共查询到20条相似文献,搜索用时 0 毫秒
1.
Ryan P. Kovach Clint C. Muhlfeld Alisa A. Wade Brian K. Hand Diane C. Whited Patrick W. DeHaan Robert Al‐Chokhachy Gordon Luikart 《Global Change Biology》2015,21(7):2510-2524
Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision‐making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = ?0.77; P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence. 相似文献
2.
James J. Roberts Kurt D. Fausch Douglas P. Peterson Mevin B. Hooten 《Global Change Biology》2013,19(5):1383-1398
Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high‐elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high‐elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. 相似文献
3.
Mobile species will migrate considerable distances to find habitats suitable for meeting life history requirements, and stream‐dwelling salmonids are no exception. In April–October 2014, we used radio‐telemetry to examine habitat use and movement of 36 Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus (CRCT) in a 14.9‐km fragment of Milk Creek, a relatively low‐elevation stream in the Rocky Mountains (Colorado). We also used a network of data loggers to track stream temperature across time and space. Our objectives were to (1) characterize distribution and movement of CRCT, (2) evaluate seasonal differences in distribution and movement of CRCT, and (3) explore the relationship between stream temperature and distribution and movement of CRCT. During the course of our study, median range of CRCT was 4.81 km (range = 0.14–10.94) and median total movement was 5.94 km (range = 0.14–26.02). Median location of CRCT was significantly further upstream in summer than in spring, whereas range and movement of CRCT were greater in spring than in summer. Twenty‐six of the 27 CRCT tracked through mid‐June displayed a potamodromous (freshwater migratory) life history, migrating 1.8–8.0 km upstream during the spring spawning season. Four of the seven CRCT tracked through July migrated >1.4 km in summer. CRCT selected relatively cool reaches during summer months, and early‐summer movement was positively correlated with mean stream temperature. Study fish occupied stream segments in spring and fall that were thermally unsuitable, if not lethal, to the species in summer. Although transmitter loss limited the scope of inference, our findings suggest that preferred habitat is a moving target in Milk Creek, and that CRCT move to occupy that target. Because mobile organisms move among complementary habitats and exploit seasonally‐unsuitable reaches, we recommend that spatial and temporal variability be accounted for in delineations of distributional boundaries. 相似文献
4.
Arthur D. Middleton Thomas A. Morrison Jennifer K. Fortin Charles T. Robbins Kelly M. Proffitt P. J. White Douglas E. McWhirter Todd M. Koel Douglas G. Brimeyer W. Sue Fairbanks Matthew J. Kauffman 《Proceedings. Biological sciences / The Royal Society》2013,280(1762)
The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears. 相似文献
5.
We quantified stream temperature response to in‐stream habitat restoration designed to improve thermal suitability and resiliency of a high‐elevation Appalachian stream known to support a temperature‐limited brook trout population. Our specific objectives were to determine if: (1) construction of deep pools created channel unit‐scale thermal refugia and (2) reach scale stream channel reconfiguration reduced peak water temperatures along a longitudinal continuum known to be highly susceptible to summer‐time warming. Contrary to expectations, constructed pools did not significantly decrease channel unit‐scale summer water temperatures relative to paired control sites. This suggests that constructed pools did not successfully intercept a cool groundwater source. However, we did find a significant effect of stream channel restoration on reach‐scale thermal regimes. Both mean and maximum daily stream temperatures experienced significantly reduced warming trends in restored sections relative to control sections. Furthermore, we found that restoration efforts had the greatest effect on stream temperatures downstream of large tributaries. Restoration appears to have significantly altered thermal regimes within upper Shavers Fork, largely in response to changes in channel morphology that facilitated water movement below major cold‐water inputs. Decreased longitudinal warming will likely increase the thermal resiliency of the Shavers Fork main‐stem, sustaining the ability of these key large river habitats to continue supporting critical metapopulation processes (e.g. supplemental foraging and dispersal among tributary populations) in the face of climate change. 相似文献
6.
