共查询到20条相似文献,搜索用时 281 毫秒
1.
It is now widely accepted that boreal rivers and streams are regionally significant sources of carbon dioxide (CO2), yet their role as methane (CH4) emitters, as well as the sensitivity of these greenhouse gas (GHG) emissions to climate change, are still largely undefined. In this study, we explore the large‐scale patterns of fluvial CO2 and CH4 partial pressure (pCO2, pCH4) and gas exchange (k) relative to a set of key, climate‐sensitive river variables across 46 streams and rivers in two distinct boreal landscapes of Northern Québec. We use the resulting models to determine the direction and magnitude of C‐gas emissions from these boreal fluvial networks under scenarios of climate change. River pCO2 and pCH4 were positively correlated, although the latter was two orders of magnitude more variable. We provide evidence that in‐stream metabolism strongly influences the dynamics of surface water pCO2 and pCH4, but whereas pCO2 is not influenced by temperature in the surveyed streams and rivers, pCH4 appears to be strongly temperature‐dependent. The major predictors of ambient gas concentrations and exchange were water temperature, velocity, and DOC, and the resulting models indicate that total GHG emissions (C‐CO2 equivalent) from the entire network may increase between by 13 to 68% under plausible scenarios of climate change over the next 50 years. These predicted increases in fluvial GHG emissions are mostly driven by a steep increase in the contribution of CH4 (from 36 to over 50% of total CO2‐equivalents). The current role of boreal fluvial networks as major landscape sources of C is thus likely to expand, mainly driven by large increases in fluvial CH4 emissions. 相似文献
2.
New fuel regulations based on life cycle greenhouse gas (GHG) emissions have focused renewed attention on life cycle models of biofuels. The BESS model estimates 25% lower life cycle GHG emissions for corn ethanol than does the well-known GREET model, which raises questions about which model is more accurate. I develop a life cycle metamodel to compare the GREET and BESS models in detail and to explain why the results from these models diverge. I find two main reasons for the divergence: (1) BESS models a more efficient biorefinery than is modeled in the cases to which its results have been compared, and (2) in several instances BESS fails to properly count upstream emissions. Adjustments to BESS to account for these differences raise the estimated global warming intensity (not including land use change) of the corn ethanol pathway considered in that model from 45 to 61 g CO2 e MJ−1 . Adjusting GREET to use BESS's biorefinery performance and coproduct credit assumptions reduces the GREET estimate from 64 to 61 g CO2 e MJ−1 . Although this analysis explains the gap between the two models, both models would be improved with better data on corn production practices and by better treatment of agricultural inputs. 相似文献
3.
4.
Cities and urban regions are undertaking efforts to quantify greenhouse (GHG) emissions from their jurisdictional boundaries. Although inventorying methodologies are beginning to standardize for GHG sources, carbon sequestration is generally not quantified. This article describes the methodology and quantification of gross urban carbon sinks. Sinks are categorized into direct and embodied sinks. Direct sinks generally incorporate natural process, such as humification in soils and photosynthetic biomass growth (in urban trees, perennial crops, and regional forests). Embodied sinks include activities associated with consumptive behavior that result in the import and/or storage of carbon, such as landfilling of waste, concrete construction, and utilization of durable wood products. Using methodologies based on the Intergovernmental Panel on Climate Change 2006 guidelines (for direct sinks) and peer‐reviewed literature (for embodied sinks), carbon sequestration for 2005 is calculated for the Greater Toronto Area. Direct sinks are found to be 317 kilotons of carbon (kt C), and are dominated by regional forest biomass. Embodied sinks are calculated to be 234 kt C based on one year's consumption, though a complete life cycle accounting of emissions would likely transform this sum from a carbon sink to a source. There is considerable uncertainty associated with the methodologies used, which could be addressed with city‐specific stock‐change measurements. Further options for enhancing carbon sink capacity within urban environments are explored, such as urban biomass growth and carbon capture and storage. 相似文献
5.
