首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Purification and properties of malyl-coenzyme A lyase from Pseudomonas AM1   总被引:3,自引:0,他引:3  
1. Malyl-CoA lyase was purified 20-fold from extracts of methanol-grown Pseudomonas AM1. 2. Preparations of the enzyme were essentially homogeneous by electrophoretic and ultracentrifugal criteria. 3. Malyl-CoA lyase has a molecular weight of 190000 determined from sedimentation-equilibrium data. 4. Within the range of compounds tested, malyl-CoA lyase is specific for (2S)-4-malyl-CoA or glyoxylate and acetyl-CoA or propionyl-CoA. 5. A bivalent cation is essential for activity, Mg(2+) or Co(2+) being most effective. 6. Malyl-CoA lyase is inhibited by (2R)-4-malyl-CoA and by some buffers, but thiol-group inhibitors are without effect. 7. Optimal activity was recorded at pH7.8. 8. An equilibrium constant of 4.7x10(-4)m was determined for the malyl-CoA cleavage reaction. 9. The Michaelis constants for the enzyme are: 4-malyl-CoA, 6.6x10(-5)m; acetyl-CoA, 1.5x10(-5)m; glyoxylate, 1.7x10(-3)m; Mg(2+), 1.2x10(-3)m.  相似文献   

2.
A phosphatase specific for the hydrolysis of 3-deoxy-d-manno-octulosonate (KDO)-8-phosphate was purified approximately 400-fold from crude extracts of Escherichia coli B. The hydrolysis of KDO-8-phosphate to KDO and inorganic phosphate in crude extracts of E. coli B, grown in phosphate-containing minimal medium, could be accounted for by the enzymatic activity of this specific phosphatase. No other sugar phosphate tested was an alternate substrate or inhibitor of the purified enzyme. KDO-8-phosphate phosphatase was stimulated three- to fourfold by the addition of 1.0 mM Co(+) or Mg(2+) and to a lesser extent by 1.0 mM Ba(2+), Zn(2+), and Mn(2+). The activity was inhibited by the addition of 1.0 mM ethylenediaminetetraacetic acid, Cu(2+), Ca(2+), Cd(2+), Hg(2+), and chloride ions (50% at 0.1 M). The pH optimum was determined to be 5.5 to 6.5 in both tris(hydroxymethyl)aminomethane-acetate and HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer. This specific phosphatase had an isoelectric point of 4.7 to 4.8 and a molecular weight of 80,000 +/- 6,000 as determined by molecular sieving and Ferguson analysis. The enzyme appeared to be composed of two identical subunits of 40,000 to 43,000 molecular weight. The apparent K(m) for KDO-8-phosphate was determined to be 5.8 +/- 0.9 x 10(-5) M in the presence of 1.0 mM Co(2+), 9.1 +/- 1 x 10(-5) M in the presence of 1.0 mM Mg(2+), and 1.0 +/- 0.2 x 10(-4) M in the absence of added Co(2+) or Mg(2+).  相似文献   