Thermal microrefugia, sites within a landscape which are relatively protected from temperature extremes and warming trends, may be necessary for the conservation of animal species as climates warm. In freshwater environments, cold water fish species such as Pacific salmonids already rely on thermal microrefugia to persist in the southern extent of their range. Identifying sites that can provide such thermal microrefugia is essential to inform conservation and management decisions. At present, however, there is no consensus on appropriate ways to identify such sites, and multiple approaches are presented in the literature. Here, we use high resolution thermal data from two cold‐water zones created at the confluence of tributaries with a warm main channel of the South Fork Eel River in Northern California to demonstrate that the characteristics of cold zones identified as thermal microrefugia are not robust to the choice of microrefugium definition. Common definitions disagree on the existence, volume, seasonal temporal trends, and diurnal variations in microrefugia at the two confluences. The disagreements arise from the complex interaction between the confluence mixing regime with diurnal/seasonal warming patterns and how this shapes the distribution of water temperature at the confluences, and how it is classified by each definition. The disagreements cannot be resolved by simple bias correction approaches. Given that all existing definitions rely on simplifications that negate the nuanced way fish use cold water zones and respond to thermal stress, alternative observation and classification approaches may be needed to characterize cold zones in rivers as thermal microrefugia. 相似文献
7.
A suite of 26 PCR‐based markers was developed that differentiates rainbow (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki). The markers also differentiated rainbow from other cutthroat trout subspecies (O. clarki), and several of the markers differentiated between cutthroat trout subspecies. This system has numerous positive attributes, including: nonlethal sampling, high species‐specificity and products that are easily identified and scored using agarose gel electrophoresis. The methodology described for developing the markers can be applied to virtually any system in which numerous markers are desired for identifying or differentiating species or subspecies. 相似文献
8.
Clint C. Muhlfeld Steven T. Kalinowski Thomas E. McMahon Mark L. Taper Sally Painter Robb F. Leary Fred W. Allendorf 《Biology letters》2009,5(3):328-331
Human-mediated hybridization is a leading cause of biodiversity loss worldwide. How hybridization affects fitness and what level of hybridization is permissible pose difficult conservation questions with little empirical information to guide policy and management decisions. This is particularly true for salmonids, where widespread introgression among non-native and native taxa has often created hybrid swarms over extensive geographical areas resulting in genomic extinction. Here, we used parentage analysis with multilocus microsatellite markers to measure how varying levels of genetic introgression with non-native rainbow trout (Oncorhynchus mykiss) affect reproductive success (number of offspring per adult) of native westslope cutthroat trout (Oncorhynchus clarkii lewisi) in the wild. Small amounts of hybridization markedly reduced fitness of male and female trout, with reproductive success sharply declining by approximately 50 per cent, with only 20 per cent admixture. Despite apparent fitness costs, our data suggest that hybridization may spread due to relatively high reproductive success of first-generation hybrids and high reproductive success of a few males with high levels of admixture. This outbreeding depression suggests that even low levels of admixture may have negative effects on fitness in the wild and that policies protecting hybridized populations may need reconsideration. 相似文献
9.
Effects of biotic and abiotic factors on the distribution of trout and salmon along a longitudinal stream gradient 总被引:1,自引:0,他引:1
Synopsis We examined the influence of biotic and abiotic factors on the distribution, abundance, and condition of salmonid fishes along a stream gradient. We observed a longitudinal change in fish distribution with native cutthroat trout, Oncorhynchus clarki utah, and introduced brown trout, Salmo trutta, demonstrating a distinct pattern of allopatry. Cutthroat trout dominated high elevation reaches, while reaches at lower elevations were dominated by brown trout. A transition zone between these populations was associated with lower total trout abundance, consistent changes in temperature and discharge, and differences in dietary preference. Variation in cutthroat trout abundance was best explained by a model including the abundance of brown trout and diel temperature, whereas variation in brown trout abundance was best explained by a model including the abundance of cutthroat trout and discharge. These results suggest the potential for condition-mediated competition between the two species. The results from our study can aid biologists in prioritizing conservation activities and in developing robust management strategies for cutthroat trout. 相似文献
10.
