首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of nutrients and hormones on the mRNA levels of acetyl-CoA carboxylase, fatty acid synthase, malic enzyme, and glucose 6-phosphate dehydrogenase were examined in primary cultures of rat hepatocytes during the process of induction. The addition of both glucose and insulin to the culture medium markedly enhanced the lipogenic enzyme mRNA induction due to either of them, in 16 h. Fructose or glycerol proved to be an effective substitute for glucose, suggesting that glycolytic metabolites were involved in the mRNA induction. It is remarkable that mRNA induction of acetyl-CoA carboxylase was the most sensitive to glucose and also to insulin among the lipogenic enzymes. Polyunsaturated fatty acids markedly reduced the mRNA induction of lipogenic enzymes. Dexamethasone enhanced all the lipogenic enzyme mRNA induction by insulin. On the other hand, triiodothyronine addition greatly increased the mRNA concentrations of lipogenic enzymes, but dexamethasone decreased rather than increased the mRNA induction by triiodothyronine. The effects of insulin on the induction of the lipogenic enzyme mRNAs were similar, but those of triiodothyronine were not. Triiodothyronine markedly enhanced malic enzyme mRNA induction by insulin with dexamethasone, and tended to enhance the induction of the acetyl-CoA carboxylase and fatty acid synthase mRNAs, but not that of glucose 6-phosphate dehydrogenase mRNA. It appeared that insulin and triiodothyronine synergistically enhanced lipogenic enzyme mRNA induction by glucose, but the mechanisms were different.  相似文献   

2.
Exposure to fibroblast-conditioned cortisol-containing medium increased fatty acid synthase activity and fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase mRNA abundance in fetal type II alveolar epithelial cells. Both fibroblast conditioning and cortisol in the medium were required for maximal effect on the mRNA levels, indicating involvement of mesenchymal-epithelial interaction in the cortisol effects. The observed effects provide evidence for an earlier hypothesis that increased activity of CTP:phosphocholine cytidylyltransferase in lung tissue caused by glucocorticoid is due to increased fatty acid synthesis. However, evidence suggesting pre-translational regulation of this enzyme by glucocorticoid was also found.  相似文献   

3.
1. Changes in the activities of acetyl-CoA carboxylase (EC 6.4.1.2), phosphofructokinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), extramitochondrial aconitate hydratase (EC 4.2.1.3) and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) have been measured in the livers of developing rats from late foetal life to maturity. 2. The effect of altering the weaning time on some enzymes associated with lipogenesis has been studied. Weaning rats at 15 days of age instead of 21 days results in an immediate increase in the activity of ;malic' enzyme (EC 1.1.1.40) whereas the activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and ATP citrate lyase (EC 4.1.3.8) did not increase until 4-5 days and acetyl-CoA carboxylase 2-3 days after early weaning. Weaning rats on to an artificial-milk diet led to complete repression of the rise in activity of hepatic enzymes associated with lipogenesis normally found on weaning, except for ;malic' enzyme, which increased in activity after 20 days of age. 3. The effect of intraperitoneal injections of glucagon, cortisol, growth hormone and thyroxine on the same hepatic enzymes has been investigated. Only thyroxine had any effect on enzyme activities and caused a 20-fold increase in ;malic' enzyme activity and a twofold increase in ATP citrate lyase activity. 4. The activities of hepatic glucose 6-phosphate dehydrogenase and ;malic' enzyme are higher in adult female than in adult male rats and it has been shown that this sex difference in enzyme activities is due to both male and female sex hormones. 5. Hepatic malate, citrate, pyruvate, glucose 6-phosphate and phosphoenolpyruvate concentrations have been measured throughout development. 6. The results are discussed in relation to the dietary and hormonal control of hepatic enzyme activities during development.  相似文献   

4.
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type and SREBP-1(-/-) mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished in SREBP-1(-/-) mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refed SREBP-1(-/-) livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1(-/-) mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.  相似文献   