3.
Cathepsin L-like proteinase was purified approximately 1708-fold with 40% activity yield to an apparent electrophoretic homogeneity from goat brain by homogenization, acid-autolysis at pH 4.2, 30-80% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography and ion-exchange chromatography on CM-Sephadex C-50 at pH 5.0 and 5.6. The molecular weight of proteinase was found to be approximately 65,000 Da, by gel-filtration chromatography. The pH optima were 5.9 and 4.5 for the hydrolysis of Z-Phe-Arg-4mbetaNA (benzyloxycarbonyl-L-phenylalanine-L-arginine-4-methoxy-beta-naphthylamide) and azocasein, respectively. Of the synthetic chromogenic substrates tested, Z-Phe-Arg-4mbetaNA was hydrolyzed maximally by the enzyme (Km value for hydrolysis was 0.06 mM), followed by Z-Val-Lys-Lys-Arg-4mbetaNA, Z-Phe-Val-Arg-4mbetaNA, Z-Arg-Arg-4mbetaNA and Z-Ala-Arg-Arg-4mbetaNA. The proteinase was activated maximally by glutathione in conjunction with EDTA, followed by cysteine, dithioerythritol, thioglycolic acid, dithiothreitol and beta-mercaptoethanol. It was strongly inhibited by p-hydroxymercuribenzenesulphonic acid, iodoacetic acid, iodoacetamide and microbial peptide inhibitors, leupeptin and antipain. Leupeptin inhibited the enzyme competitively with Ki value 44 x 10(-9) M. The enzyme was strongly inhibited by 4 M urea. Metal ions, Hg(2+), Ca(2+), Cu(2+), Li(2+), K(+), Cd(2+), Ni(2+), Ba(2+), Mn(2+), Co(2+) and Sn(2+) also inhibited the activity of the enzyme. The enzyme was stable between pH 4.0-6.0 and up to 40 degrees C. The optimum temperature for the hydrolysis of Z-Phe-Arg-4mbetaNA was approximately 50-55 degrees C with an activation energy Ea of approximately 6.34 KCal mole(-1).  相似文献   

4.
1. Zn2+-dependent acid p-nitrophenylphosphatase from chicken liver was purified to homogeneity. 2. The purified enzyme moves as a single electrophoretic band at pH 8.3 in 7.5% acrylamide and was coincident with the enzyme activity. 3. Gel filtration on Sephadex G-200 gave an apparent molecular weight of 110,000 with two apparent identical subunits of 54,000-56,000 as determined by sodium dodecyl sulphate gel electrophoresis. 4. The maximum of enzyme activity was obtained in the presence of 3-5 mM ZnCl2 at pH 6-6.2, however, higher concentrations of metal are inhibitory. The enzyme hydrolyses p-nitrophenylphosphate, o-carboxyphenylphosphate and phenylphosphate, was insensitive to NaF and was inhibited by phosphate and ATP. The Km for p-nitrophenylphosphate was 0.28 x 10(-3)M at pH 6 in 50 mM sodium acetate/100 mM NaCl. 5. Phosphate is a competitive inhibitor (Ki = 0.5 x 10(-3)M) whereas ATP seems to be a non-competitive inhibitor (Ki = 0.35 x 10(-3)M). The isoelectric point determined by isoelectric focusing on polyacrylamide gel is 7.5. 6. Cell fractionation studies indicate that the Zn2+-dependent acid p-nitrophenylphosphatase of chicken liver is a soluble enzyme form.  相似文献   

5.
Openreading frame mj0608 of the Methanococcus jannaschii genome, recognized by its sequence similarity to that of the gene coding for class C inorganic pyrophosphatase in Bacillus subtilis, was cloned and over-expressed in Escherichia coli. The protein was purified and characterized by SDS-PAGE, M(r), and N-terminal sequence. Under suitable conditions it catalyzed the specific hydrolysis of PPi at about 600 micromol x min(-1) x mg(-1) at 25 degrees C, and at 8000 micromol x min(-1) x mg(-1) at 85 degrees C. Therefore this protein is a specific inorganic pyrophosphatase. The activities of Mg(2+), Mn(2+), Co(2+), and Zn(2+) ions as cofactors for hydrolysis of PPi were compared at pH 7.5 and 9.0. Unlike the class C pyrophosphatase of B. subtilis, this enzyme required no prior activation by low concentrations of Mn(2+) or Co(2+) ions. However, prior exposure to these ions afforded striking protection against inhibition by sodium fluoride, to which the enzyme was otherwise very sensitive.  相似文献   