We describe 12 diagnostic single nucleotide polymorphism (SNP) assays for use in species identification among rainbow and cutthroat trout: five of these loci have alleles unique to rainbow trout (Oncorhynchus mykiss), three unique to westslope cutthroat trout (O. clarkii lewisi) and four unique to Yellowstone cutthroat trout (O. clarkii bouvieri). These diagnostic assays were identified using a total of 489 individuals from 26 populations and five fish hatchery strains. 相似文献
11.
V. L. PRITCHARD K. JONES J. L. METCALF A. P. MARTIN P. WILKINSON D. E. COWLEY 《Molecular ecology resources》2007,7(4):594-596
We describe the isolation and characterization of 12 tetranucleotide microsatellites for Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis) and rainbow trout (Oncorhynchus mykiss), and subsequently investigate their performance in Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus), greenback cutthroat trout (Oncorhynchus clarkii stomias) and Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). All 12 loci are polymorphic in all subspecies of O. clarkii examined. 相似文献
12.
- Salmonids have been introduced globally, and native and invasive salmonids co‐exist in many regions. However, their responses to seasonal weather variation and global climate change are poorly known.
- The aim of this study was to compare effects of inter‐annual variation in seasonal weather patterns on native brook trout (BKT) (Salvelinus fontinalis) versus invasive rainbow trout (RBT) (Oncorhynchus mykiss) abundance using summer electrofishing data (May through September) spanning 28 years in the Great Smoky Mountains National Park, U.S.A. (c. 200 stream sites per species). In particular, we tested if different spawning timing between BKT (autumn) and RBT (late winter) would result in heterogeneous population responses to high seasonal precipitation, which would negatively affect early life stages with impaired swimming ability.
- As predicted, young‐of‐the‐year (YOY) abundance of autumn‐spawning BKT was most strongly impacted by total precipitation between February and March, and RBT YOY abundance was most strongly impacted by peak precipitation between April and May. Despite the presence of these different key seasonal drivers, inter‐annual variation in YOY density of these two species was positively correlated because precipitation in April and May also impacted the abundance of BKT YOY.
- Adult abundance was less responsive to weather variation than YOY abundance, and was most strongly correlated with YOY abundance in the previous year, indicating the importance of flow‐driven population control influences on early life stages affecting population sizes into subsequent years. Adult BKT densities were not affected by any weather covariate, whereas adult RBT densities were correlated with four weather covariates in competing models. As a result, there was no correlation in the inter‐annual variation in adult density in these two species.
- The differing responses of BKT and RBT to long‐term seasonal weather patterns suggest that they will likely respond differently to global climate change. In particular, winter precipitation will likely be the key environmental driver of differences in their population responses.
13.
Shannon L. White Benjamen C. Kline Nathaniel P. Hitt Tyler Wagner 《Journal of fish biology》2019,95(4):1061-1071
Individual aggression and thermal refuge use were monitored in brook trout Salvelinus fontinalis in a controlled laboratory to determine how fish size and personality influence time spent in forage and thermal habitat patches during periods of thermal stress. On average, larger and more exploratory fish initiated more aggressive interactions and across all fish there was decreased aggression at warmer temperatures. Individual personality did not explain changes in aggression or habitat use with increased temperature; however, larger individuals initiated comparatively fewer aggressive interactions at warmer temperatures. Occupancy of forage patches generally declined as ambient stream temperatures approached critical maximum and fish increased thermal refuge use, with a steeper decline in forage patch occupancy observed in larger fish. These findings suggest that larger individuals may be more vulnerable to stream temperature rise. Importantly, even at thermally stressful temperatures, all fish periodically left the thermal refuge to forage. This indicates that the success of refugia at increasing population survival during periods of stream temperature rise may depend on the location of thermal refugia relative to forage locations within the larger habitat mosaic. These results provide insights into the potential for thermal refugia to improve population survival and can be used to inform predictions of population vulnerability to climate change. 相似文献
14.