Life cycle assessment (LCA) is generally described as a tool for environmental decision making. Results from attributional LCA (ALCA), the most commonly used LCA method, often are presented in a way that suggests that policy decisions based on these results will yield the quantitative benefits estimated by ALCA. For example, ALCAs of biofuels are routinely used to suggest that the implementation of one alternative (say, a biofuel) will cause an X% change in greenhouse gas emissions, compared with a baseline (typically gasoline). However, because of several simplifications inherent in ALCA, the method, in fact, is not predictive of real‐world impacts on climate change, and hence the usual quantitative interpretation of ALCA results is not valid. A conceptually superior approach, consequential LCA (CLCA), avoids many of the limitations of ALCA, but because it is meant to model actual changes in the real world, CLCA results are scenario dependent and uncertain. These limitations mean that even the best practical CLCAs cannot produce definitive quantitative estimates of actual environmental outcomes. Both forms of LCA, however, can yield valuable insights about potential environmental effects, and CLCA can support robust decision making. By openly recognizing the limitations and understanding the appropriate uses of LCA as discussed here, practitioners and researchers can help policy makers implement policies that are less likely to have perverse effects and more likely to lead to effective environmental policies, including climate mitigation strategies. 相似文献
6.
The dependency on carbon‐based materials and energy sources and the emission of greenhouse gases have been recognized as major problems of the 21st century. Companies are central to the effort to grapple with these issues due to the large material flows they process and their capabilities for technological innovation. It is important, on the one hand, to determine the individual stake companies have in these issues and, on the other, to measure companies' performance. Since the results of studies thus far have been ambiguous, we define four comprehensive and systematic corporate carbon performance indicators: (1) Carbon intensity is physically oriented and represents a company's carbon use in relation to a business metric. (2) Carbon dependency illustrates the change in physical carbon performance within a given time period. (3) Carbon exposure reveals the financial implications of using and emitting carbon. (4) Carbon risk estimates the change in financial implications of carbon usage within a given time period. On the basis of these general definitions, we specify the indicators for a standardized application that can support two important stakeholders in their decision making: policy makers, who can include such information when evaluating current climate policies and formulating future ones, and investors and financial institutions, which can compare companies with respect to their carbon performance and corresponding financial effects. 相似文献
7.
M. S. BALSHI A. D. MCGUIRE† P. DUFFY‡ M. FLANNIGAN§ D. W. KICKLIGHTER¶ J. MELILLO¶ 《Global Change Biology》2009,15(6):1491-1510
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process‐based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2 fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post‐fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime. 相似文献
8.
Fabrizio Albanito Astley Hastings Nuala Fitton Mark Richards Mike Martin Niall Mac Dowell Dave Bell Simon C. Taylor Isabela Butnar Pei‐Hao Li Raphael Slade Pete Smith 《Global Change Biology Bioenergy》2019,11(10):1234-1252
New contingency policy plans are expected to be published by the United Kingdom government to set out urgent actions, such as carbon capture and storage, greenhouse gas removal and the use of sustainable bioenergy to meet the greenhouse gas reduction targets of the 4th and 5th Carbon Budgets. In this study, we identify two plausible bioenergy production pathways for bioenergy with carbon capture and storage (BECCS) based on centralized and distributed energy systems to show what BECCS could look like if deployed by 2050 in Great Britain. The extent of agricultural land available to sustainably produce biomass feedstock in the centralized and distributed energy systems is about 0.39 and 0.5 Mha, providing approximately 5.7 and 7.3 MtDM/year of biomass respectively. If this land‐use change occurred, bioenergy crops would contribute to reduced agricultural soil GHG emission by 9 and 11 /year in the centralized and distributed energy systems respectively. In addition, bioenergy crops can contribute to reduce agricultural soil ammonia emissions and water pollution from soil nitrate leaching, and to increase soil organic carbon stocks. The technical mitigation potentials from BECCS lead to projected CO2 reductions of approximately 18 and 23 /year from the centralized and distributed energy systems respectively. This suggests that the domestic supply of sustainable biomass would not allow the emission reduction target of 50 /year from BECCS to be met. To meet that target, it would be necessary to produce solid biomass from forest systems on 0.59 or 0.49 Mha, or alternatively to import 8 or 6.6 MtDM/year of biomass for the centralized and distributed energy system respectively. The spatially explicit results of this study can serve to identify the regional differences in the potential capture of CO2 from BECCS, providing the basis for the development of onshore CO2 transport infrastructures. 相似文献
9.
Joe Marriott H. Scott Matthews Chris T. Hendrickson 《Journal of Industrial Ecology》2010,14(6):919-928
The mix of electricity consumed in any stage in the life cycle of a product, process, or industrial sector has a significant effect on the associated inventory of emissions and environmental impacts because of large differences in the power generation method used. Fossil‐fuel‐fired or nuclear‐centralized steam generators; large‐scale and small‐scale hydroelectric power; and renewable options, such as geothermal, wind, and solar power, each have a unique set of issues that can change the results of a life cycle assessment. This article shows greenhouse gas emissions estimates for electricity purchase for different scenarios using U.S. average electricity mix, state mixes, state mixes including imports, and a sector‐specific mix to show how different these results can be. We find that greenhouse gases for certain sectors and scenarios can change by more than 100%. Knowing this, practitioners should exercise caution or at least account for the uncertainty associated with mix choice. 相似文献
10.
