首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (CO2) uptake may, in part, offset respiratory losses. To determine the effects of air and soil warming on CO2 exchange in tundra, we established an ecosystem warming experiment – the Carbon in Permafrost Experimental Heating Research (CiPEHR) project – in the northern foothills of the Alaska Range in Interior Alaska. We used snow fences coupled with spring snow removal to increase deep soil temperatures and thaw depth (winter warming) and open‐top chambers to increase growing season air temperatures (summer warming). Winter warming increased soil temperature (integrated 5–40 cm depth) by 1.5 °C, which resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m?2 in the winter warming plots did not result in significant changes in cumulative growing season respiration, which may have been inhibited by soil saturation at the base of the active layer. In contrast to the limited effects on growing‐season C dynamics, winter warming caused drastic changes in winter respiration and altered the annual C balance of this ecosystem by doubling the net loss of CO2 to the atmosphere. While most changes to the abiotic environment at CiPEHR were driven by winter warming, summer warming effects on plant and soil processes resulted in 20% increases in both gross primary productivity and growing season ecosystem respiration and significantly altered the age and sources of CO2 respired from this ecosystem. These results demonstrate the vulnerability of organic C stored in near surface permafrost to increasing temperatures and the strong potential for warming tundra to serve as a positive feedback to global climate change.  相似文献   

2.
Ecosystem respiration (Reco) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ14C and δ13C into four sources–two autotrophic (above – and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ14C and δ13C of sources using incubations and the Δ14C and δ13C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco. Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.  相似文献   

3.
增温和刈割对高寒草甸土壤呼吸及其组分的影响   总被引:1,自引:0,他引:1  
蒙程  牛书丽  常文静  全权  曾辉 《生态学报》2020,40(18):6405-6415
评估土壤呼吸及其组分对增温等全球变化的响应对于预测陆地生态系统碳循环至关重要。本研究利用红外线辐射加热器(Infrared heater)装置在青藏高原高寒草甸生态系统设置增温和刈割野外控制实验。通过测定2018年生长季(5—9月)土壤呼吸和异养呼吸,探究增温和刈割对土壤呼吸及其组分的影响。研究结果表明:(1) 单独增温使土壤呼吸显著增加31.65% (P<0.05),异养呼吸显著增加27.12% (P<0.05),土壤自养呼吸没有显著改变(P>0.05);单独刈割对土壤呼吸和自养呼吸没有显著影响(P>0.05),单独刈割刺激异养呼吸增加32.54% (P<0.05);(2) 增温和刈割之间的交互作用对土壤呼吸和异养呼吸没有显著影响(P>0.05),但是对自养呼吸的影响是显著的(P<0.05),土壤呼吸和异养呼吸的季节效应显著(P<0.05);(3)土壤呼吸及其组分与土壤温度均成显著指数关系,与土壤湿度呈显著的正相关关系(P<0.05),处理影响它们的响应敏感性。本研究表明青藏高原东缘高寒草甸土壤碳排放与气候变暖存在正反馈。  相似文献   

4.
One of the most important changes in high‐latitude ecosystems in response to climatic warming may be the thawing of permafrost soil. In upland tundra, the thawing of ice‐rich permafrost can create localized surface subsidence called thermokarst, which may change the soil environment and influence ecosystem carbon release and uptake. We established an intermediate scale (a scale in between point chamber measurements and eddy covariance footprint) ecosystem carbon flux study in Alaskan tundra where permafrost thaw and thermokarst development had been occurring for several decades. The main goal of our study was to examine how dynamic ecosystem carbon fluxes [gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE)] relate to ecosystem variables that incorporate the structural and edaphic changes that co‐occur with permafrost thaw and thermokarst development. We then examined how these measured ecosystem carbon fluxes responded to upscaling. For both spatially extensive measurements made intermittently during the peak growing season and intensive measurements made over the entire growing season, ecosystem variables including degree of surface subsidence, thaw depth, and aboveground biomass were selected in a mixed model selection procedure as the ‘best’ predictors of GPP, Reco, and NEE. Variables left out of the model (often as a result of autocorrelation) included soil temperature, moisture, and normalized difference vegetation index. These results suggest that the structural changes (surface subsidence, thaw depth, aboveground biomass) that integrate multiple effects of permafrost thaw can be useful components of models used to estimate ecosystem carbon exchange across thermokarst affected landscapes.  相似文献   

