首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.  相似文献   

2.
The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.  相似文献   

3.
Programmed cell death plays a fundamental role in development and tissue homeostasis. Professional and non‐professional phagocytes achieve the proper recognition, uptake, and degradation of apoptotic cells, a process called efferocytosis. Failure in efferocytosis leads to autoimmune and neurodegenerative diseases. In Drosophila, two transmembrane proteins of the Nimrod family, Draper and SIMU, mediate the recognition and internalization of apoptotic corpses. Beyond this early step, little is known about how apoptotic cell degradation is regulated. Here, we study the function of a secreted member of the Nimrod family, NimB4, and reveal its crucial role in the clearance of apoptotic cells. We show that NimB4 is expressed by macrophages and glial cells, the two main types of phagocytes in Drosophila. Similar to draper mutants, NimB4 mutants accumulate apoptotic corpses during embryogenesis and in the larval brain. Our study points to the role of NimB4 in phagosome maturation, more specifically in the fusion between the phagosome and lysosomes. We propose that similar to bridging molecules, NimB4 binds to apoptotic corpses to engage a phagosome maturation program dedicated to efferocytosis.  相似文献   

4.
The Nimrod gene cluster, located on the second chromosome of Drosophila melanogaster, is the largest synthenic unit of the Drosophila genome. Nimrod genes show blood cell specific expression and code for phagocytosis receptors that play a major role in fruit fly innate immune functions. We previously identified three homologous genes (vajk-1, vajk-2 and vajk-3) located within the Nimrod cluster, which are unrelated to the Nimrod genes, but are homologous to a fourth gene (vajk-4) located outside the cluster. Here we show that, unlike the Nimrod candidates, the Vajk proteins are expressed in cuticular structures of the late embryo and the late pupa, indicating that they contribute to cuticular barrier functions.  相似文献   

5.
Clearance of apoptotic cells by phagocytic neighbors is crucial for normal development of multicellular organisms. However, how phagocytes discriminate between healthy and dying cells remains poorly understood. We focus on glial phagocytosis of apoptotic neurons during development of the Drosophila central nervous system. We identified phosphatidylserine (PS) as a ligand on apoptotic cells for the phagocytic receptor Six Microns Under (SIMU) and report that PS alone is not sufficient for engulfment. Our data reveal that, additionally to PS exposure, caspase activity is required for clearance of apoptotic cells by phagocytes. Here we demonstrate that SIMU recognizes and binds PS on apoptotic cells through its N-terminal EMILIN (EMI), Nimrod 1 (NIM1), and NIM2 repeats, whereas the C-terminal NIM3 and NIM4 repeats control SIMU affinity to PS. Based on the structure-function analysis of SIMU, we discovered a novel mechanism of internal inhibition responsible for differential affinities of SIMU to its ligand which might prevent elimination of living cells exposing PS on their surfaces.  相似文献   

6.
7.
Many receptors that are employed for the engulfment of apoptotic cells are also used for the recognition and phagocytosis of bacteria. Tyro3, Axl, and Mertk (TAM) are important in the phagocytosis of apoptotic cells by macrophages. Animals lacking these receptors are hypersensitive to bacterial products. In this report, we examine whether the TAM receptors are involved in the phagocytosis of bacteria. We found that macrophages lacking Mertk, Axl, Tyro3 or all three receptors were equally efficient in the phagocytosis of Gram-negative E. coli. Similarly, the phagocytosis of E. coli and Gram-positive S. aureus bioparticles by macrophages lacking TAM receptors was equal to wild-type. In addition, we found that Mertk did not play a role in killing of extracellular E. coli or the replication status of intracellular Francisella tularensis. Thus, while TAM receptors may regulate signal transduction to bacterial components, they are not essential for the phagocytosis and killing of bacteria.  相似文献   

8.
Cell motility, adhesion and phagocytosis are controlled by actin and membrane remodelling processes. Bridging integrator-2 (Bin2) also called Breast cancer-associated protein 1 (BRAP1) is a predicted N-BAR domain containing protein with unknown function that is highly expressed in leucocytic cells. In the present study we solved the structure of Bin2 BAR domain and studied its membrane binding and bending properties in vitro and in vivo. Live-cell imaging experiments showed that Bin2 is associated with actin rich structures on the plasma membrane, where it was targeted through its N-BAR domain. Pull-down experiments and immunoprecipitations showed that Bin2 C-terminus bound SH3 domain containing proteins such as Endophilin A2 and α-PIX. siRNA of endogenous protein led to decreased cell migration, increased phagocytosis and reduced podosome density and dynamics. In contrast, overexpression of Bin2 led to decreased phagocytosis and increased podosome density and dynamics. We conclude that Bin2 is a membrane-sculpting protein that influences podosome formation, motility and phagocytosis in leucocytes. Further understanding of this protein may be key to understand the behaviour of leucocytes under physiological and pathological conditions.  相似文献   