This study analyzed the net carbon dioxide (CO2) emission reductions between 2005 and 2050 by using wood for energy under various scenarios of forest management and energy conversion technology in Japan, considering both CO2 emission reductions from replacement of fossil fuels and changes in carbon storage in forests. According to our model, wood production for energy results in a significant reduction of carbon storage levels in forests (by 46% to 77% in 2050 from the 2005 level). Thus, the net CO2 emission reduction when wood is used for energy becomes drastically smaller. Conventional tree production for energy increases net CO2 emissions relative to preserving forests, but fast‐growing tree production may reduce net CO2 emissions more than preserving forests does. When wood from fast‐growing trees is used to generate electricity with gas turbines, displacing natural gas, the net CO2 emission reduction from the combination of fast‐growing trees and electricity generation with gas turbines is about 58% of the CO2 emission reduction from electricity generation from gas turbines alone in 2050, and an energy conversion efficiency of around 20% or more is required to obtain net reductions over the entire period until 2050. When wood is used to produce bioethanol, displacing gasoline, net reductions are realized after 2030, provided that heat energy is recovered from residues from ethanol production. These results show the importance of considering the change in carbon storage when estimating the net CO2 emission reduction effect of the wood use for energy. 相似文献
11.
Peter E. Levy Annette Burden Mark D. A. Cooper Kerry J. Dinsmore Julia Drewer Chris Evans David Fowler Jenny Gaiawyn Alan Gray Stephanie K. Jones Timothy Jones Niall P. McNamara Robert Mills Nick Ostle Lucy J. Sheppard Ute Skiba Alwyn Sowerby Susan E. Ward Piotr Zieliński 《Global Change Biology》2012,18(5):1657-1669
Nearly 5000 chamber measurements of CH4 flux were collated from 21 sites across the United Kingdom, covering a range of soil and vegetation types, to derive a parsimonious model that explains as much of the variability as possible, with the least input requirements. Mean fluxes ranged from ?0.3 to 27.4 nmol CH4 m?2 s?1, with small emissions or low rates of net uptake in mineral soils (site means of ?0.3 to 0.7 nmol m?2 s?1) and much larger emissions from organic soils (site means of ?0.3 to 27.4 nmol m?2 s?1). Less than half of the observed variability in instantaneous fluxes could be explained by independent variables measured. The reasons for this include measurement error, stochastic processes and, probably most importantly, poor correspondence between the independent variables measured and the actual variables influencing the processes underlying methane production, transport and oxidation. When temporal variation was accounted for, and the fluxes averaged at larger spatial scales, simple models explained up to ca. 75% of the variance in CH4 fluxes. Soil carbon, peat depth, soil moisture and pH together provided the best sub‐set of explanatory variables. However, where plant species composition data were available, this provided the highest explanatory power. Linear and nonlinear models generally fitted the data equally well, with the exception that soil moisture required a power transformation. To estimate the impact of changes in peatland water table on CH4 emissions in the United Kingdom, an emission factor of +0.4 g CH4 m?2 yr?1 per cm increase in water table height was derived from the data. 相似文献
12.
We studied the interannual variation of surface water partial pressure of CO2 (pCO2) and the CO2 emissions from the 37 large Finnish lakes linking them to the water quality, catchment and climate attributes in 1996–2001. The lake water CO2 was measured three times a year in the study lakes in 1998 and 1999 and for the rest of the years the CO2 was modeled by measured alkalinity. The median annual CO2 emission to the atmosphere ranged between 1.49 and 2.29 mol m?2 a?1. The annual CO2 emission followed closely the annual precipitation pattern with the highest emission during the years when the precipitation was highest (r2=0.81–0.97, P<0.05). There was a strong negative correlation (r2=0.50–0.82, P<0.001) between O2 and CO2 saturation in the lake water during stratification suggesting effective decomposition of organic matter in the lakes. Furthermore, total phosphorus and the proportion of agricultural land in the catchment had significant positive correlations with CO2 saturation. 相似文献
13.