6.
beta-d-phosphogalactoside galactohydrolase (beta-PGal) was isolated and purified from cell-free extracts of Streptococcus cremoris HP to apparent homogeneity to gel electrophoresis. Using the chromogenic o-nitrophenol-beta-d-galactopyranoside-6-phosphate as substrate, the purified enzyme exhibited a specific activity of 18.71 U/mg of protein and K(m) and V(max) values of 5.88 x 10(-4) M and 23.8 mumol of o-nitrophenol liberated per min per mg of protein, respectively. d-Galactose-6-phosphate was a weak competitive inhibitor of beta-PGal. Activity was relatively heat resistant and was maximal from pH 5.0 to 8.0 and over a temperature range of 45 to 52 C. Dithiothreitol, ethylenediaminetetraacetic acid, and citrate stimulated beta-PGal activity, whereas Mg(2+), Li(1+), and p-hydroxymercuribenzoate were inhibitory. Molecular weight of the enzyme was estimated at 6.76 x 10(4). Amino acid composition was similar to other beta-phosphogalactosidases previously investigated, with the exception that the S. cremoris enzyme contains a small amount of half cystine.  相似文献   

7.
Purification and properties of galactokinase from pig liver   总被引:3,自引:3,他引:0       下载免费PDF全文
1. Galactokinase has been purified from the liver of young pigs by high-speed centrifugation, chromatography on Sephadex G-100 and DEAE-cellulose, and ammonium sulphate fractionation. 2. The enzyme preparation has a specific activity of 10-18mumoles of galactose phosphorylated/mg. of protein/min. at 37 degrees and has been purified 400-fold from the liver supernatant. 3. Purified liver galactokinase has Michaelis constants of 1x10(-4)-3x10(-4)m for galactose and 2x10(-4)m for ATP-Mg(2+), and the enzyme reaction produces equimolar amounts of galactose 1-phosphate and ADP. 4. Galactokinase phosphorylates 2-deoxygalactose and galactosamine in addition to galactose, has a pH optimum of 7.8, a Q(10) of 2, and is stimulated by cysteine and other thiols. 5. With the exception of substrate specificity, the properties of liver galactokinase are similar to galactokinase purified from yeast and Escherichia coli.  相似文献   

8.
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.  相似文献   

9.
D-Ribose isomerase, which catalyzes the conversion of D-ribose to D-ribulose, was purified from extracts of Mycobacterium smegmatis grown on D-ribose. The purified enzyme crystalized as hexagonal plates from a 44% solution of ammonium sulfate. The enzyme was homogenous by disc gel electrophoresis and ultracentrifugal analysis. The molecular weight of the enzyme was between 145,000 and 174,000 by sedimentation equilibrium analysis. Its sedimentation constant of 8.7 S indicates it is globular. On the basis of sodium dodecyl sulfate gel electrophoresis in the presence of Mn2+, the enzyme is probably composed of 4 identical subunits of molecular weight about 42,000 to 44,000. The enzyme was specific for sugars having the same configuration as D-ribose at carbon atoms 1 to 3. Thus, the enzyme could also utilize L-lyxose, D-allose, and L-rhamnose as substrates. The Km for D-ribose was 4 mM and for L-lyxose it was 5.3 mM. The enzyme required a divalent cation for activity with optimum activity being shown with Mn2+. the Km for the various cations was as follows: Mn2+, 1 times 10(-7) M, Co2+, 4 times 10(-7) M, and Mg2+, 1.8 times 10(-5) M. The pH optimum for the enzyme was 7.5 to 8.5. Polyols did not inhibit the enzyme to any great extent. The product of the reaction was identified as D-ribulose by thin layer chromatography and by preparation of the O-nitrophenylhydrazone derivative.  相似文献   

