首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Are setts significant determinants of badger socio‐spatial organisation, and do suitable sett sites represent a limited resource, potentially affecting badger distributions? The factors determining diurnal resting den, or sett, location and selection by Eurasian badgers Meles meles L. were investigated in Wytham Woods, Oxfordshire. 279 sett sites were located. The habitat parameters that were associated with the siting of these setts were analysed and associations were sought between sett location and character and the body condition and body weight of resident badgers Habitat characteristics in the vicinity of setts were significantly different from randomly selected points. Badgers preferentially selected sites with sandy, well‐drained soils, situated on NW‐facing, convex and moderately inclined slopes at moderate altitude. There was no evidence that sett morphology (number of entrances, sett area, number of hinterland latrines) was affected by the surrounding sett site habitat characteristics. Mean body weight was significantly higher for badgers occupying territories with setts in sandy soils, situated on NW‐facing slopes, than in territories with less optimal sett characteristics. Contrary to the hypothesis that the availability of sett sites was limiting, and therefore that sett dispersion dictates the spatial and social organisation of their populations, the badgers were clearly able to excavate new setts. On our measures, these new setts were not inferior to old established ones, despite occupying subsequently exploited sites; the badgers utilising these new setts had neither lighter body weights nor poorer body condition scores. During the period of our study badgers have manifestly been able to dig numerous new setts; as satisfactory sites still remain available, this indicates that suitable sett sites have not yet become a limiting resource. There was no relationship between sett age and the characteristics of the site in which it was dug, as suitable sites were not limiting. Significantly, population expansion during the decade 1987–1997 was not constrained by lack of setts, rather the main proliferation in setts occurred after the population size had peaked in 1996. Some implications for the management and conservation of the Eurasian badger are considered.  相似文献   

2.
In Ireland, the badger Meles meles L is a reservoir species for Mycobacterium bovis and, as such, contributes to the maintenance of bovine tuberculosis in cattle. A previous estimate of the badger population in the Republic was 200,000 badgers. In the current study, we obtained data on badger numbers from a large-scale badger removal project (the Four-Area project). The removal areas of the Four-Area Project were surrounded by barriers (either water or buffer areas where removals were also conducted) to prevent badger immigration. Within these areas, a grid of 0.25 km2 was created within which we knew the badger numbers and habitat types (based on Corine data). Associations between badger numbers and habitat type were investigated using negative binomial modeling. Extrapolations from the model yielded an estimated badger population in the Republic of approximately 84,000 badgers. The implications of these findings are discussed.  相似文献   

3.
Animal populations generally increase after release from hunting pressure and/or cessation of illegal persecution. Implementation of full legislative protection of the Eurasian badger Meles meles in Great Britain is thought to have led to increases in badger abundance due to reduced levels of persecution. Conversely, prevalence of badger persecution in Northern Ireland was historically much higher than in Great Britain, and badger abundance remained stable over time despite similar legislative protection. We examined temporal changes in the prevalence of badger sett disturbance in Northern Ireland from 1990/1993 to 2007/2008 in relation to population status. A total of 56 (12.6%) of 445 setts surveyed during 1990/1993 had been disturbed compared to 29 (4.4%) of 653 setts during 2007/2008. This was a significant decline (−65%) in the incidence of sett disturbance over the 14–18-year period. Most notably, the incidence of digging at badger setts, indicative of local badger baiting activity, declined from 50% to 3.5% of disturbed setts. Signs of recent disturbance were significantly more frequent at disused setts suggesting that once disturbed, badgers may vacate a sett. The number of badger social groups in Northern Ireland did not differ between the two study periods, suggesting that previously high levels of badger persecution did not limit the number of badger social groups. The stability of the badger population in Northern Ireland compared to the growing population in Great Britain cannot be attributed to changes in the prevalence of persecution. Differences in the trajectories of both populations could be due to a range of factors including climate, habitat composition and structure, farming practices or food availability. More work is needed to determine how such factors influence badger population dynamics.  相似文献   