Jean‐Robert Wells Jean‐François Boucher Achille‐Benjamin Laurent Claude Villeneuve 《Journal of Industrial Ecology》2012,16(2):212-222
This study presents the carbon footprint of a paperback book for which the cover and inside papers were produced in the United States and printed in Canada. The choice of paper mills for both cover and page papers was based on criteria such as percentage of recycled content in the pulp mix, transport distances (pulp mill to paper mill, paper mill to print), and technologies. The cradle‐to‐gate assessment of greenhouse gas (GHG) emissions follows recognized guidelines for carbon footprint assessment. The results show that the production of 400,000 books, mainly distributed in North America, would generate 1,084 tonnes carbon dioxide equivalent (CO2‐eq), or 2.71 kilograms (kg) CO2‐eq per book. The impact of using deinked market pulp (DMP) is shown here to be detrimental, accounting for 54% of total GHG emissions and being 32% higher than reference virgin Kraft pulp. This supports findings that DMP mill GHG emissions strongly correlate with the carbon intensity of the power grid supplying the pulp mill and that virgin Kraft mills that reuse wood residue and black liquor to produce heat and electricity can achieve lower GHG emissions per tonne of pulp produced. Although contrary to common thinking, this is consistent with the Paper Task Force 2002 conclusion for office paper (the closest paper grade to writing paper or fine paper) (EDF 2002a). To get a cradle‐to‐grave perspective, three different end‐of‐life (EOL) scenarios were analyzed, all of which included a harvested wood product (HWP) carbon storage benefit for 25 years. The GHG offset concept within the context of the book editor's “carbon‐neutral” paper claims is also discussed. 相似文献
14.
Methods for carbon footprinting typically combine all emissions into a single result, representing the emissions of greenhouse gases (GHGs) over the life cycle. The timing of GHG impacts, however, has become a matter of significant interest. In this study, two approaches are used to characterize the timing of GHG emission impacts associated with the production of energy from various biomass residues produced by the forest products industry. The first approach accounts for the timing of emissions and characterizes the impact using Intergovernmental Panel on Climate Change (IPCC) 100‐year global warming potentials (GWPs). The second is a dynamic carbon footprint approach that considers the timing of the GHG emissions, their fate in the atmosphere, and the associated radiative forcing as a function of time. The two approaches generally yield estimates of cumulative impacts over 100 years that differ by less than 5%. The timing of impacts, however, can be significantly affected by the approach used to characterize radiative forcing. For instance, the time required to see net benefits from a system using woody mill residues (e.g., bark and sawdust) is estimated to be 1.2 years when using a fully dynamic approach, compared to 7.5 years when using 100‐year GWPs, with the differences being primarily attributable to methane (CH4). The results obtained for a number of different biomass residue types from forest products manufacturing highlight the importance of using a fully dynamic approach when studying the timing of emissions impacts in cases where emissions are distributed over time or where CH4 is a significant contributor to the emissions. 相似文献
15.
Food chain systems (FCSs), which begin in agricultural production and end in consumption and waste disposal, play a significant role in China's rising greenhouse gas (GHG) emissions. This article uses scenario analysis to show China's potential trajectories to a low‐carbon FCS. Between 1996 and 2010, the GHG footprint of China's FCSs increased from 1,308 to 1,618 megatonnes of carbon dioxide equivalent (Mt CO2‐eq), although the emissions intensity of all food categories, except for aquatic food, recorded steep declines. We project three scenarios to 2050 based on historical trends and plausible shifts in policies and environmental conditions: reference scenario; technology improvement scenario; and low GHG emissions scenario. The reference scenario is based on existing trends and exhibits a large growth in GHG emissions, increasing from 1,585 Mt CO2‐eq in 2010 to 2,505 Mt CO2‐eq in 2050. In the technology improvement scenario, emissions growth is driven by rising food demand, but that growth will be counterbalanced by gains in agricultural technology, causing GHG emissions to fall to 1,413 Mt CO2‐eq by 2050. Combining technology improvement with the shift to healthier dietary patterns, GHG emissions in the low GHG emissions scenario will decline to 946 Mt CO2‐eq in 2050, a drop of 41.5% compared with the level in 2010. We argue that these are realistic projections and are indeed indicative of China's overall strategy for low‐carbon development. Improving agricultural technology and shifting to a more balanced diet could significantly reduce the GHG footprint of China's FCSs. Furthermore, the transition to a low‐carbon FCS has potential cobenefits for land sustainability and public health. 相似文献
16.
