共查询到20条相似文献,搜索用时 0 毫秒
1.
G Rijksen G E Staal M Streefkerk A C de Vries J J Batenburg E C Heesbeen L M van Golde 《Biochimica et biophysica acta》1985,838(1):114-121
The enzymes hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11), enolase (EC 4.2.1.11) and pyruvate kinase (EC 2.7.1.40) were studied in rat lung during development starting at day 16 of gestation (day-6) until 5 days after birth. During gestation, the activities of hexokinase type II, enolase and pyruvate kinase decreased and reached adult values at birth or shortly thereafter. Hexokinase type I remained relatively constant and the decrease of soluble type II hexokinase was compensated for by an increment of particle-bound hexokinase starting at day 20 of gestation until birth. In contrast, phosphofructokinase activity increased until day 20 of gestation followed by a rapid fall in activity until 2 days after birth. Except for hexokinase no isoenzyme shifts were observed in the period of observation. The results are discussed with respect to the proposed relationship between glycogen breakdown and surfactant synthesis during the perinatal period and suggest a regulatory role for phosphofructokinase in this process. 相似文献
2.
Elastin synthesis during perinatal lung development in the rat 总被引:2,自引:0,他引:2
The rate of soluble elastin synthesis was estimated in lung explants from rats of differing ages to better define periods in lung development important to the deposition of lung elastin. Lungs from rat pups at days 1, 3, 7, 9, 12, 15, and 21 post-parturition and from adult rats were incubated in a defined medium containing L-[3H]valine. Following incubation, labelled soluble elastin (tropoelastin) was separated from other soluble proteins by coacervation and electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate. The tropoelastin synthetic rate was then estimated after correcting for differences in recovery of radioactivity as tropoelastin and lung tissue L-[3H]valine specific activity. Maximal rates of elastin synthesis were observed in lung explants from 7-12-day-old rats. The rate of elastin synthesis during this period was 5-8-times the rate observed in adult rat lung (expressed per g of fresh lung) and represented approx. 2% of the total protein synthesis. Moreover, the values derived from lung explant culture for elastin synthesis were consistent with values for lung elastin deposition in the perinatal rat (5-10 micrograms elastin/h per g lung). 相似文献
3.
It is well documented that adipose tissue glycogen content decreases during fasting and increases above control during refeeding. We now present evidence that these fluctuations result from adaptations intrinsic to adipose tissue glycogen metabolism that persist in vitro: in response to insulin (1 milliunit/ml), [3H]glucose incorporation into rat fat pad glycogen was reduced to 10% of control after a 3-day fast; incorporation increased 6-fold over fed control on the 4th day of refeeding following a 3-day fast. We have characterized this adaptation with regard to alterations in glycogen synthase and phosphorylase activity. In addition, we found that incubation of fat pads from fasted rats with insulin (1 milliunit/ml) increased glucose-6-P content, indicating that glucose transport was not the rate-limiting step for glucose incorporation into glycogen in the presence of insulin. In contrast, feeding a fat-free diet resulted in dramatic increases in glycogen content of fat pads without a concomitant increase in glucose incorporation into glycogen in response to insulin (1 milliunit/ml). Thus, fasting and refeeding appeared to alter insulin action on adipose tissue glycogen metabolism more than this dietary manipulation. 相似文献
4.
5.
The effect of starvation and refeeding on lipogenic enzymes in mammary glands and livers of lactating rats. 下载免费PDF全文
Lactating rats were starved for 48 h and refed a high-carbohydrate diet for a further 48 h. Starvation stops milk secretion, which resumes shortly after refeeding. Three lipogenic enzymes, fatty acid synthase, glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and 'malic' enzyme (EC 1.1.1.40) all decrease in the mammary gland during starvation and are restored to the pre-starvation levels 48 h after refeeding. The same enzymes in liver also decrease during starvation, but increase to values significantly higher than those for the normal fed rats after refeeding the high-carbohydrate diet. For the fatty acid synthase these values were four times the pre-starvation values. Serum insulin and prolactin concentrations also increased upon refeeding the high-carbohydrate diet. 相似文献
6.
7.