5.
1. The specific activity of ATP citrate lyase is two to four times as great in livers of mice with hereditary obesity as in livers of their non-obese siblings. The enzyme activity in both types of mice can be reduced by starvation, and can be increased by refeeding starved animals. The specific activity of acetyl-CoA synthetase is approximately the same in both types of mice. 2. ATP citrate lyase of mammary gland of the rat undergoes large increases in activity after the onset of lactation. It declines rapidly upon weaning. 3. The changes in activity of ATP citrate lyase in obesity and lactation are consistent with the hypothesis that the enzyme supplies extramitochondrial acetyl-CoA for fatty acid synthesis.  相似文献   

6.
Activities of five enzymes (pyruvate dehydrogenase complex; citrate synthase, EC 4.1.3.7; carnitine acetyltransferase, EC 2.3.1.7; acetyl-CoA synthetase, EC 6.2.1.1; and ATP citrate lyase, EC 4.1.3.8) were determined in cell bodies of anterior horn cells and dorsal root ganglion cells from the rabbit. For comparison, molecular layer, granular layer and white matter from rabbit and mouse cerebella and cerebral cortex and striatum from the mouse were analyzed. Samples (3–85 ng dry weight) were assayed in 180 to 370 ml of assay reagents containing CoASH and other substrates in excess. By using ‘CoA cycling’, the assay systems were devised to amplify and measure small amounts of acetyl-CoA formed during the enzyme reactions. Carnitine acetyltransferase was the most active enzyme in single nerve cell bodies and all layer samples, except for rabbit and mouse cerebellar white matter. Citrate synthetase was the lowest in single cell bodies. The activities of carnitine acetyltransferase and acetyl-CoA synthetase (656 and 89.8 mmoles of acetyl-CoA formed/kg of dry weight/h at 38°C) from dorsal root ganglion cells were about 2-fold higher than those from anterior horn cells. The activity of ATP citrate lyase (134mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) from anterior horn cells was approximately twice that from dorsal root ganglion cells. The activity of this enzyme was distributed in a wider range in anterior horn cells than dorsal root ganglion cells. The second highest activity (80.0 mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) of ATP citrate lyase was found in striatum where cholinergic interneurones are abundant. Relatively higher activities of this enzyme were found in cerebellar granular layer and white matter which are known to contain the cholinergic mossy fibers. These results suggested that cholinergic neurones contain higher activity of ATP citrate lyase which is thought to supply acetyl-CoA to choline acetyltransferase (EC 2.3.1.6) as a substrate to form acetylcholine.  相似文献   

7.
The activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), malic enzyme (EC 1.1.1.40), ATP-citrate lyase (EC 4.1.3.8), acetyl-CoA carboxylase (EC 6.4.1.2) and fatty acid synthetase were lower (-25 to -60%) in liver of rats fed during 45 days with a moderate long-chain triglycerides (LCT) content diet (32% of metabolizable energy, ME), than in control rats fed with a low fat diet (LCT, 10% of ME). However, the fall in malic enzyme activity was not significant. In contrast, these activities were higher (+40 to +160%) in rats fed with a diet with a moderate medium-chain triglycerides (MCT) content (32% of ME), than in control rats. Nevertheless, the increase in activity of malic enzyme and ATP-citrate lyase was more important. Contrary to LCTs, MCTs had no inhibitory effect on the activity of enzymes involved in hepatic lipogenesis.  相似文献   

8.
Summary The mRNAs for fatty acid synthase and malic enzyme were almost undetectable in total RNA extracted from the livers of 16-day old chick embryos. Both mRNAs increased in abundance between the 16th day of incubation and the day of hatching. In neonates, fatty acid synthase mRNA level was dependent on nutritional status, increasing slowly if the chicks were starved and rapidly if they were fed. The abundance of malic enzyme mRNA decreased in starved neonatal chicks and increased in fed ones. When neonates were first fed and then starved, starvation caused a large decrease in the abundance of both mRNAs. Conversely, feeding, after a period of starvation, resulted in a substantial increase in both mRNAs. The relative abundances of fatty acid synthase and malic enzyme mRNAs correlated positively with relative rates of enzyme synthesis. Thus, nutritional and hormonal regulation of the synthesis of these two lipogenic enzymes is exerted primarily at a pre-translational level.The abundance of albumin mRNA decreased significantly between the 16th day of incubation and the day of hatching but did not change thereafter in fed or starved chicks. The relative stability of albumin mRNA levels after hatching attests to the selectivity of the nutritional regulation of fatty acid synthase and malic enzyme mRNAs. The decrease in albumin mRNA which occurred between 16 days of incubation and hatching contrasts with the increase in albumin mRNA sequences which occurred during late gestation in the fetal rat (20). High levels of albumin in the chick embryo may be related to the lack of an analogue of mammalian alpha-fetoprotein in birds.Abbreviations PIPES piperazine-N,N-bis (2 ethanesulfonic acid) - SDS sodium dodecyl sulfate Postdoctoral Fellow of the Medical Research Council of Canada.  相似文献   