Gesa A. Weyhenmeyer Mats Fröberg Erik Karltun Maria Khalili Dolly Kothawala Johan Temnerud Lars J. Tranvik 《Global Change Biology》2012,18(1):349-355
Numerous studies have estimated carbon exchanges at the land–atmosphere interface, more recently also including estimates at the freshwater–atmosphere interface. Less attention has been paid to lateral carbon fluxes, in particular to the fate of terrestrial carbon during transport from soils via surface waters to the sea. Using extensive datasets on soil, lake and river mouth chemistry of the boreal/hemiboreal region we determined organic carbon (OC) stocks of the O horizon from catchment soils, annual OC transports through more than 700 lakes (OClakeflux) and the total annual OC transport at Sweden's 53 river mouths (OCseaflux). We show here that a minimum of 0.03–0.87% yr?1 of the OC soil stocks need to be exported to lakes in order to sustain the annual OClakeflux. Across Sweden we estimated a total OClakeflux of ~2.9 Mtonne yr?1, which corresponds to ~10% of Sweden's total terrestrial net ecosystem production, and it is over 50% higher than the total OCseaflux. The OC loss during transport to the sea follows a simple exponential decay with an OC half‐life of ~12 years. Water colour, a proxy often used for dissolved humic matter, is similarly lost exponentially but about twice as fast as OC. Thus, we found a selective loss of the coloured portion of soil‐derived OC during its transport through inland waters, prior to being discharged into the sea. The selective loss is water residence time dependent, resulting in that the faster the water flows through the landscape the less OC and colour is lost. We conclude that increases in runoff will result in less efficient losses of OC, and particularly of colour, if the time for OC transformations in the landscape shortens. Consequently, OC reaching the sea is likely to become more coloured, and less processed, which can have far‐reaching effects on biogeochemical cycles. 相似文献
17.
Jeffrey E. Stenzel Kristina J. Bartowitz Melannie D. Hartman James A. Lutz Crystal A. Kolden Alistair M. S. Smith Beverly E. Law Mark E. Swanson Andrew J. Larson William J. Parton Tara W. Hudiburg 《Global Change Biology》2019,25(11):3985-3994
Wildfire is an essential earth‐system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%–83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire (“snags”). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2 (~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2 from fossil fuels across the region. 相似文献
18.
The hydropower reservoirs, considered as a green source of energy, are now found to emit significant quantities of greenhouse gas (GHG) to the atmosphere. This article attempts to predict the vulnerability of Tehri reservoir, India to GHG emissions using the GHG risk assessment tool (GRAT). The GRAT is verified with experimental GHG fluxes. The annual mean CO2 fluxes from diffusion, bubbling, and degassing were 425.93 ± 122.50, 4.81 ± 1.33, and 7.01 ± 2.77 mg m?2d?1, whereas CH4 fluxes were 23.11 ± 7.08, 4.79 ± 1.08, and 7.41 ± 4.50 mg m?2d?1, respectively, during 2011–12. The model found that Tehri reservoir emitted higher CO2 and CH4 (i.e., 790 mg m?2d?1 and 64 mg m?2d?1, respectively) in 2011, which came within vulnerability range causing more climate change impact. By the year 2015, it would scale down to medium risks necessitating no further assessment of GHG. Significant difference between predicted and experimental GHG emission are assessed, which may be due to insufficient data, spatial and temporal variations, decomposition of flooded biomass, limitation of GRAT model, and inadequate methodology. The study reveals that GHG emission from Tehri reservoir is less than predicted by the GRAT. 相似文献
19.
Carbon fluxes from a tropical peat swamp forest floor 总被引:3,自引:0,他引:3
Jyrki Jauhiainen Hidenori Takahashi† Juha E. P. Heikkinen‡ Pertti J. Martikainen‡ Harri Vasander§ 《Global Change Biology》2005,11(10):1788-1797
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering. 相似文献
20.
This commentary is prompted by Thomas Wiedmann's “Defining (Urban) Producer and Consumer Sinks” published in this issue. In his article, Wiedmann presents a new framework for categorizing carbon sinks by borrowing practices from carbon emissions accounting and, essentially, proposing a “carbon sink footprint” model for urban inventories. While this is a valuable new concept, we argue that it is difficult to apply accurately given current knowledge and practices in urban life cycle assessment. Instead, a direct versus embodied classification based on where the sequestration service exists, not where the sink is located, is more useful from the perspective of municipal control and influence over creating and managing carbon sinks. This is ultimately important for the development of urban climate change mitigation measures. 相似文献