Fasting for 48 h and the same period of recovery induced by 48 h refeeding increased rat hypothalamic monoamine oxidase (MAO) activity. However, in the interscapular brown adipose tissue (IBAT), only refeeding induced a significant elevation of the enzyme activity. As far as hypothalamic antioxidative enzymes are concerned, the copper zinc superoxide dismutase (CuZnSOD) activity was decreased in refed rats only. However, in the IBAT both food deprivation and refeeding induced a significant decrease in catalase (CAT) activity. Under the influence of fasting the adrenal glands were strongly activated as judged by the increased dopamine-beta-hydroxylase (DBH) activity and decreased cholesterol concentration. Refeeding brought both parameters to control levels indicating full recovery of these glands. As expected, fasting for 48 h induced a significant decrease in serum glucose but an increase in FFA concentrations. Thus, it can be concluded that both fasting and refeeding resulted in increased activation of hypothalamic MAO, whereas CuZnSOD activity was decreased only by refeeding. However, in the IBAT only refeeding increased MAO activity whereas both fasting and refeeding decreased that of CAT. In conclusion, it may be assumed that food deprivation for 48 h and the same duration of refeeding influenced MAO and antioxidative enzymes activities in the rat hypothalamus and IBAT in a tissue specific manner. 相似文献
8.
Regulation of drug-metabolizing enzymes during the perinatal period in rat and human liver 总被引:1,自引:0,他引:1
T Cresteil 《BioEssays : news and reviews in molecular, cellular and developmental biology》1987,7(3):120-124
The importance of drug-metabolizing enzymes in developing mammals has been recently reevaluated in view of the activities and potential inducibilities of these enzymes. The role of endogenous factors raises the question of whether there is a positive regulation of the expression of drug-metabolizing enzymes by hormones. In humans, among the different isoenzymes of cytochrome P-450 described in adult liver, only one is absent in 20-week-old fetuses. Epoxide hydrolase and glutathione S-transferases are active while UDP-glucuronidation develops postnatally. The consequence of this asynchronous rise of activities is briefly discussed. 相似文献
9.
Changes in some chromatin and cytoplasmic enzymes of perinatal rat hepatocytes during culture 总被引:3,自引:0,他引:3
C. Guguen-Guillouzo L. Tichonicky M. F. Szajnert J. Kruh 《In vitro cellular & developmental biology. Plant》1980,16(1):1-10
Summary Hepatocytes prepared from rats at various perinatal stages were cultured in selective medium that does not allow fibroblastic
cell growth. Cell population remained homogeneous during the culture. Hepatocytes undergo divisions for a period, which varies
according to the stage of development of the rat. Light and electron microscope observations showed the presence of numerous
cytoplasmic organelles; moreover, hydrocortisone-induced structures similar to bile canaliculi. Chromatin protein kinase decreased
rapidly during culture except in samples prepared from 17-day fetuses in which it remained unchanged for 2 days and decreased
to a lesser extent afterwards. Chromatin nonhistone proteins were incubated with (γ-32P) ATP and the phosphorylation pattern analyzed on polyacrylamide gels. Many radioactive peaks were observed in chromatin
proteins from 17-day fetuses; they were much lower in proteins from 19-day fetuses. The phosphorylation pattern was analyzed
in hepatocytes after 2 days of culture. Many radioactive peaks were observed with proteins from heapatocytes taken from 17-day
fetuses; no radioactivity was observed in proteins from 19-day fetuses. This is in contrast with the absence of radioactive
peaks in chromatin proteins from adult rat hepatocytes.
In cytoplasm, aldolase and pyruvate kinase specific activities varied according to the age of the rat. They strongly decreased
during culture except in hepatocytes from 15-and 17-day fetuses, in which they remained stable for at least 5 days. The stability
of chromatin and cytoplasmic enzymes in hepatocytes from 17-day fetuses could result from their ability to be regulated by
hormones that are secreted at this stage of development. 相似文献
10.