5.
Warming temperatures are likely to accelerate permafrost thaw in the Arctic, potentially leading to the release of old carbon previously stored in deep frozen soil layers. Deeper thaw depths in combination with geomorphological changes due to the loss of ice structures in permafrost, may modify soil water distribution, creating wetter or drier soil conditions. Previous studies revealed higher ecosystem respiration rates under drier conditions, and this study investigated the cause of the increased ecosystem respiration rates using radiocarbon signatures of respired CO2 from two drying manipulation experiments: one in moist and the other in wet tundra. We demonstrate that higher contributions of CO2 from shallow soil layers (0–15 cm; modern soil carbon) drive the increased ecosystem respiration rates, while contributions from deeper soil (below 15 cm from surface and down to the permafrost table; old soil carbon) decreased. These changes can be attributed to more aerobic conditions in shallow soil layers, but also the soil temperature increases in shallow layers but decreases in deep layers, due to the altered thermal properties of organic soils. Decreased abundance of aerenchymatous plant species following drainage in wet tundra reduced old carbon release but increased aboveground plant biomass elevated contributions of autotrophic respiration to ecosystem respiration. The results of this study suggest that drier soils following drainage may accelerate decomposition of modern soil carbon in shallow layers but slow down decomposition of old soil carbon in deep layers, which may offset some of the old soil carbon loss from thawing permafrost.  相似文献   

6.
Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta‐analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming‐induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long‐term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming‐induced soil hydrological changes when modeling soil respiration under climate change.  相似文献   

7.
Northern temperate ecosystems are experiencing warmer and more variable winters, trends that are expected to continue into the foreseeable future. Despite this, most studies have focused on climate change impacts during the growing season, particularly when comparing responses across different vegetation cover types. Here we examined how a perennial grassland and adjacent mixed forest ecosystem in New Hampshire, United States, responded to a period of highly variable winters from 2014 through 2017 that included the warmest winter on record to date. In the grassland, record‐breaking temperatures in the winter of 2015/2016 led to a February onset of plant growth and the ecosystem became a sustained carbon sink well before winter ended, taking up roughly 90 g/m2 more carbon during the winter to spring transition than in other recorded years. The forest was an unusually large carbon source during the same period. While forest photosynthesis was restricted by leaf‐out phenology, warm winter temperatures caused large pulses of ecosystem respiration that released nearly 230 g C/m2 from February through April, more than double the carbon losses during that period in cooler years. These findings suggest that, as winters continue to warm, increases in ecosystem respiration outside the growing season could outpace increases in carbon uptake during a longer growing season, particularly in forests that depend on leaf‐out timing to initiate carbon uptake. In ecosystems with a perennial leaf habit, warming winter temperatures are more likely to increase ecosystem carbon uptake through extension of the active growing season. Our results highlight the importance of understanding relationships among antecedent winter conditions and carbon exchange across land‐cover types to understand how landscape carbon exchange will change under projected climate warming.  相似文献   

8.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

9.
Arctic terrestrial ecosystems are extremely vulnerable to climate change. A major concern is how the carbon balance of these ecosystems will respond to climate change. In this study, we constructed a simple ecological process-based model to assess how the carbon balance will be altered by ongoing climate change in High Arctic tundra ecosystems using in situ observations of carbon cycle processes. In particular, we simulated stand-level photosynthesis, root respiration, heterotrophic respiration, and hence net ecosystem production (NEP) of a plant community dominated by vascular plants and mosses. Analyses were carried out for current and future temperature and precipitation conditions. Our results showed that the tundra ecosystem was a CO2 sink (NEP of 2.3–18.9 gC m?2 growing season?1) under present temperature conditions. Under rising temperature (2–6 °C), carbon gain is significantly reduced, but a few days’ extension of the foliage period caused by their higher temperatures compensated for the negative effect of temperature on NEP. Precipitation is the major environmental factor driving photosynthetic productivity of mosses, but it had a minor influence on community-level NEP. However, NEP decreased by a maximum 15.3 gC m?2 growing season?1 under a 30-day prolongation of the moss-growing season, suggesting that growing season extension had a negative effect on ecosystem carbon gain, because of poorer light conditions in autumn. Because the growing season creates a weak CO2 sink at present, lengthening of the snow-free season coupled with rising temperature could seriously affect the future carbon balance of this Arctic tundra ecosystem.  相似文献   