10.
A new protease was isolated from an extract of leaves of Agave americana variegata. The protease (EC 3.4.-) was purified 565-fold with a yield of 39.5%. The 43.8 mg enzyme had a specific activity of 0.44 units/mg. According to electrophoretic, ultracentrifugal and other physical characterizations the enzyme was homogeneous. The enzyme had a MR of 57000, a S20,W-value of 4.37 S, a D20, W-value of 6.8-7.0 - 10(-7) cm2sec-1, a Stokes radius of 3.18 nm, a partial specific volume of 0.735 cm3g-1, a frictional ration of 1.25, a molecular absorbancy index at 280 nm of 5.773-10(4), an isoelectric point of 5.25 and contained 8-10% carbohydrate. The enzyme contained no cysteine. Agave protease could hydrolyze a variety of protein substrates although it did have a restricted specificity. It is not a sulphhydryl protease but seems to be an alkaline "serine" protease with an optimum pH of 7.8-8.0 Agave protease had marked esterolytic activity and with Cbz-Tyr-ONp had an apparent Michaelis constant of 0.0345 -10(-3) M and a V of 1.24 mol substrate/mol enzyme per sec. The enzyme did not need metal ions for optimal activity, monovalent cations did not influence its kinetic parameters, but it was inhibited by cobalt, pC1HgBzO- and TosPheCH2C1. With respect to its primary specificity, as well as its pH-dependence there was a resemblance with chymotrypsin, although the rate of hydrolysis of Agave protease is much lower.  相似文献   

11.
Enhancement of the productivity of xylanase and beta-xy-losidase of Aspergillus ochraceus was investigated by multistep mutagenesis. The spores of the wild strain were subjected to UV and N-methyl-N-nitro-N-nitro-soguanidine (NTG). The hyperxylanolytic mutant (NG-13), which showed good clearing on the surface of the xylan-agar plate, secretes xylanase and beta-xylosidase at high levels during growth on commercial xylan and on agricultural wastes. Both liquid and solid state cultures were employed in the study for enzyme production. The xylanase from NG-13 was purified to homogeneity by ammonium sulfate precipitation and gel filtration. This purified enzyme showed a pH optimum of 6.0 and was stable in the range of pH 5 to 10. Prolonged stability of the enzyme was observed at 45 degrees C though its activity was maximal at 50 degrees C. The molecular weight of the enzyme was estimated to be 4.3 x 10(4) by SDS-polyacrylamide gel electrophoresis and 5 x 10(4) by gel filtration on Sephadex G-75. The kinetic data showed that the K(m) and V(max) values for xylan were 1 x 10(-3)M and 19.6 mumol/ min/mg protein, respectively. The enzyme was both more active and thermostable in the presence of K(+)and was inactivated by thiol reagents such as Hg(2+), p-hydroxymercuribenzoate (PHMB), 3', 5'-dithiobis (2'-nitrobenzoic acid) (DTNB), and N-ethylmaleimide (NEM).  相似文献   

12.
Rabbit liver purine nucleoside phosphorylase (purine nucleoside: orthophosphate ribosyltransferase EC 2.4.2.1.) was purified to homogeneity by column chromatography and ammonium sulfate fractionation. Homogeneity was established by disc gel electrophoresis in presence and absence of sodium dodecyl sulfate, and isoelectric focusing. Molecular weights of 46,000 and 39,000 were determined, respectively, by gel filtration and by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Product inhibition was observed with guanine and hypoxanthine as strong competitive inhibitors for the enzymatic phosphorolysis of guanosine. Respective Kis calculated were 1.25 x 10(-5) M for guanine and 2.5 x 10(-5) M for hypoxanthine. Ribose 1-phosphate, another product of the reaction, gave noncompetitive inhibition with guanosine as variable substrate, and an inhibition constant of 3.61 x 10(-4) M was calculated. The protection of essential --SH groups on the enzyme, by 2-mercaptoethanol or dithiothreitol, was necessary for the maintenance of enzyme activity. Noncompetitive inhibition was observed for p-chloromercuribenzoate with an inhibition constant of 5.68 x 10(-6)M. Complete reversal of this inhibition by an excess of 2-mercaptoethanol or dithiothreitol was demonstrated. In the presence of methylene blue, the enzyme showed a high sensitivity to photooxidation and a dependence of photoinactivation on pH, strongly implicating histidine as the susceptible group at the active site of the enzyme. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 5.5 and pH 8.5 The chemical and kinetic evidences suggest that histidine and cysteine may be essential for catalysis. Inorganic orthophosphate (Km 1.54 x 10(-2) M) was an obligatory anion requirement, and arsenate substituted for phosphate with comparable results. Guanosine (Km 5.00 x 10(-5) M), deoxyguanosine (Km 1.00 x 10(-4)M) and inosine (Km 1.33 x 10(-4)M), were substrates for enzymatic phosphorolysis. Xanthosine was an extremely poor substrate, and adenosine was not phosphorylyzed at 20-fold excess of the homogeneous enzyme. Guanine (Km 1.82 x 10(-5)M),ribose 1-phosphate (Km 1.34 x 10(-4) M) and hypoxanthine were substrates for the reverse reaction, namely, the enzymatic synthesis of nucleosides. The initial velocity studies of the saturation of the enzyme with guanosine, at various fixed concentrations of inorganic orthophosphate, suggest a sequential bireactant catalytic mechanism for the enzyme.  相似文献   