Anand P Boylan JM Ou Y Gruppuso PA 《American journal of physiology. Endocrinology and metabolism》2002,283(4):E844-E852
Insulin has long been assigned a key role in the regulation of growth and metabolism during fetal life. Our prior observations indicated that hepatic insulin signaling is attenuated in the late-gestation fetal rat. Therefore, we studied the perinatal ontogeny of hepatic insulin signaling extending from phosphatidylinositol 3-kinase (PI3K) to the ribosome. Initial studies demonstrated markedly decreased insulin-mediated activation of ribosomal protein S6 kinase 1 (S6K1) in the fetus. We found a similar pattern in the regulation of Akt, a kinase upstream from S6K1. Insulin produced minimal activation of insulin receptor substrate (IRS)-1-associated PI3K activity in fetal liver. A modest IRS-2-associated response was seen in the fetus. However, levels of both IRS-1 and IRS-2 were very low in fetal liver relative to adult liver. IRS-1 content and insulin responsiveness of PI3K, Akt, and S6K1 showed a transition to the adult phenotype during the first several postnatal weeks. Examination of downstream insulin signaling to the translational apparatus showed marked attenuation, relative to the adult, of fetal hepatic insulin-mediated phosphorylation of 4E-BP1, the regulatory protein for the eukaryotic initiation factor eIF4E, and ribosomal protein S6. The mammalian target of rapamycin (mTOR), a key integrator of nutritional and metabolic regulation of translation, was present in low amounts, was hypophosphorylated, and was not insulin sensitive in the fetus. Our results indicate that protein synthesis during late-gestation liver development may be mTOR and insulin independent. Reexamination of the role of insulin in fetal liver physiology may be warranted. 相似文献
11.
Reyns GE Janssens KA Buyse J Kühn ER Darras VM 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2002,132(1):239-245
In chickens, fasting results in increased plasma thyroxine (T(4)) levels and decreased plasma 3,5,3'-triiodothyronine (T(3)) levels. Refeeding, in turn, restores normal plasma T(3) and T(4) levels. The liver is an important tissue for the regulation of circulating thyroid hormone levels. Previous studies demonstrated that the increase in hepatic type III deiodinase in fasted chickens plays a role in the decrease of plasma T(3). Another factor that could be important is the level of T(4) and T(3) uptake by the liver. In mammals, caloric restriction is known to diminish transport of T(4) and T(3) into tissues. The present study examines whether this is also the case in chicken. Four-week-old chickens were subjected to a 24-h starvation period followed by refeeding. Blood and liver samples were collected at the start of refeeding and at different times of refeeding. Thyroid hormone levels were measured directly in plasma and in tissues following extraction. The results demonstrate that intrahepatic T(4) levels are increased and T(3) levels are decreased in fasted compared to ad libitum fed chickens. The parallel changes in plasma and hepatic T(3) and T(4) content demonstrate that T(4) availability in liver tissue is not diminished during fasting, suggesting that in chicken thyroid hormone uptake by the liver is not affected by nutritional status. 相似文献
12.
13.
Proadrenomedullin N-terminal 20 peptide (PAMP) is a novel hypotensive peptide found in the N-terminal portion of the precursor of adrenomedullin (AM). Although PAMP and AM originate from the same precursor and exert both a potent hypotensive action, they seem to control blood pressure through different mechanisms. To gain new insight into the anticholinergic actions of PAMP, we determined the effects of PAMP on the tyrosine hydroxylase (TH)- and dopamine beta-hydroxylase (DBH) mRNA expression in the rat pheochromocytoma cell line PC12 stimulated by nicotine. PAMP (> or =1 microM) significantly inhibited the nicotine-induced increases of TH- and DBH mRNA expression in a concentration-dependent manner. Also, PAMP at the concentrations (> or =1 microM) significantly inhibited nicotine-induced cyclic adenosine monophosphate (cAMP) production. These results indicate that the anticholinergic hypotensive actions of PAMP can be explained, at least in part, by its inhibition of the expression of mRNAs coding for catecholamine-synthesizing enzymes, and that the inhibitory effect is mediated by the cAMP/protein kinase A pathway. 相似文献
14.