Jeffrey T. Strait;Jared A. Grummer;Nicholas F. Hoffman;Clint C. Muhlfeld;Shawn R. Narum;Gordon Luikart; 《Evolutionary Applications》2024,17(2):e13663
Climate-induced expansion of invasive hybridization (breeding between invasive and native species) poses a significant threat to the persistence of many native species worldwide. In the northern U.S. Rocky Mountains, hybridization between native cutthroat trout and non-native rainbow trout has increased in recent decades due, in part, to climate-driven increases in water temperature. It has been postulated that invasive hybridization may enhance physiological tolerance to climate-induced thermal stress because laboratory studies indicate that rainbow trout have a higher thermal tolerance than cutthroat trout. Here, we assessed whether invasive hybridization improves cardiac performance response to acute water temperature stress of native wild trout populations. We collected trout from four streams with a wide range of non-native admixture among individuals and with different temperature and streamflow regimes in the upper Flathead River drainage, USA. We measured individual cardiac performance (maximum heart rate, “MaxHR”, and temperature at arrhythmia, “ArrTemp”) during laboratory trials with increasing water temperatures (10–28°C). Across the study populations, we observed substantial variation in cardiac performance of individual trout when exposed to thermal stress. Notably, we found significant differences in the cardiac response to thermal regimes among native cutthroat trout populations, suggesting the importance of genotype-by-environment interactions in shaping the physiological performance of native cutthroat trout. However, rainbow trout admixture had no significant effect on cardiac performance (MaxHR and ArrTemp) within any of the three populations. Our results indicate that invasive hybridization with a warmer-adapted species does not enhance the cardiac performance of native trout under warming conditions. Maintaining numerous populations across thermally and hydrologically diverse stream environments will be crucial for native trout to adapt and persist in a warming climate. 相似文献
15.
A von Bertalanffy growth model for young-of the-year Atlantic salmon Salmo salar in a small French coastal stream was fitted using water temperatures and densities of juvenile salmonids (S. salar and brown trout Salmo trutta) as covariates influencing daily growth rate. The Bayesian framework was used as a template to integrate prior information from external data sets. The relative influence of the covariates on parr growth was quantified and results showed that growth of S. salar juveniles depended on both water temperatures and densities, but that most of the spatiotemporal variability of growth resulted from local spatiotemporal variations of 0+ age salmonid (S. salar and S. trutta) densities. Further analysis revealed that the fluctuations in young-of-the-year salmonid densities are likely to dominate the effects of potential future warming of water temperature due to climate change. It is concluded that factors that could affect salmonid densities might well have a greater effect on S. salar population dynamics than factors influencing water temperatures. 相似文献
16.
17.
18.
19.
Clint C. Muhlfeld Robert Al‐Chokhachy Stephen J. Amish Jeffrey L. Kershner Robb F. Leary Winsor H. Lowe Gordon Luikart Phil Matson David A. Schmetterling Bradley B. Shepard Peter A. H. Westley Diane Whited Andrew Whiteley Fred W. Allendorf 《Global Change Biology》2017,23(11):4663-4674
Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate‐induced expansions of invasive species. Long‐term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high‐resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long‐term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human‐mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories. 相似文献
20.
- Two dominant drivers of species distributions are climate and habitat, both of which are changing rapidly. Understanding the relative importance of variables that can control distributions is critical, especially for invasive species that may spread rapidly and have strong effects on ecosystems.
- Here, we examine the relative importance of climate and habitat variables in controlling the distribution of the widespread invasive freshwater clam Corbicula fluminea, and we model its future distribution under a suite of climate scenarios using logistic regression and maximum entropy modelling (MaxEnt).
- Logistic regression identified climate variables as more important than habitat variables in controlling Corbicula distribution. MaxEnt modelling predicted Corbicula's range expansion westward and northward to occupy half of the contiguous United States. By 2080, Corbicula's potential range will expand 25–32%, with more than half of the continental United States being climatically suitable.
- Our combination of multiple approaches has revealed the importance of climate over habitat in controlling Corbicula's distribution and validates the climate‐only MaxEnt model, which can readily examine the consequences of future climate projections.
- Given the strong influence of climate variables on Corbicula's distribution, as well as Corbicula's ability to disperse quickly and over long distances, Corbicula is poised to expand into New England and the northern Midwest of the United States. Thus, the direct effects of climate change will probably be compounded by the addition of Corbicula and its own influences on ecosystem function.