9.
ATP citrate lyase (ACL) catalyses the ATP-dependent reaction between citrate and CoA to form oxaloacetate and acetyl-CoA. Our molecular characterizations of the cDNAs and genes coding for the Arabidopsis ACL indicate that the plant enzyme is heteromeric, consisting of two dissimilar subunits. The A subunit is homologous to the N-terminal third of the animal ACL, and the B subunit is homologous to C-terminal two-thirds of the animal ACL. Using both ACL-A- and ACL-B-specific antibodies and activity assays we have shown that ACL is located in the cytosol, and is not detectable in the plastids, mitochondria or peroxisomes. During seed development, ACL-A and ACL-B mRNA accumulation is co-ordinated with the accumulation of the cytosolic homomeric acetyl-CoA carboxylase mRNA. Antisense Arabidopsis plants reduced in ATP citrate lyase activity show a complex phenotype, with miniaturized organs, small cell size, aberrant plastid morphology and reduced cuticular wax. Our results indicate that ACL generates the cytosolic pool of acetyl-CoA, which is the substrate required for the biosynthesis of a variety of phytochemicals, including cuticular waxes and flavonoids.  相似文献   

10.
Compared with traditional techniques of tissue homogenization, digitonin fractionation of isolated hepatocytes provides a much more rapid and, in some instances, more accurate determination of enzyme compartmentation. Results with ATP citrate lyase (EC 4.1.3.8) illustrate the information that uniquely can be obtained. Although the enzyme was previously thought to be entirely cytosolic, digitonin fractionation has shown that a portion of total cellular ATP citrate lyase is bound to mitochondria or some other structure, and the amount bound varies with the animal's nutritional state. In hepatocytes from rats that were starved for 2 days, fed NIH stock diet ab libitum, or starved for 2 days and then refed a fat-free diet for 2 days, the noncytosolic activity was, respectively, 52, 21, or 24% of total cellular lyase. However, because starvation/refeeding greatly induces lipogenic enzymes, the amount of bound lyase activity in this dietary state was 10-12 times greater than that in rats that were starved or fed ad libitum. The association of citrate lyase with a subcellular organelle is also influenced by CoA. Addition of 20 microM CoA to the digitonin fractionation medium caused all of the lyase to be released from cells like a cytosolic enzyme. Conversely, when cellular free CoA was decreased by incubating hepatocytes with the hypolipidemic agent 5-(tetradecyloxy)-2-furoic acid, the amount of bound lyase was increased. These results suggest the possibility that the noncytosolic ATP citrate lyase may have a special role in lipogenesis.  相似文献   

11.
12.
The activities of ATP: citrate lyase (ACL; EC 4. 1. 3. 8), carnitine acetyltransferase (CAT; EC 2. 3. 1. 7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1. 1. 1. 42), isocitrate lyase (ICL; EC 4. 1. 3. 1) and malic enzyme (malate dehydrogenase; EC 1. 1. 1. 40) were measured in four oleaginous yeasts, Candida curvata D, Trichosporon cutaneum and two strains of Rhodosporidium toruloides, grown either to accumulate lipid, or to utilize their own lipid reserves or an exogenous supply of lipid. During lipid utilization, activities of ACL and malic enzyme diminished to low levels; CAT and ICL increased considerably in activity and ICDH activity was slightly increased but catalase (EC 1. 11. 1. 6) diminished in activity in both strains of R. toruloides. In all cases, yeasts utilizing exogenous lipid showed greater changes in enzyme activities than cells utilizing their endogenous reserves. Electron micrographs of Candida curvata D showed proliferation of peroxisomes in starved cells utilizing their own lipid reserve though peroxisomes were more in evidence when the yeast had been grown on exogenous lipid. In Lipomyces starkeyi, which shows only minimal utilization of its stored lipid and furthermore cannot grow on exogenous lipid, only the occasional peroxisome was seen when cells were starved of carbon.  相似文献   