4.
European badgers (Meles meles) in Ireland and the UK are a reservoir for Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). A number of interventions have been evaluated in attempts to control bovine TB within badger populations, and many of which rely on the capture of badgers. One strategy being implemented within Ireland is intramuscular vaccination using Bacillus Calmette-Guérin (BCG), as an alternative to badger culling. The success of vaccination as a disease control strategy depends on the ability to capture badgers and administer vaccines; thus, trapping success is crucial to effectively vaccinate the population (maximize vaccine coverage). A field vaccine trial was conducted in County Kilkenny, Ireland, from 2010–2013. We used data from this trial to evaluate the association between weather (precipitation and temperature data), badger sett characteristics, and badger trapping success. Approximately 10% of capture efforts resulted in a badger capture. Our results indicate that badger captures were the highest in drizzle, rain, and heavy rain weather conditions, and when minimum temperatures ranged from 3–8 °C. Badger captures were the highest at main setts (large burrow systems), and when sett activity scores were high (qualitative classes 4 or 5). Using local precipitation and temperature data in conjunction with observed sett characteristics provides wildlife managers with guidelines to optimize trapping success. Implementing capture operations under optimal conditions should increase the trapping success of badgers and allow for increased delivery of vaccines to manage bovine TB.  相似文献   

5.
张广才岭藏獾洞穴生境选择   总被引:1,自引:1,他引:0  
李路云  杨会涛  滕丽微  刘振生 《生态学报》2015,35(14):4836-4842
2008年9月至2009年8月,在黑龙江省方正林业局新风林场,用不定宽样线法对藏獾洞穴生境选择进行研究,共记录了55组藏獾洞穴,藏獾洞口平均直径为(27.40±7.15)cm,洞深平均为(84.18±22.04)cm,倾角平均为(26.36±9.10)°,洞口总数=3.02个常用洞数+0.80个不常用洞数+0.56个废弃洞数。相对于对照样方而言,藏獾洞穴更偏爱选择位于郁闭度和植被盖度小,灌木密度大、距离近,乔木距离远,距水源和农田近、人为干扰距离远,坡度较缓的向阳中坡位的生境。资源选择函数模型为:logit(p)=246.980-1.059×植被盖度-0.703×距水源距离-1.403×坡度-45.005×坡向,模型的正确预测率为93.9%。  相似文献   

6.
Effective management of infectious disease relies upon understanding mechanisms of pathogen transmission. In particular, while models of disease dynamics usually assume transmission through direct contact, transmission through environmental contamination can cause different dynamics. We used Global Positioning System (GPS) collars and proximity‐sensing contact‐collars to explore opportunities for transmission of Mycobacterium bovis [causal agent of bovine tuberculosis] between cattle and badgers (Meles meles). Cattle pasture was badgers’ most preferred habitat. Nevertheless, although collared cattle spent 2914 collar‐nights in the home ranges of contact‐collared badgers, and 5380 collar‐nights in the home ranges of GPS‐collared badgers, we detected no direct contacts between the two species. Simultaneous GPS‐tracking revealed that badgers preferred land > 50 m from cattle. Very infrequent direct contact indicates that badger‐to‐cattle and cattle‐to‐badger M. bovis transmission may typically occur through contamination of the two species’ shared environment. This information should help to inform tuberculosis control by guiding both modelling and farm management.  相似文献   

7.
In the UK and Ireland, research on the control of bovine tuberculosis in badgers includes the development of a palatable bait for oral delivery of a vaccine and a means of its deployment in the field. In the present study, we carried out field deployment of bait according to the established method of bait marking in early spring and early summer to compare the effects of seasonality on bait uptake rates. All baits contained rhodamine B (RhB) which was subsequently detected in the hair and whiskers of captured badgers. During the 8 days of bait feeding at 14 badger setts, 99% of baits deployed in spring, and 100% of those deployed in summer were removed. The presence of RhB in captured badgers indicated high rates of uptake amongst adult badgers in spring (93%) and summer (98%). Only cubs captured in summer showed evidence of having taken bait (91%). Between 67% and 100% of each social group was estimated to have taken bait. The detection of RhB in 96% of badgers captured at outlier setts, where bait was not fed, suggested that deployment at main setts alone may be sufficient to target a relatively high proportion of the badger population. The number of baits deployed per marked badger suggested that a similar level of uptake might be achievable using fewer baits. The results clearly demonstrate the potential value of the bait-marking methodology for delivering vaccine baits to badgers during spring and summer, but that deployment in early summer is necessary to target cubs.  相似文献   