Serotonin (5-hydroxytryptamine, or 5HT) was measured in extracts of rabbit lung and intestine during perinatal development using high pressure liquid chromatography (HPLC) with electrochemical detection. Lung and intestine were extracted with HClo4 and the extract was loaded onto a Bio-Rex 70 resin column. After elution with acetic acid the samples were injected onto the HPLC column. Serotonin was detected in lung and intestine at 18 days of gestation (80 and 90 ng/mg protein). In lung serotonin content increased at day 28 (290 ng/mg protein) till day 30 (680 ng/mg protein) decreased at day 1 after birth (480 ng/mg protein) and then rose at day 10 of the newborn period (650 ng/mg protein). In intestine the serotonin content was always higher than in the lung. At the end of gestation the serotonin in the intestine remained constant (2410 ng/mg protein at day 28 and 2430 ng/mg protein at day 30), decreased slightly one day after birth (2150 ng/mg protein) and rose at day 10 (3300 ng/mg protein). 相似文献
15.
Whole rat embryo cultures are being used in increasing numbers of laboratories to study the mechanisms by which teratogens disturb development. The development of early somite stage embryos in vitro is very similar morphologically to that in vivo, yet few biochemical comparisons have been made. The purpose of this study was to determine the steady-state mRNA concentrations of a family of Ca(2+)-dependent cell adhesion molecules, the cadherins, during rat embryonic development in vivo and in vitro. Embryos and yolk sacs were collected on days 10, 11, and 12 of gestation (in vivo); they were also obtained from day 10 embryos after growth in culture for 24 hr (day 11 in vitro) or 45 hr (day 12 in vitro). Total RNAs isolated from embryos and yolk sacs were studied by Northern blot analysis using specific cDNA probes for three cadherins, E-cadherin, N-cadherin, and P-cadherin. Although E-cadherin mRNA was detected in embryos, it was present at much higher concentrations in yolk sacs. In addition, multiple species of E-cadherin mRNA ranging from 3.0 to 13 kb were detected. Interestingly, the concentration of the major 4.5-kb E-cadherin mRNA species in yolk sac after 45 hr in culture was increased 2.8-fold over that on day 12 of gestation in vivo. Second, two species (4.3 and 3.5 kb) of N-cadherin mRNA were detected, almost exclusively in embryos. In yolk sac, N-cadherin mRNA was detected only after 45 hr in culture. Third, P-cadherin mRNA was detected as a single 3.5-kb species, mainly in embryos. P-cadherin mRNA concentrations in yolk sac after 45 hr in culture were 5.6-fold higher than in vivo. Thus, these results demonstrate that there is a differential distribution of cadherin mRNAs in rat embryos and yolk sacs. Further, there appear to be multiple species of mRNAs for E-cadherin and N-cadherin. Finally, while whole embryo culture in vitro did not significantly alter the steady-state concentrations of cadherin mRNAs in the embryo, these concentrations were dramatically increased in the yolk sac. 相似文献
16.
Chromatins were isolated from liver nuclei of 19-day fetuses, 2-, 5-, 21-day old and adult rats. Very little variation was observed in the mass ratio of total histones to DNA or in the spectrum of histones as determined by polyacrylamide gel electrophoresis. On the other hand, the amount and banding pattern of acidic proteins indicated pronounced changes during liver development.The composition of acidic proteins may be specific for the stage of development as evidenced immunochemically. Antibody against acidic protein-DNA complexes from adult rat liver were produced in rabbits. Whereas adult liver acidic protein-DNA complexes interacted strongly with the antibody, fetal liver preparations showed very little affinity. Complexes from 2-day-old animals reacted more strongly than fetal complexes while preparations from 5-day-old and 21-day-old displayed further increases in affinity. The results support the idea that chromatin acidic proteins play an important role in genetic expression during the ontogeny. 相似文献
17.
Methods are presented for the quantitative isolation of surfactants from fetal and newborn rabbit alveolar lavage returns and post-lavaged lung tissue homogenates. The phospholipid content of both fractions progressively increased between 27 days gestation and term (31 days). The tissue-stored fraction increased approximately 16-fold (from 0.48 +/- 0.13 to 7.83 +/- 0.86 mg/g dry lung) and the alveolar fraction more than 30-fold (from 0.08 +/- 0.02 to 2.69 +/- 0.52 mg/g dry lung). Developmental changes in phospholipid composition were also observed. Tissue-stored surfactant was prepared using differential and density gradient centrifugation. Alveolar surfactant was isolated during fetal development as a high-speed pellet following a one-step differential centrifugation. There was little change in the phospholipid content of fetal alveolar lavage supernatant (range 0.12 +/- 0.04 to 0.28 +/- 0.09 mg/g dry lung). By the first postnatal day the phospholipid content of both lavage fractions significantly increased (pellet, 7.51 +/- 1.79; supernatant, 4.01 +/- 1.36 mg/g dry lung) and both were identified as surfactant. This increase in alveolar surfactant was accompanied by an approximately twofold decrease (to 3.81 +/- 1.1 mg/g dry lung) in the tissue-stored fraction. These data provide a quantitative profile of surfactant accumulation and secretion in developing rabbit lung. 相似文献
18.
Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues 总被引:1,自引:0,他引:1
Gosmain Y Dif N Berbe V Loizon E Rieusset J Vidal H Lefai E 《Journal of lipid research》2005,46(4):697-705
The sterol regulatory element binding protein 1 (SREBP-1) is regarded as a major factor involved in the nutritional regulation of lipogenesis. The aim of the present work was to demonstrate its involvement in the response of key genes of glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle during fasting and refeeding. The regulation of hexokinase-2 (HKII) was investigated as a marker of the glucose metabolic pathway and that of FAS was investigated as a marker of the lipogenic pathway. The in vivo association of SREBP-1 with the promoter regions of these genes was determined in the different tissues using chromatin immunoprecipitation assays. Fasting decreased, and refeeding restored, FAS and HKII mRNA and protein levels in each tissue. The concomitant measurement of SREBP-1a and SREBP-1c mRNA levels, of mature SREBP-1 protein abundance in nuclear extracts, and of SREBP-1 interaction with target promoters led to the conclusion that SREBP-1 plays a major role in the response of FAS and HKII genes to nutritional regulation in rodents. These data elucidate the important role of SREBP-1 not only in the regulation of lipid metabolism but also of glucose metabolism and energy homeostasis. 相似文献
19.
The nucleotide sequence of a complete rat brain beta-tubulin T beta 15 has been determined from three overlapping cDNA clones. The overall length of the T beta 15 sequence is 1589 bp and shows between 84.5% and 88.6% homology within the coding region as compared with chick and human beta-tubulin sequences. On the other hand, the 3'-non-coding region is highly divergent. Comparison of the derived amino acid sequences from different species demonstrates that the amino acid changes are not randomly distributed, but rather there are several conserved and two highly variable regions common to beta-tubulin polypeptides from various sources. The T beta 15 sequence encodes a dominant neuronal 1.8-kb beta-tubulin mRNA species. Two other minor beta-tubulin mRNA species of 2.6 and 2.9 kb are present in rat brain. By using two synthetic oligonucleotide probes complementary to the carboxyl-terminal divergent region and to the amino-terminal conserved region, we have shown that the three mRNAs are distinct species, which are developmentally regulated. The level of the 1.8-kb mRNA species increases till the age of 12 days thereafter its level decreases. The 2.9-kb mRNA is an early neuronal mRNA species, while the 2.6-kb mRNA is a late neuronal species which is detected at 30 days of rat brain development. The data illustrate that there is a differential expression of the beta-tubulin multigene family during rat brain development which may suggest different functions for the various beta-tubulin isotopes. 相似文献
20.
K O'Dea 《Hormones et métabolisme》1978,10(1):52-57
Rat aorta responds to refeeding after a fast in a manner similar to adopose tissue and liver by developing an enhanced capacity for lipogenesis and glycogen synthesis from glucose. The in vitro incorporation of D-U-14C-glucose into aortic triglycerides and glycogen was two- to four-fold higher in rats refed for three to five days after a three day fast than in ad libitum fed controls. Insulin significantly stimulated this incorporation only during refeeding for three days after a three-day fast. The glycogen synthesizing system appeared to be stimulated and to become sensitive to insulin earlier in the refeeding process than did the lipogenic system. The in vitro incorporation of 14C-glucose into aortic phospholipids was less affected by the nutritional state of the animal, and was not stimulated by insulin at any stage of the experiment. Possible mechanisms for the development of insulin supersensitivity and the implications for lipid accumulation in the artery wall are discussed. 相似文献