13.
14.
The diurnal variations in mRNA quantities of lipogenic enzymes (acetyl-CoA carboxylase, fatty acid synthase, malic enzyme and glucose-6-phosphate dehydrogenase) in rat livers were detected. When the rats began feeding actively after lights out at 1900 h, the mRNA quantities were high from 0500 h to 0900 h in the morning. The variation in fatty acid synthase mRNA quantities was the most dramatic. However, no measurable variation in any enzyme levels including fatty acid synthase was detected. It may be because the half-lives of the enzymes are too long to be effected by the mRNAs which were high for several hours.  相似文献   

15.
Docosahexaenoic acid (DHA) production in Schizochytrium sp. HX-308 was evaluated by detecting enzymatic activities of ATP:citrate lyase (EC 4.1.3.8), malic enzyme (EC 1.1.1.40) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) at different fermentation stages. According to the analysis, a regulation strategy was proposed which reinforced acetyl-CoA and NADPH supply at a specific fermentation stage. DHA content of total fatty acids was increased from 35 to 60% by the addition of 4 g/L malic acid at the rapid lipid accumulation stage. Total lipid content also showed an apparent increase of 35% and reached 19 g/L when 40 mL ethanol/L was added at the late lipid accumulation stage.  相似文献   

16.
1. The utilization of [1,5-(14)C(2)]citrate by lung slices and cell cytosol preparations, and the activities of liver and lung cytosol citrate-cleavage enzyme (EC 4.1.3.8), l-malate-NAD oxidoreductase (malate dehydrogenase, EC 1.1.1.37) and phosphoenolpyruvate carboxylase (EC 4.1.1.32) were examined in normal and starved rats. 2. Lipogenesis from citrate was decreased by approx. 70% in both the phospholipid and neutral lipid fractions of lung slices from starved rats as compared with fed controls. 3. Incorporation of citrate by lung cytosol preparations into fatty acids was decreased by approx. 35% in the starved rats. The apparent inhibition by avidin of fatty acid synthesis was overcome partially by preincubation of lung cytosol preparations with biotin. These results are consistent with the presence in lung tissue of the malonyl-CoA pathway for fatty acid synthesis. 4. Lung citrate-cleavage enzyme activity decreased in rats that had been starved for 72h whereas malate dehydrogenase and phosphoenolpyruvate carboxylase activities remained unchanged. The results suggest that the pattern of utilization of lipid precursors by rat lung may be altered during various nutritional states.  相似文献   

17.
ATP:citrate lyase (EC 4.1.3.8) has been identified in cell-free extracts from the filamentous fungus Aspergillus niger. The enzyme was located in the cytosol. It exhibits an activity at least ten times that of acetate-CoA-kinase (EC 6.2.1.1) during growth on carbohydrates as carbon sources, and is thus considered responsible for acetyl-CoA formation under these conditions. It is formed constitutively and its biosynthesis does not appear to be controlled by changes in the nitrogen or carbon source or type. ATP:citrate-lyase appears to be very labile during conventional purification procedures; a method involving fast protein liquid anion exchange chromatography was thus developed in order to obtain enzyme preparations sufficiently free of enzymes which could interfere with kinetic investigations. This preparation displays commonly known characteristics of ATP:citrate lyase with respect to substrate affinities and cofactor requirements, with the exception that the affinity for citrate is rather low (2.5 mM). No activator was found. The enzyme is inhibited by nucleoside diphosphates, nucleoside monophosphates and palmitoyl-CoA. Regulation of ATP:citrate lyase be the energy charge of the cytosol in relation to lipid or citric acid accumulation is discussed in view of these findings. Present address: Institut für Allgemeine Biochemie, Universität Wien, Währingerstrasse 38, A-1090 Wien, Austria  相似文献   