8.
Eurasian badgers, Meles meles, in Mediterranean cork‐oak woodlands live in small groups within territories that embrace a mosaic of habitats where several setts (dens) are scattered. Assuming that their population density was related to home range sizes and that this in turn was influenced by food and water availability and the existence of substrate suitable for sett construction, we explored the relationship between these parameters. Two biotopes were predominantly important in providing food security to badgers in the ‘Grândola’ mountain study area: olive groves and orchards or vegetable gardens. Analysis of the mean total area of these two habitats in the ranges of radio‐tracked badgers permitted us to extrapolate to an estimate that the 66 km2 encompassed eleven areas with the capacity to support badger groups each composed by 6–8 individuals. Since only three groups populated the area we concluded that food availability was not limiting badger density. Sites with surface water in summer (the dry season) seem sufficient to support more badger groups than existed, leading us to believe that this factor was also not limiting badger density. Simultaneously, using a logistic regression model and the biophysical characteristics of sett sites as explanatory variables, four predictor variables determined sett location: the existence of a geological fault/discontinuity, ridges, valleys and the distance to abandoned farm houses, of which the former had the higher odds ratio, being thus the best sett location predictor. Indeed, 56% of the areas predicted with >80% confidence to contain a badger sett were encompassed within a known home range. Therefore, our results suggest that, in Mediterranean cork oak woodlands in SW Portugal, the main factor limiting badger's density is the availability of suitable sites for setts. However, in areas where suitable sites for burrows existed, but food patches were absent, badgers were not found. This could indicate that the presence of both factors was necessary for badgers, although in this area sites suitable for digging setts appeared to be the primary limiting factor.  相似文献   

9.
The European Badger (Meles meles) has been implicated in the epidemiology of bovine tuberculosis in cattle populations in the Republic of Ireland. Badger populations have been subject to a culling regime in areas with chronic histories of bTB cattle herd breakdowns. Removal data from 2004 to 2010 were used to model the impact of culling on populations in areas under capture. Additionally, changes in field signs of badger activity were used as an index of abundance to support, or otherwise, the outcomes of the removal models. Significant reductions in standardised badger captures over time were found across three large study areas (total area, 1,355 km2). Assuming that all inactive setts were vacant, an overall linear trend model suggested that badger captures had decreased by 78 % for setts with 6 years of repeated capturing operations. Given the uncertainty associated with the relationship between sett activity and badger presence, we repeated the linear modelling using two ‘what if’ scenarios. Assuming that individual badgers were missed on 10 % or 20 % of occasions at inactive setts, the estimated decline over 6 years is lowered to 71 % or 64 %, respectively. The decline profile consisted of a steep initial decrease in captures within the first 2 years, followed by a more gradual decrease thereafter. The number of active openings at setts (burrows) declined significantly in all three areas; but the magnitude of this decline varied significantly amongst study areas (41–82 %). There was a significant increase in the probability of setts becoming dormant with time. The removal programme was more intense (mean, 0.45 badgers culled km?2 year?1) than previous experimental badger removals in Ireland but some captures may be attributed to immigrant badgers as no attempt was made to limit inward dispersal from areas not under management. Results from this study suggest that significant reductions in badger density occurred in the areas where management had taken place. Since other non-culled badger populations in Northern Ireland and Britain exhibited stable population trends, we attribute the reduction in relative abundance to the culling regime. Further studies of the dynamics of this reduction are required to quantify how it is counteracted by immigration from populations outside of culled areas.  相似文献   

10.
Tanaka H 《Zoological science》2006,23(11):991-997
This study examined seasonal changes in body weight, hibernation period, and body temperature of the Japanese badger (Meles meles anakuma) from 1997 to 2001. Adult badgers showed seasonal changes in body weight. Between mid-December and February, badger activity almost ceased, as the animals remained in their setts most of the time. Adult male badgers were solitary hibernators; adult females hibernated either alone or with their cubs and/or yearlings. The total hibernation period of Japanese badgers ranged from 42 to 80 days, with a mean length of 60.1 days. Japanese badgers did not always spend the winters in the same sett, although they seldom changed setts during hibernation. I equipped a male cub with an intraperitoneally implanted data logger to record its body temperature between November and April, while the cub hibernated with its mother. Over the winter, the body weight of the cub decreased from 5.3 kg to 3.6 kg, a weight loss of 32.1%, and its body temperature ranged from 32.0 to 39.8 degrees C. The mean monthly body temperature was 35.1 degrees C in December, 34.8 degrees C in January, 35.9 degrees C in February, 37.1 degrees C in March, and 37.4 degrees C in April, so the monthly decrease in body temperature of this cub was not great. The results indicate that during hibernation, when body temperature is low, there is likely considerable economy of energy and a reduced demand for adipose reserves.  相似文献   