10.
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant‐removal experiment in two Sphagnum‐dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb‐14C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.  相似文献   

11.
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330–1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.  相似文献   

12.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   

13.
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai–Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole‐year warming experiment between 2012 and 2014 using open‐top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai–Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber‐based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming‐induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.  相似文献   

14.
Thawing permafrost in the sub‐Arctic has implications for the physical stability and biological dynamics of peatland ecosystems. This study provides an analysis of how permafrost thawing and subsequent vegetation changes in a sub‐Arctic Swedish mire have changed the net exchange of greenhouse gases, carbon dioxide (CO2) and CH4 over the past three decades. Images of the mire (ca. 17 ha) and surroundings taken with film sensitive in the visible and the near infrared portion of the spectrum, [i.e. colour infrared (CIR) aerial photographs from 1970 and 2000] were used. The results show that during this period the area covered by hummock vegetation decreased by more than 11% and became replaced by wet‐growing plant communities. The overall net uptake of C in the vegetation and the release of C by heterotrophic respiration might have increased resulting in increases in both the growing season atmospheric CO2 sink function with about 16% and the CH4 emissions with 22%. Calculating the flux as CO2 equivalents show that the mire in 2000 has a 47% greater radiative forcing on the atmosphere using a 100‐year time horizon. Northern peatlands in areas with thawing sporadic or discontinuous permafrost are likely to act as larger greenhouse gas sources over the growing season today than a few decades ago because of increased CH4 emissions.  相似文献   

15.
Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID‐Δ) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long‐term (9 years) warmed (~2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2‐C m?2 season?1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ~10%, especially in the first half of the summer. During the ~70 days growing season (mid‐June–mid‐August), the dry and wet tundra ecosystems were net CO2‐C sinks (30 and 67 g C m?2 season?1, respectively) and the mesic ecosystem was a net C source (58 g C m?2 season?1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ~12% in dry tundra, but reduced net C uptake by ~20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long‐term warming with ~30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m?2 season?1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long‐term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long‐term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2‐C exchange rates ranged from losses of 64 g C m?2 yr?1 to gains of 55 g C m?2 yr?1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests.  相似文献   

16.
Adjustment of Forest Ecosystem Root Respiration as Temperature Warms   总被引:1,自引:0,他引:1  
Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic portion of soil respiration and influence the amount of carbon available for biomass production. We examined 44 published values of annual forest root respiration and found an increase in ecosystem root respiration with increasing mean annual temperature (MAT),but the rate of this cross-ecosystem increase (Q10 = 1.6) is less than published values for short-term responses of root respiration to temperature within ecosystems (Q10 = 2-3). When specific root respiration rates and root biomass values were examined, there was a clear trend for decreasing root metabolic capacity (respiration rate at a standard temperature) with increasing MAT. There also were tradeoffs between root metabolic capacity and root system biomass, such that there were no instances of high growing season respiration rates and high root biomass occurring together. We also examined specific root respiration rates at three soil warming experiments at Harvard Forest, USA, and found decreases in metabolic capacity for roots from the heated plots. This decline could be due to either physiological acclimation or to the effects of co-occurring drier soils on the measurement date. Regardless of the cause, these findings clearly suggest that modeling efforts that allow root respiration to increase exponentially with temperature, with Qt0 values of 2 or more, may over-predict root contributions to ecosystem CO2 efflux for future climates and underestimate the amount of C available for other uses,including net primary productivity.  相似文献   