13.
Adenosine triphosphatase (ATPase) from Thiobacillus ferrooxidans was purified 55-fold. Polyacrylamide gel electrophoresis of the most purified fraction showed only one major band; histochemical analysis showed that the ATPase activity was associated with this band. The pH optimum is 9-10. The enzyme hydrolyzed ATP stoichiometrically to ADP and inorganic phosphate, the Km for this substrate being 7.75 times 10-3 M. GTP and ITP are alternate substrates, the Km values for these being 6.71 times 10-3 M and 3.12 times 10-3 M, respectively. ADP is slightly hydrolyzed. Magnesium, manganese, and calcium can serve as cofactors; Km values for these are 2.0 times 10-3 M, 9.4 times 10-4 M, and 8.0 times 10-4 M, respectively. The enzyme activity was not activated by either sodium or potassium, but a combination of the two ions were inhibitory. Azide and p-hydroxymercuribenzoate strongly inhibited the enzyme activity, whereas cyanide, dinitrophenol, and N,N'-dicyclohexylcarbodiimide (DCCD) were without effect. The enzyme was cold labile at 0 degrees-C, but was more stable at 18-24 degrees-C.  相似文献   

14.
cAMP-independent protein kinase was isolated from the wheat germ and purified to electrophoretic homogeneity. The molecular weight of enzyme was approximately 20,000, Km for ATP was (1 +/- 0.2) x 10(-5) M. V was 215 nmol phosphate mg enzyme-1 min-1, and the isoelectric point was at pH 9.2. The enzyme promotes phosphorylation of casein and crude wheat germ ribosomes.  相似文献   

15.
A novel peroxidase that catalyses the transformation of caffeic acid and ferulic acid via oxidative coupling was purified from callus cultures of Bupleurum salicifolium petioles. The enzyme, which was purified over 2,900-fold, is a glycoprotein with a molecular weight of 38,000, determined by SDS/PAGE and gel filtration. The K(m) values obtained were 2.4x10(-4) M for caffeic and 2.6x10(-4) M for ferulic acid, while the K(m) values for H2O2 with caffeic acid was 4x10(-5) M and for H2O2 with ferulic acid was 4.8x10(-4) M. The purified peroxidase exhibits lower activity with typical peroxidase substrates (guaiacol and pyrogallol) than it does with caffeic and ferulic acids, but does not exhibit any activity with other phenylpropanoids tested (cinnamic acid, coumaric acid, and 3,4-dimethoxycinnamic acid).  相似文献   