11.
Distribution and population density of badgers Meles meles in Luxembourg   总被引:1,自引:0,他引:1  
1. The distribution and density of Eurasian badgers Meles meles in Luxembourg was estimated by gathering information about the location of badger setts with a questionnaire survey, by visiting 708 setts in order to classify them as ‘main setts’ or ‘outliers’, and by estimating social group size by directly counting emerging badgers. 2. Badgers were found to be widely distributed in Luxembourg, with a minimum main sett density of 0.17 setts/km2. Setts were sited preferentially in forest habitat. The mean minimum group size was 4.6 badgers. 3. The Luxembourg badger population was conservatively estimated to contain at least 2010 adult and young badgers (95% CI 1674–2347) in spring 2002, equivalent to a density of 0.78 adult and young badgers/km2 (95% CI 0.65–0.91). This is moderate compared to most of continental Europe.  相似文献   

12.
Since European badgers (Meles meles L.) form non-cooperative groups in parts of their geographic range, but are solitary elsewhere, their social systems have been at the centre of a debate about the evolution of group living in the Carnivora. In a recent review of models of non-cooperative sociality, Woodroffe and Macdonald (1993) presented evidence in favour of two hypotheses, which suggested that badger groups might form because either the distribution of blocks of foodrich habitat, or the economics of excavating new setts, prevented the division of group territories into individual territories. We present data upon the response of badger spatial organisation to a reduction in food-patch dispersion, brought about by the conversion of carthwormpoor arable land to earthworm-rich pasture over a 15-year period. This change in the distribution of earthworm-rich habitats was accompanied by territory fission, facilitated by the excavation of new setts. This indicates that the availability of sett sites had not constrained territory size at the start of the study. However, sett distribution did define the size and configuration of the daughter territories. We also show that variation among territories in the availability of food-rich habitats was reflected in the reproductive rates and body weights of the groups that inhabited them, although there was no detectable effect upon group size.  相似文献   

13.
李峰  蒋志刚 《生物多样性》2014,22(6):758-580
青海湖地区是目前已知的狗獾分布海拔最高点。为了解狗獾在青藏高原严酷生态环境下的生活史特点, 并验证是否人类干扰造成了狗獾夜行性的假说, 我们利用红外相机技术, 结合无线电遥测和野外调查研究了青海湖湖东地区亚洲狗獾(Meles leucurus)的种群密度、洞穴口的行为及活动节律。结果表明: (1)研究地区狗獾的平均种群密度为1.2 ± 0.6只/km2, 其分布受食物丰富度的影响; (2)狗獾基本在夜间活动, 出洞时间集中在20:00-23:00之间, 而回洞时间则集中在清晨4:00-7:00之间, 23:00-4:00之间是狗獾的活动高峰; (3)狗獾离洞前行为主要是警戒行为, 回洞穴时的行为主要是嬉戏行为, 其他行为较少见, 表达具有特定的时间性; (4)人类活动对于狗獾活动没有显著性影响(P < 0.05)。  相似文献   

14.
A long-term research programme has been underway in Ireland to evaluate the usefulness of badger vaccination as part of the national bTB (bovine tuberculosis) control strategy. This culminated in a field trial which commenced in county Kilkenny in 2009 to determine the effects of badger vaccination on Mycobacterium bovis transmission in badgers under field conditions. In the present study, we sought to optimise the characteristics of a multiplex chemiluminescent assay for detection of M. bovis infection in live badgers. Our goal was to maximise specificity, and therefore statistical power, during evaluation of the badger vaccine trial data. In addition, we also aimed to explore the effects of vaccination on test characteristics. For the test optimisation, we ran a stepwise logistic regression with analytical weights on the converted Relative Light Units (RLU) obtained from testing blood samples from 215 badgers captured as part of culling operations by the national Department of Agriculture, Food and the Marine (DAFM). The optimised test was applied to two other datasets obtained from two captive badger studies (Study 1 and Study 2), and the sensitivity and specificity of the test was attained separately for vaccinated and non-vaccinated badgers. During optimisation, test sensitivity was maximised (30.77%), while retaining specificity at 99.99%. When the optimised test was then applied to the captive badger studies data, we observed that test characteristics did not vary greatly between vaccinated and non-vaccinated badgers. However, a different time lag between infection and a positive test result was observed in vaccinated and non-vaccinated badgers. We propose that the optimized multiplex immunoassay be used to analyse the vaccine trial data. In relation to the difference in the time lag observed for vaccinated and non-vaccinated badgers, we also present a strategy to enable the test to be used during trial evaluation.  相似文献   