17.
We investigated the relationships of net ecosystem carbon exchange (NEE), soil temperature, and moisture with soil respiration rate and its components at a grassland ecosystem. Stable carbon isotopes were used to separate soil respiration into autotrophic and heterotrophic components within an eddy covariance footprint during the 2008 and 2009 growing seasons. After correction for self‐correlation, rates of soil respiration and its autotrophic and heterotrophic components for both years were found to be strongly influenced by variations in daytime NEE – the amount of C retained in the ecosystem during the daytime, as derived from NEE measurements when photosynthetically active radiation was above 0 μmol m?2 s?1. The time scale for correlation of variations in daytime NEE with fluctuations in respiration was longer for heterotrophic respiration (36–42 days) than for autotrophic respiration (4–6 days). In addition to daytime NEE, autotrophic respiration was also sensitive to soil moisture but not soil temperature. In contrast, heterotrophic respiration from soils was sensitive to changes in soil temperature, soil moisture, and daytime NEE. Our results show that – as for forests – plant activity is an important driver of both components of soil respiration in this tallgrass prairie grassland ecosystem. Heterotrophic respiration had a slower coupling with plant activity than did autotrophic respiration. Our findings suggest that the frequently observed variations in the sensitivity of soil respiration to temperature or moisture may stem from variations in the proportions of autotrophic and heterotrophic components of soil respiration. Rates of photosynthesis at seasonal time scales should also be considered as a driver of both autotrophic and heterotrophic soil respiration for ecosystem flux modeling.  相似文献   

18.
Rapid warming in northern ecosystems is simultaneously influencing plants, herbivores and the interactions among them. Recent studies suggest that herbivory could buffer plant responses to environmental change, but this has only been shown for vertebrate herbivores so far. The role of invertebrate herbivory in tundra ecosystems is often overlooked, but can be relevant in determining the structure and dynamics of tundra plant communities and may also affect how plants respond to warming. Invertebrate herbivores are also likely to respond more rapidly to warming than vertebrates because their behaviour and life cycles strongly depend on temperature. We investigated the effects of current season warming on Arctic moth caterpillars, their herbivory rates, and the subsequent responses of two common tundra plants, Salix arctica and Dryas octopetala. We manipulated both herbivore presence and temperature in a full‐factorial field experiment at two elevations, using enclosures and passive warming chambers. Changes in temperature achieved through elevation and/or experimental warming directly affected caterpillars, herbivory and the responses of plants. Caterpillars performed worse (higher respiration rates and lower growth rates) in warmer, lower elevation plots and shifted their diets towards more nutritious foods, such that the relative intensity of herbivory changed for the two studied plants. Within‐season responses of both forage plant species were weak, but invertebrate herbivores affected the responses of plants to elevation or experimental warming. Our results suggest that increased temperatures can reduce the performance of cold‐adapted invertebrate herbivores, with potential consequences to the longer term responses of tundra plants to warming due to changes in herbivory rates and selective foraging.  相似文献   

19.
Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20–50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active‐layer detachment slides, thermo‐erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off‐site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2O concentration. Elevated N2O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the incorporation of this nonlinear process into projections of carbon and nitrogen release from degrading permafrost.  相似文献   

20.
Recent studies found that the largest uncertainties in the response of the terrestrial carbon cycle to climate change might come from changes in soil moisture under the elevation of temperature. Warming‐induced change in soil moisture and its level of influence on terrestrial ecosystems are mostly determined by climate, soil, and vegetation type and their sensitivity to temperature and moisture. Here, we present the results from a warming experiment of an alpine ecosystem conducted in the permafrost region of the Qinghai–Tibet Plateau using infrared heaters. Our results show that 3 years of warming treatments significantly elevated soil temperature at 0–100 cm depth, decreased soil moisture at 10 cm depth, and increased soil moisture at 40–100 cm depth. In contrast to the findings of previous research, experimental warming did not significantly affect NH 4 +‐N, NO 3 ‐N, and heterotrophic respiration, but stimulated the growth of plants and significantly increased root biomass at 30–50 cm depth. This led to increased soil organic carbon, total nitrogen, and liable carbon at 30–50 cm depth, and increased autotrophic respiration of plants. Analysis shows that experimental warming influenced deeper root production via redistributed soil moisture, which favors the accumulation of belowground carbon, but did not significantly affected the decomposition of soil organic carbon. Our findings suggest that future climate change studies need to take greater consideration of changes in the hydrological cycle and the local ecosystem characteristics. The results of our study will aid in understanding the response of terrestrial ecosystems to climate change and provide the regional case for global ecosystem models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号