16.
Dipeptidyl peptidase IV is an ectopeptidase with multiple physiological roles including the degradation of incretins, and a target of therapies for type 2 diabetes mellitus. Divalent cations can inhibit its activity, but there has been little effort to understand how they act. The intact membrane-bound form of porcine kidney dipeptidyl peptidase IV was purified by a simple and fast procedure. The purified enzyme hydrolyzed Gly-Pro-p-nitroanilide with an average V(max) of 1.397±0.003 μmol min(-1) mL(-1), k(cat) of 145.0±1.2 s(-1), K(M) of 0.138±0.005 mM and k(cat)/K(M) of 1050 mM(-1) s(-1). The enzyme was inhibited by bacitracin, tosyl-L-lysine chloromethyl ketone, and by the dipeptidyl peptidase IV family inhibitor L-threo-Ile-thiazolidide (K(i) 70 nM). The enzyme was inhibited by the divalent ions Ca(2+), Co(2+), Cd(2+), Hg(2+) and Zn(2+), following kinetic mechanisms of mixed inhibition, with K(i) values of 2.04×10(-1), 2.28×10(-2), 4.21×10(-4), 8.00×10(-5) and 2.95×10(-5) M, respectively. According to bioinformatic tools, Ca(2+) ions preferentially bound to the β-propeller domain of the porcine enzyme, while Zn(2+) ions to the α-β hydrolase domain; the binding sites were strikingly conserved in the human enzyme and other homologues. The functional characterization indicates that porcine and human homologues have very similar functional properties. Knowledge about the mechanisms of action of divalent cations may facilitate the design of new inhibitors.  相似文献   

17.
myo-Inositol monophosphate phosphatase (IMPase) has been purified 888-fold to apparent homogeneity from procine brains. The purification procedure involves: homogenization, ammonium sulfate fractionation, and a number of ion-exchange and gel-filtration chromatography steps. The purified enzyme exhibited a final specific activity of 932 nmol . min(-1) . mg(-1). The molecular mass of the enzyme was estimated to be 29kDa by SDS poly-acrylamide gel electrophoresis and 58 +/- 5 kDa by HPLC gel filtration in 10mM Tris-HCI, pH 7.4. Kinetic measurements have shown that the apparent K(m) value of the phosphatase for the utilization of inositol-1-phosphate and beta-glycerol phosphate are 3.20 x 10(-4) and 8 x 10(-3) M, respectively. Similar to the same enzyme isolated from bovine brains, the porcine brain enzyme has been shown to be inhibited by lithium. The K(1) was determined to be 6.38 x 10(-4) M and the inhibition is uncompetitive. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
Thermostable exochitinase was purified to homogeneity from the culture fluid of Bacillus stearothermophilus CH-4, which was isolated from agricultural compost containing shrimp and crabs. The enzyme was a single polypeptide with a molecular mass of 74 kDa, and the N-terminal amino acid sequence was WDKVGVTDLI ISLNIPEADAVVVGMTLQLQALHLY. The enzyme specifically hydrolyzed C-4 beta-anomeric bonding of N-acetylchitooligosaccharides, as well as their p-nitrophenyl (pNP) derivatives. The enzyme also hydrolyzed pNP-beta-N-acetyl-D-galactosaminide (26% of the activity of pNP-beta-N-acetyl-D-glucosaminide). These results indicated that the enzyme is a beta-N-acetylhexosaminidase (EC 3.2.1.52). Kms for acetylchitooligosaccharides were 1 x 10(-4) to 6 x 10(-4) M, while those for the pNP derivatives were 4 x 10(-3) to 8 x 10(-3) M. The optimum temperature of the enzyme was 75 degrees C, and it retained 100 and 28% reactivity after heating at 60 and 80 degrees C, respectively. The enzyme exhibited 15 to 20% activity in a reaction mixture containing 80% organic solvents and maintained 91% of its original activity after exposure to 8 M urea. The optimum and stable pH was around 6.5. Fe2+, Zn2+, and Ca2+ activated the enzyme, but Hg2+ was inhibitory. N-Acetyl-D-glucosamine inhibited the enzyme competitively (Ki = 4.3 x 10(-4) M), whereas N-acetyl-D-galactosamine did not; in contrast, D-glucosamine and D-galactosamine activated it.  相似文献   