15.
Weather conditions, and how they in turn define and characterize regional climatic conditions, are a primary limit on global species diversity and distribution, and increasing variability in global and regional climates have significant implications for species and habitat conservation. A Capture–Mark–Recapture study revealed that badger (Meles meles) life history parameters interact in complicated ways with annual variability in the seasonality of temperature and rainfall, both in absolute and in phenological terms. A strong predictive relationship was observed between survival and both temperature and late‐summer rainfall. This link at the population dynamics level was related to individual body‐weight increases observed between summer and autumn. In addition, fecundity was correlated with spring rainfall and temperature. We investigated and confirmed that relationships were consistent with observed variation in the intensity of a parasitic infection. Finally, fecundity during any given year correlated with conditions in the preceding autumn. Badger survival also correlated with late winter weather conditions. This period is critical for badgers insofar as it coincides with their peak involvement in road traffic accidents (RTAs). RTA rate during this period was linked strongly to temperature, underlining the intricate ways in which a changing climate might interact with anthropogenic agents to influence species' population processes. Equinoctial conditions produced significant population driver effects. That is, while summers will always be relatively warm compared with winters, spring and autumn weather can be more variable and functionally delimit the ‘productive’ vs. nonproductive period of the year in terms of badger behavioural and physiological cycles. This study highlights how appropriately informed conservation strategies, mindful of trends in climatic conditions, will become ever‐more essential to ensure the survival of many species globally.  相似文献   

16.
Aim To test the abundant centre hypothesis by analysing the physical and climatic factors that influence body size variation in the European badger (Meles meles). Location Data were compiled from 35 locations across Europe. Methods We used body mass, body length and condylo‐basal length (CBL) as surrogates of size. We also compiled data on latitude, several climatic variables, habitat type and site position relative to the range edge. We collapsed all continuous climatic variables into independent vectors using principal components analysis (PCA), and used a general linear model to explain the morphometric variation in badger populations across the species’ range. Results Body mass and body length were nonlinearly and significantly related to latitude. In contrast, CBL was linearly related to latitude. Body mass changed nonlinearly along the temperature (PC1) gradient, with the highest values observed at mid‐range. Furthermore, body mass, body length and CBL differed significantly among habitats, with badgers showing larger size in temperate habitats and core areas relative to peripheral zones. Main conclusions Our analysis supports the nonlinear pattern predicted by the abundant centre hypothesis only for body mass and body length. These results imply that individuals are largest and heaviest at the centre of the climatic range of badger distribution. Variation of CBL with latitude follows a linear trend, consistent with Bergmann’s rule. Our results provide mixed support for the abundant centre hypothesis, and suggest food availability/quality to be the main mechanism underlying body size clines in this species.  相似文献   

17.
The spatial distribution of wildlife hosts and the associated environmental distribution of their excretory products are important factors associated with the risk of disease transmission between wildlife and livestock. At a landscape scale, heterogeneous distribution of a wildlife host will create regional hot spots for disease risk, while at the farm level, distributional patterns of wildlife excretory products as well as habitat use are of primary importance to the assessment of disease risk to livestock. In the UK, badgers have been implicated in the transmission of bovine tuberculosis to cattle. In this study, we focus on the spatial and social organization and habitat use of badgers as well as the distributions of their excretions at latrine and sett sites to assess intra- and inter-species (badger–cattle) disease risk. Across the study site, badger latrines and setts were found in prominent clusters, at distances of up to 250 and 200 m respectively. This was partly due to small-scale clustering of latrines around sett sites, so that disease risk may be higher within the vicinity of setts. The clustered distribution suggests that sites of high risk for TB transmission may be localised within farms. Exclusion of cattle from the few sett and latrine sites within their grazing pasture is therefore likely to provide an effective way of reducing the risk of disease transmission. We also found evidence of social sub-division within badger social groups based on differences in the use of main and outlier setts. This may contribute to localised clusters of infection within the badger population, resulting in heterogeneous patterns of environmental disease risk to the wider host community. A greater understanding of variation in host behaviour and its implications for patterns of disease will allow the development of more targeted and effective management strategies for wildlife disease in group-living hosts.  相似文献   

