic pigeons, sterol synthesis from [(14)C]-acetate was down-regulated by more than 90% following incubation in vitro with beta-VLDL. Sterol synthesis was increased when the cellular free cholesterol concentration was decreased in response to stimulation of cholesterol efflux with apoHDL/phosphatidylcholine vesicles and cyclodextrin. Peritoneal macrophages isolated from hypercholesterolemic pigeons were loaded with cholesterol to levels similar to foam cells from atherosclerotic plaques (375-614 microg/mg cell protein), and had an extremely low rate of sterol synthesis. When cholesterol efflux was stimulated in these cells, sterol synthesis increased 8 to 10-fold, even though the cells remained grossly loaded with cholesterol. Cholesterol efflux also stimulated HMG-CoA reductase activity and LDL receptor expression. This suggests that only a small portion of the total cholesterol pool in macrophage foam cells was responsible for regulation of sterol synthesis, and that cholesterol generated by hydrolysis of cholesteryl esters was directed away from the regulatory pool by efflux from the cells. When the increase in sterol synthesis was blocked with the HMG-CoA reductase inhibitor mevinolin, there was no difference in the cholesterol content of the cells, or in the mass efflux of cholesterol into the culture medium.Thus, under these conditions, the increase in cholesterol synthesis during stimulation of cholesterol efflux does not appear to contribute significantly to the mass of cholesterol in these macrophage foam cells. Whether a similar situation exists in vivo is unknown.  相似文献   

19.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

20.
Apolipoprotein (apo) A-I-containing lipoproteins can be separated into two subfractions, pre-beta HDL and alpha HDL (high density lipoproteins), based on differences in their electrophoretic mobility. In this report we present results indicating that these two subfractions are metabolically linked. When plasma was incubated for 2 h at 37 degrees C, apoA-I mass with pre-beta electrophoretic mobility disappeared. This shift in apoA-I mass to alpha electrophoretic mobility was blocked by the addition of either 1.4 mM DTNB or 10 mM menthol to the plasma prior to incubation, suggesting that lecithin:cholesterol acyltransferase (LCAT) activity was involved. There was no change in the electrophoretic mobility of either pre-beta HDL or alpha HDL when they were incubated with cholesterol-loaded fibroblasts. However, after exposure to the fibroblasts, the cholesterol content of the pre-beta HDL did increase approximately sixfold, suggesting that pre-beta HDL can associate with appreciable amounts of cellular cholesterol. Pre-beta HDL-like particles appear to be generated by the incubation of alpha HDL with cholesteryl ester transfer protein (CETP) and either very low density lipoproteins (VLDL) or low density lipoproteins (LDL). This generation of pre-beta HDL-like particles was documented both by immunoelectrophoresis and by molecular sieve chromatography. Based on these findings, we propose a cyclical model in which 1) apoA-I mass moves from pre-beta HDL to alpha HDL in connection with the action of LCAT and the generation of cholesteryl esters within the HDL, and 2) apoA-I moves from alpha HDL to pre-beta HDL in connection with the action of CETP and the movement of cholesteryl esters out of the HDL. Additionally, we propose that the relative plasma concentrations of pre-beta HDL and alpha HDL reflect the movement of cholesteryl esters through the HDL. Conditions that result in the accumulation of HDL cholesteryl esters will be associated with low concentrations of pre-beta HDL, whereas conditions that result in the depletion of HDL cholesteryl esters will be associated with elevated concentrations of pre-beta HDL. This postulate is consistent with published findings in patients with hypertriglyceridemia and LCAT deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号