18.
1. Mammary tissue was obtained from rabbits at various stages of pregnancy and lactation and used for tissue-slice incubations (to measure the rate of fatty acid synthesis and CO(2) production) and to determine relevant enzymic activities. A biphasic adaptation in fatty acid synthetic capacity during lactogenesis was noted. 2. The first lactogenic response occurred between day 15 and 24 of pregnancy. Over this period fatty acid synthesis (from acetate) increased 14-fold and the proportions of fatty acids synthesized changed to those characteristic of milk fat (77-86% as C(8:0)+C(10:0) acids). 3. The second lactogenic response occurred post partum as indicated by increased rates of fatty acid synthesis and CO(2) production (from acetate and glucose) and increased enzymic activities. 4. Major increases in enzymic activities between mid-pregnancy and lactation were noted for ATP citrate lyase (EC 4.1.3.8), acetyl-CoA synthetase (EC 6.2.1.1), acetyl-CoA carboxylase (EC 6.4.1.2), fatty acid synthetase, glucose 6-phosphate dehydrogenase (EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). Smaller increases in activity occurred with glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) and NADP(+)-isocitrate dehydrogenase (EC 1.1.1.42) and the activity of NADP(+)-malate dehydrogenase (EC 1.1.1.40) was negligible at all periods tested. 5. During pregnancy and lactation there was a close temporal relationship between fatty acid synthetic capacity and the activities of ATP citrate lyase (r=0.94) and acetyl-CoA carboxylase (r=0.90).  相似文献   

19.
Acetyl-coenzyme A carboxylase from Euglena gracilis strain Z was isolated as a component of a multienzyme complex which includes phosphoenolpyruvate carboxylase and malate dehydrogenase. The multienzyme complex was shown to exist in crude extracts and was purified to a homogeneous protein with a molecular weight of 360,000 by gel filtration. The ratio of the activities of the constituent enzymes was acetyl-CoA carboxylase:phosphoenolpyruvate carboxylase:malate dehydrogenase, 1:25:500. The complex is proposed to operate in conjunction with malic enzyme, which is present in Euglena, to facilitate the formation of substrates, malonyl-CoA, and NADPH, for fatty acid biosynthesis. The interaction of the enzymes may represent a means of control of acetyl-CoA carboxylase activity in organisms which do not possess an enzyme subject to allosteric regulation. The acetyl-CoA carboxylase activity from Euglena is unaffected by citrate and isocitrate.  相似文献   

20.
Various inorganic and organic nitrogen sources were used to compare their effects on the lipogenesis and the activities of lipogenic enzymes (providing acetyl-CoA and donating NADPH) in gamma-linolenic acid-producing fungus Cunninghamella echinulata. Lipid accumulation was enhanced by organic nitrogen, among them the presence of corn-steep led to almost 40% oil in the biomass. While organic nitrogen increased activities of acetyl-CoA carboxylase (ACC) and malic enzyme (ME), ATP:citrate lyase (ACL) was rapidly enhanced by ammonium ion. The use of NaNO(3) resulted in high activities of glucose 6-phosphate dehydrogenase (GPD) and 6-phosphogluconate dehydrogenase (PGD). NADP-isocitrate dehydrogenase (NADP-ICD) was more active when the fungus utilized all inorganic N-compounds. The rise of nitrogen concentration in medium was accompanied with reduced lipid accumulation and a fall of ACL, ACC, and ME. In contrast, N-sufficient conditions favored biomass growth and elevated activities of GPD and PGD. Kinetic experiments also suggest that a significant portion of the required acetyl-CoA was being provided via ACL and ACC, and ME (probably coupled with GPD) channeled the NADPH into the fatty acid biosynthesis. The contribution of the lipogenic enzymes to metabolic pathways other than lipogenesis is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号