18.
1. Direct interactions between individuals play an important part in the sociality of group-living animals, their mating system and disease transmission. Here, we devise a methodology to quantify relative rates of proximity interaction from radio-tracking data and highlight potential asymmetries within the contact network of a moderate-density badger population in the north-east of England. 2. We analysed radio-tracking data from four contiguous social groups, collected over a 3-year period. Dynamic interaction analysis of badger dyads was used to assess the movement of individuals in relation to the movement of others, both within and between social groups. Dyads were assessed with regard to season, sex, age and sett use pattern of the badgers involved. 3. Intragroup separation distances were significantly shorter than intergroup separation distances, and interactions between groups were rare. Within groups, individuals interacted with each other more often than expected, and interaction patterns varied significantly with season and sett use pattern. Non-mover dyads (using the main sett for day-resting on > 50% of occasions) interacted more frequently than mover dyads (using an outlier sett for day-resting on > 50% of occasions) or mover-non-mover dyads. Interactions between group members occurred most frequently in winter. 4. Of close intragroup interactions (< 50 m separation distance), 88.6% were associated with a main sett and only 4.4% with outlier setts. Non-mover dyads and non-mover-mover dyads interacted significantly more often at the main sett than mover-only dyads. These results highlight the importance of the main sett to badger sociality and support the suggestion that badger social groups are comprised of different subgroups, in our case based on differential sett use patterns. 5. Asymmetries in contact structure within a population will affect the way in which diseases are transmitted through a social network. Assessment of these networks is essential for understanding the persistence and spread of disease within populations which do not mix freely or which exhibit heterogeneities in their spatial or social behaviour.  相似文献   

19.
Aim Project‐specific data for biogeographical models are often logistically impractical to collect, forcing the use of existing data from a variety of sources. Use of these data is complicated when neither absence nor an estimate of the area sampled is available, as these are requirements of most analytical techniques. We demonstrate the Mahalanobis distance statistic (D2), which is a presence‐only modelling technique and does not require information on species absence or the sampled area. We use badger (Meles meles) setts as the basis for this investigation, as their landscape associations are well understood, and survey data exist against which to compare estimates of sett distribution and abundance. Location  England and Wales (151,403 km2). Methods We used stratified random samples of sett locations, and landscape variables that are known to be important for choice of badger sett location within a geographic information system at a cell resolution of 100 × 100 m. Landscape conditions at two scales were extracted, at and around sett locations, and the D2 was used to classify all cells in England and Wales into a sett suitability model. Comparison of this sett suitability model with known main sett densities allowed estimates of main sett density to be made across England and Wales, with associated uncertainty. Results The sett suitability model was shown through iterative sampling and model evaluation using independent data to be stable and accurate. Main sett density estimates were biologically plausible in comparison with previous field‐derived estimates. We estimate 58,000 main setts within England and Wales, with 95% confidence intervals suggesting a value between 31,000 and 93,000. Main conclusions The D2, which could be applied to other species and locations, proved useful in our context, where absence data were not available and the sampled area could not be reliably established. We were able to predict sett suitability across a large area and at a fine resolution, and to generate plausible estimates of main sett density. The final model provides valuable information on probable badger sett distribution and abundance, and may contribute to future research on the spatial ecology of badgers in England and Wales.  相似文献   

20.
The body weights of badgers were examined to look for density-dependent effects of the increase in group size at Woodchester Park, Gloucestershire. The weight of badgers in 21 groups were studied from 1978–1993. A significant negative relationship was found between weight and group size in breeding adult females in autumn and winter, and adult males in summer, such that increase in group size caused a decrease in weight. However, these relationships were affected by year-to-year changes and random variation, and overall there was no downward trend in body weight. The existence of density-dependent effects on badger populations at high density was consistent with previous findings  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号