9.
10.
Alveolar macrophages (AMs) can phagocytose unopsonized pathogens such as S. aureus via innate immune receptors, such as scavenger receptors (SRs). Cytoskeletal events and signaling pathways involved in phagocytosis of unopsonized bacteria likely govern the fate of ingested pathogens, but are poorly characterized. We have developed a high-throughput scanning cytometry-based assay to quantify phagocytosis of S. aureus by adherent human blood-derived AM-like macrophages in a 96-well microplate format. Differential fluorescent labeling of internalized vs. bound bacteria or beads allowed automated image analysis of collapsed confocal stack images acquired by scanning cytometry, and quantification of total particles bound and percent of particles internalized. We compared the effects of the classic SR blocker polyinosinic acid, the cytoskeletal inhibitors cytochalasin D and nocodazole, and the signaling inhibitors staurosporine, Gö 6976, JNK Inhibitor I and KN-93, on phagocytosis of a panel of live unopsonized S. aureus strains, (Wood, Seattle 1945 (ATCC 25923), and RN6390), as well as a commercial killed Wood strain, heat-killed Wood strain and latex beads. Our results revealed failure of the SR inhibitor polyinosinic acid to block binding of any live S. aureus strains, suggesting that SR-mediated uptake of a commercial killed fluorescent bacterial particle does not accurately model interaction with viable bacteria. We also observed heterogeneity in the effects of cytoskeletal and signaling inhibitors on internalization of different S. aureus strains. The data suggest that uptake of unopsonized live S. aureus by human macrophages is not mediated by SRs, and that the cellular mechanical and signaling processes that mediate S. aureus phagocytosis vary. The findings also demonstrate the potential utility of high-throughput scanning cytometry techniques to study phagocytosis of S. aureus and other organisms in greater detail.  相似文献   

11.
Mosquitoes use effective immune responses, including phagocytosis, to fight microbial infection. Here we show that in an Anopheles gambiae immune responsive cell line, RGD recognizing receptors play an important role in the phagocytic response, suggesting overlap between molecular components implicated in adhesion and phagocytosis. Integrins are a major class of adhesive receptors that recognize ligands containing an RGD motif. We have cloned a gene encoding a new beta integrin, BINT2, and demonstrated its involvement in Escherichia coli engulfment. Based on molecular modeling, we propose a structural reason for the role of BINT2, but not BINT1, on phagocytosis of Gram-negative bacteria. Using bioinformatic tools, we have identified and compared the complete A. gambiae integrin repertoire as a prelude to a future systematic functional study.  相似文献   

12.
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens.  相似文献   

13.
Pulmonary collectins in innate immunity of the lung   总被引:1,自引:0,他引:1  
Pulmonary collectins, hydrophilic surfactant proteins A and D (SP-A and SP-D), have been implicated in the regulation of pulmonary host defence and inflammation. SP-A and SP-D directly interact with a variety of microorganisms including bacteria and viruses, and attenuate the growth of Gram-negative bacteria, Histoplasma capsulatum and Mycoplasma pneumoniae. The collectins are thought to contribute to bacterial clearance. These lectins augment the phagocytosis of the bacteria by macrophages. SP-A serves as an opsonin and stimulates the uptake of bacteria and bacillus Calmette-Guérin through a C1q receptor- and an SP-R210-mediated processes. The collectin also stimulates FcR- and CR1-mediated phagocytosis by activating the macrophages. In addition, SP-A and SP-D directly interact with macrophages and enhance the phagocytosis of Streptococcus pneumoniae and Mycobacterium by increasing cell surface localization of the phagocytic receptors, scavenger receptor A and mannose receptor. The collectins also modulate pulmonary inflammation. SP-A and SP-D bind to cell surface receptors including Toll-like receptors, SIRPalpha and calreticulin/CD91, and attenuate or enhance inflammation in a microbial ligand-specific manner. In this article we review the immunomodulatory functions of SP-A and SP-D and their possible mechanisms in direct actions on microbes, macrophage phagocytosis and modulation of inflammation.  相似文献   