19.
The nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase in Clostridium thermoaceticum used, in addition to its natural electron acceptor, methyl and benzyl viologen. The enzyme was purified to a specific activity of 34 (micromoles per minute per milligram of protein) with NADP as electron acceptor. Disc gel electrophoresis of the purified enzyme yielded two major and two minor protein bands, and during centrifugation in sucrose gradients two components of apparent molecular weights of 270,000 and 320,000 were obtained, both having formate dehydrogenase activity. The enzyme preparation catalyzed the reduction of riboflavine 5'-phosphate flavine adenine dinucleotide and methyl viologen by using reduced NADP as a source of electrons. It also had reduced NADP oxidase activity. The enzyme was strongly inhibited by cyanide and ethylenediaminetetraacetic acid. It was also inhibited by hypophosphite, an inhibition that was reversed by formate. Sulfite inhibited the activity with NADP but not with methyl viologen as acceptor. The apparent K(m) at 55 C and pH 7.5 for formate was 2.27 x 10(-4) M with NADP and 0.83 x 10(-4) with methyl viologen as acceptor. The apparent K(m) for NADP was 1.09 x 10(-4) M and for methyl viologen was 2.35 x 10(-3) M. NADP showed substrate inhibition at 5 x 10(-3) M and higher concentrations. With NADP as electron acceptor, the enzyme had a broad pH optimum between 7 and 9.5. The apparent temperature optimum was 85 C. In the absence of substrates, the enzyme was stable at 70 C but was rapidly inactivated at temperatures above 73 C. The enzyme was very sensitive to oxygen but was stabilized by thiol-iron complexes and formate.  相似文献   

20.
β-D-Galactosidase was purified 115-fold from a saline extract of papaya seeds by fractionation with ammonium sulfate, DEAE-Sephadex chromatography and gel-filtration on Sephadex G-75, G-150, and G-100. The purified β-D-galactosidase (MW, 56,000 daltons) had an isoelectric point (pI) at pH 8.4 and the optimal pH for its activity was 3.5 to 4.5. The enzyme activity was inhibited by Cu2+,Ag+,Hg2+,Pb2+,NaAsO2 and р-chloromercuribenzoate at concentrations of 1x10-3 M. Among the various mono- and oligosaccharides tested, D-galactose, D-galacturonic acid, D-galactono-γ-lactone and melibiose significantly inhibited the enzyme activities at concentrations of 2xl0-3 to 1X10-2M. The purified enzyme hydrolyzed β-nitrophenyl β-D-galactoside (Km = 1.0X10-3M), methyl β-D-galactoside (Km=1.6x10-2M), aminoethyl β-D-galactoside (Km =3.3X10-2M) and lactose (Km = 9.1X10-2M). β-(l→3)-Linked galactotetraosyl-eryth itol and asialo-glycopeptide isolated from fetuin were also hydrolyzed to the extent of 78 and 75%, 4respectively, on the basis of their galactose contents.

∝-D-Mannosidase from papaya seeds was also purified 130-fold by ammonium sulfate fractionation, DEAE-Sephadex chromatography, gel-filtration on Sephadex G-150 and hydroxylapatite chromatography. The purified enzyme (MW, 156,000 daltons), consisting of two subunits (78,000x2), was inhibited by Hg2+,Ag+,Cu2+, р-chloromercuribenzoate, D-glucose, D-glucosamine and D-mannose at concentrations of lx10-3 to 1x10-2M. The ∝-D-mannosidase hydrolyzed р-nitrophenyl ∝-D-mannoside (Km=5.6x10-3M), methyl ∝-D-mannoside (Km=2.8X10-2M), ∝-D-mannosyl-D-mannitol (Km=2.2X10-2M), ∝-(l→2)linked D-mannobiosyl-D-mannitol (Km=6.3x10-3M) and D-mannotriosyl-D-mannitol (Km=5.3x10-3 M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号