14.
Lysozymes and hexosaminidases are ubiquitous hydrolases in bacteria and eukaryotes. In phagocytic lower eukaryotes and professional phagocytes from higher eukaryotes, they are involved in the degradation of ingested bacteria in phagosomes. In Entamoeba histolytica, which is the intestinal protozoan parasite that causes amoebiasis, phagocytosis plays a pivotal role in the nutrient acquisition and the evasion from the host defense systems. While the content of phagosomes and biochemical and physiological roles of the major phagosomal proteins have been established in E. histolytica, the mechanisms of trafficking of these phagosomal proteins, in general, remain largely unknown. In this study, we identified and characterized for the first time the putative receptor/carrier involved in the transport of the above-mentioned hydrolases to phagosomes. We have shown that the receptor, designated as cysteine protease binding protein family 8 (CPBF8), is localized in lysosomes and mediates transport of lysozymes and β-hexosaminidase α-subunit to phagosomes when the amoeba ingests mammalian cells or Gram-positive bacillus Clostridium perfringens. We have also shown that the binding of CPBF8 to the cargos is mediated by the serine-rich domain, more specifically three serine residues of the domain, which likely contains trifluoroacetic acid-sensitive O-phosphodiester-linked glycan modifications, of CPBF8. We further showed that the repression of CPBF8 by gene silencing reduced the lysozyme and β-hexosaminidase activity in phagosomes and delayed the degradation of C. perfringens. Repression of CPBF8 also resulted in decrease in the cytopathy against the mammalian cells, suggesting that CPBF8 may also be involved in, besides the degradation of ingested bacteria, the pathogenesis against the mammalian hosts. This work represents the first case of the identification of a transport receptor of hydrolytic enzymes responsible for the degradation of microorganisms in phagosomes.  相似文献   

15.
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface‐expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig‐fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.  相似文献   

16.
The lung is constantly exposed to potentially pathogenic particles and microorganisms. Alveolar macrophage (AM) binding of inhaled environmental particles is a critical first step in phagocytosis and clearance, and must be accomplished without the benefit of opsonization by specific antibodies. Opsonin-independent phagocytosis is initiated by direct recognition of phagocytic target. The identities of receptors on AMs that mediate unopsonized particle binding were, until recently, not known. Using flow cytometry, monoclonal antibody and expression cloning techniques we have found a major role for the scavenger receptor, MARCO in AM binding of particles and bacteria. In this review we will discuss the role of scavenger receptors in AM binding of unopsonized particles and the use of flow cytomety in analyzing AM-particle interaction. We will also discuss other non-scavenger receptors involved in opsonin-independent phagocytosis.  相似文献   

17.
The differentiation of monocytes into macrophages and dendritic cells is accompanied by induction of cell-surface neuraminidase 1 (Neu1) and cathepsin A (CathA), the latter forming a complex with and activating Neu1. To clarify the biological importance of this phenomenon we have developed the gene-targeted mouse models of a CathA deficiency (CathAS190A) and a double CathA/Neu1 deficiency (CathAS190A-Neo). Macrophages of CathAS190A-Neo mice and their immature dendritic cells showed a significantly reduced capacity to engulf Gram-positive and Gram-negative bacteria and positively and negatively charged polymer beads as well as IgG-opsonized beads and erythrocytes. Properties of the cells derived from CathAS190A mice were indistinguishable from those of wild-type controls, suggesting that the absence of Neu1, which results in the increased sialylation of the cell surface proteins, probably affects multiple receptors for phagocytosis. Indeed, treatment of the cells with purified mouse Neu1 reduced surface sialylation and restored phagocytosis. Because Neu1-deficient cells showed reduced internalization of IgG-opsonized sheep erythrocytes whereas binding of the erythrocytes to the cells at 4 °C persisted, we speculate that the absence of Neu1 in particular affected transduction of signals from the Fc receptors for immunoglobulin G (FcγR). Indeed the macrophages from the Neu1-deficient mice showed increased sialylation and impaired phosphorylation of FcγR as well as markedly reduced phosphorylation of Syk kinase in response to treatment with IgG-opsonized beads. Altogether our data suggest that the cell surface Neu1 activates the phagocytosis in macrophages and dendritic cells through desialylation of surface receptors, thus, contributing to their functional integrity.  相似文献   

18.
In this paper, we aim to characterize fibrinogen-IgG interactions, and explore how fibrinogen alters IgG-mediated phagocytosis.Using enzyme-linked binding assays, we found that fibrinogen binding to IgG is optimized for surfaces coated with high levels of IgG. Using a similar method, we have shown that for an antigen unable to specifically bind fibrinogen, fibrinogen enhances binding of antibodies towards that antigen. For binding of IgG antibodies to cells expressing Fc receptors, we found a bimodal binding response, where low levels of fibrinogen enhance binding of antibody to Fc receptors and high levels reduce it. This corresponds to a bimodal effect on phagocytosis of IgG-coated particles, which is inhibited in the presence of excess IgG during coating of the particles with antibodies and fibrinogen.We conclude that fibrinogen can modulate phagocytosis of IgG-coated particles in vitro by changing IgG binding behavior, and that high fibrinogen levels could negatively affect phagocytosis.  相似文献   

19.
Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.  相似文献   

20.
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号